Progress and Prospect of the Darbut Ophiolite in West Junggar, Central Asian Orogenic Belt
-
摘要:
蛇绿岩是研究古大洋的主要载体和划分古板块边界的重要证据,记录了从大洋岩石圈的最初形成到最后洋盆闭合的诸多信息,是研究洋–陆转换过程的关键地质体。西准噶尔达尔布特蛇绿岩是北疆地区发育规模最大、最为典型的蛇绿岩带之一,相关研究近年来取得了系列成果。①在萨尔托海铬铁矿中发现金刚石等深部矿物群,从而对此前铬铁矿的浅部成矿理论提出了质疑。②在蛇绿岩中识别出前弧玄武岩,它是俯冲起始的地质记录之一。③蛇绿岩中存在古海山物质组分,其中玄武岩具有OIB特征。④萨尔托海铬铁矿是深部地幔预富集和浅部再富集的结果。⑤达尔布特蛇绿岩形成于俯冲有关的构造环境,并有地幔柱的参与。在取得进展的同时,也出现了一些新的科学问题和研究方向,主要包括深部物质循环过程、俯冲起始机制、陆壳增生机制和俯冲带型蛇绿岩成因等。
Abstract:Ophiolite is a major material for studying of ancient oceans and important lithological evidence for delineating ancient plate boundaries. It records valuable information from the initial formation of the oceanic lithosphere to the final closure of the ocean basin, and is also a key geological target for studying the ocean–continent transition process. The Darbut ophiolite in West Junggar is one of the largest and most typical ophiolites exposed in northern Xinjiang. A series of new advances have been achieved in recent years: ① Diamonds and other exotic minerals have been recovered from chromitites of the Sartohay ophiolites, thus challenging the previous theory of shallow chromitite genesis. ② Fore–arc basalts have been identified in the ophiolite, which is one of the geological records of subduction initiation. ③ Ancient seamount material components have been recognized in the ophiolite, in which the basalt show OIB characteristics. ④ Sartohay chromitite is the result of deep mantle pre–enrichment and shallow re–enrichment. ⑤ A formation environment mainly associated with a subduction–related tectonic setting, with the involvement of the mantle plume, has been suggested. Despite progresses mentioned above, some new scientific issues and research directions have emerged, mainly concerning deep mantle mass recycling processes, subduction initiation mechanisms, crustal growth processes, and subduction zone ophiolite genesis.
-
Key words:
- tectonics /
- ophiolite /
- seamount /
- Dartbut /
- West Junggar
-
图 1 中亚造山带构造格架图(a)(据Jahn et al.,2000)及西准噶尔地质简图(b)(据Yang et al.,2013)
Figure 1.
图 2 西准噶尔达尔布特蛇绿岩带简图(据李行等,1987)
Figure 2.
图 3 地球地幔中金刚石和铬铁矿的形成和深部物质循环模式(据Yang et al.,2021)
Figure 3.
-
[1] 敖松坚, 肖文交, 韩春明, 等. 中亚造山带南缘蛇绿岩研究现状与展望[J]. 地球科学, 2022, 47(9): 3107-3126 doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002
AO Songjian, XIAO Wenjiao, HAN Chunming, et al. Status and prospect of research on ophiolites in the southern margin of the Central Asian Orogenic Belt[J]. Earth Science, 2022, 47(9): 3107-3126. doi: 10.3321/j.issn.1000-2383.2022.9.dqkx202209002
[2] 鲍佩声, 王希斌, 郝梓国, 等. 对富铝型豆荚状铬铁矿矿床成因的新认识——以新疆萨尔托海铬铁矿矿床为例[J]. 矿床地质, 1990, 9(2): 3-17.
BAO Peisheng, WANG Xibin, HAO Ziguo, et al. A new idea about the genesis of the aluminium rich podiform chromite deposit—with theSartuohai chromite deposit of Xinjiang as an example[J]. Mineral Deposits, 1990, 9(2): 97-111.
[3] 鲍佩声, 王希斌, 彭根永, 等. 新疆西准噶尔重点含铬岩体成矿条件及找矿方向的研究[A]. 中国地质科学院地质研究所文集[C]. 1992, 24: 1−177
BAO Peisheng, WANG Xibin, PENG Genyong, et al. Study on mineralization constraints and assessment of ore potential of main chrome-bearing rock bodies in western Junggar[A]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences[C]. 1992, 24: 1−177.
[4] 鲍佩声. 再论蛇绿岩中豆荚状铬铁矿的成因——质疑岩石/熔体反应成矿说[J]. 地质通报, 2009, 28(12): 1741-1761 doi: 10.3969/j.issn.1671-2552.2009.12.008
BAO Peisheng. Further discussion on the genesis of the podiform chromite deposits in the ophiolites—questioning about the rock/melt interaction metallogeny[J]. Chinese Journal of Geology, 2009, 28(12): 1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008
[5] 高俊, 江拓, 王信水, 等. 准噶尔—天山—北山蛇绿岩: 对中亚造山带西南缘洋陆格局演化的制约[J]. 地质科学, 2022, 57(1): 1-42 doi: 10.12017/dzkx.2022.001
GAO Jun, JIANG Tuo, WANG Xinshui, et al. The Junggar, Tianshan and Beishan ophiolites: Constraint on the evolution of oceanic and continental framework along the southwestern margin of the Central-Asian Orogenic Belt[J]. Chinese Journal of Geology, 2022, 57(1): 1-42. doi: 10.12017/dzkx.2022.001
[6] 辜平阳, 李永军, 张兵, 等. 西准达尔布特蛇绿岩中辉长岩LA-ICP-MS锆石U-Pb测年[J]. 岩石学报, 25(6): 1364-1372
GU Pingyang, LI Yongjun, ZHANG Bing, et al. LA-ICP-MS zircon U-Pb dating of gabbro in the Darbut ophiolite, western Junggar, China[J]. Acta Petrologica Sinica, 2009, 25: 1364-1372.
[7] 郝梓国, 王希斌, 鲍佩声. 造山带中富集型上地幔的成因——以萨尔托海蛇绿岩块为例[J]. 中国地质科学院院报, 1991(01): 159-166
HAO Ziguo, WANG Xibin, BAO Peisheng. Genesis of enriched upper mantle in orogenic zone—a case stufy of the Saertuohai ophiolitic block[J]. Bulletin of the Chinese Academy of Geological Sciences, 1991(01): 159-166.
[8] 李海, 李永军, 徐学义, 等. 西准噶尔达尔布特蛇绿岩带萨尔托海岩体深部结构、构造特征: 地质与地球物理证据[J]. 大地构造与成矿学, 2021, 45(4): 634-650
LI Hai, LI Yongjun, XU Xueyi, et al. Deep structure and tectonic of Sartohay ophiolite in West Junggar, Xinjiang: New geological and geophysical evidence[J]. Geotectonica et Metallogenia, 2021, 45(4): 634-650.
[9] 雷敏, 赵志丹, 侯青叶, 等. 新疆达拉布特蛇绿岩带玄武岩地球化学特征: 古亚洲洋与特提斯洋的对比[J]. 岩石学报, 2008, 24(4): 661-672
LEI Min, ZHAO Zhidan, HOU Qinye, et al. Geochemical and Sr-Nd-Pb isotopic characteristics of the dalabute ophiolite, Xinjiang: Comparison between the paleo-Asian ocean and the Tethyan mantle domains[J]. Acta Petrologica Sinica, 2008, 24(4): 661-672.
[10] 李行, 巩志超, 董显扬, 等. 新疆西准噶尔地区基性超基性岩生成地质背景及区域成矿特征[J]. 中国地质科学院西安地质矿产研究所所刊, 1987, 8(4): 3-140
LI Hang, GONG Zhichao, DONG Xianyang, et al. On the geological setting of basic and ultrabasic rocks and the characteristics of regional metallization (mainly chromite) in the West Junggar of Xinjiang, China[J]. Bulletin of Xi`an Institute of Geology, Chinese Academy of Geological Sciences, 1987, 8(4): 3-140.
[11] 刘希军, 许继峰, 王树庆, 等. 新疆西准噶尔达拉布特蛇绿岩E-MORB型镁铁质岩的地球化学、年代学及其地质意义[J]. 岩石学报, 2009, 25(6): 1373-1389
LIU Xijun, XU Jifeng, WANG Shuqing, et al. Geochemistry and dating of E-MORB type rocks from Darbute ophiolite in West Junggar, Xinjiang and geological implications[J]. Acta Petrologica Sinca, 2009, 25(6): 1373-1389.
[12] 马中平, 夏林圻, 夏祖春, 等. 蛇绿岩年代学研究方法及应注意的问题[J]. 西北地质, 2004, 37(3): 103−108.
MA Zhongping, XIA Linqi, XIA Zuchun, et al. Method of ophiolite geochronology study and the related problems[J]. Northwestern Geology, 2004, 37(3): 103−108.
[13] 史仁灯. 蛇绿岩研究进展、存在问题及思考[J]. 地质论评, 2005, 51(6): 681-693 doi: 10.3321/j.issn:0371-5736.2005.06.010
SHI Rendeng. Comment on the progress in and problems on ophiolite study[J]. Geological Review, 2005, 51(6): 681-693. doi: 10.3321/j.issn:0371-5736.2005.06.010
[14] 田亚洲, 杨经绥, 杨华燊, 等. 新疆萨尔托海铬铁矿中铂族矿物及硫化物特征[J]. 地质学报, 2019, 93(10): 2639-2655 doi: 10.3969/j.issn.0001-5717.2019.10.016
TIAN Yazhou, YANG Jingsui, YANG Huashen, et al. The characteristics of PGE and BMS in Sartohay chromitites, Xinjiang[J]. Acta Geologica Sinica, 2019, 93(10): 2639-2655. doi: 10.3969/j.issn.0001-5717.2019.10.016
[15] 田亚洲, 杨经绥, 张仲明, 等. 新疆萨尔托海高铝铬铁矿中异常矿物群的发现及意义[J]. 岩石学报, 2015(12): 3650-3662
TIAN Yazhou, YANG Jingsui, ZHANG Zhongming, et al. Discovery and implication of unusual mineral group from Sarthay high-Al chromitites, Xinjiang[J]. Acta Petrologica Sinica, 2015, 31(12): 3650-3662.
[16] 田亚洲, 杨经绥. 萨尔托海铬铁矿中的矿物包体研究[J]. 地质学报, 2016(11): 3114-3128
TIAN Yazhou, YANG Jingsui. Study on the mineral Inclusions in Sartohay chromitites[J]. Acta Geologica Sinica, 90(11): 3114-3128.
[17] 王国灿, 张攀. 蛇绿混杂岩就位机制及其大地构造意义新解: 基于残余洋盆型蛇绿混杂岩构造解析的启示[J]. 地球科学, 2019, 44(5): 1688-1704
WANG Guocan, ZHANG Pan. A new understanding on the emplacement of ophiolitic mélanges and its tectonic significance: Insights from the structural analysis of the remnant oceanic basin-type ophiolitic mélanges[J]. Earth Science, 2019, 44(5): 1688-1704.
[18] 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2): 293-325
WU Fuyuan, LIU Chuanzhou, ZHANG Liangliang, et al. Yarlung Zangbo ophiolite: A critical updated view[J]. Acta Petrologica Sinica, 2014, 30(2): 293-325.
[19] 肖序常. 从扩张速率试论蛇绿岩的类型划分[J]. 岩石学报, 1995, 11(增刊): 10-23 doi: 10.3321/j.issn:1000-0569.1995.z1.002
XIAO Xuchang. Discussion on the classification of ophiolite by spreadding rate[J]. Acta Petrologica Sinica, 1995, 11(suppl. ): 10-23. doi: 10.3321/j.issn:1000-0569.1995.z1.002
[20] 杨经绥, 徐向珍, 张仲明, 等. 蛇绿岩型金刚石和铬铁矿深部成因[J]. 地球学报, 2013, 34(6): 643-653. ,
YANG Jingsui, XU Xaingzhen, ZHANG Zhongming, et al. Ophiolite-type diamond and deep genesis of chromitite[J]. Acta Geoscientica Sinica, 2013, 34(6): 643-653.
[21] 杨经绥, 徐向珍, 白文吉, 等. 蛇绿岩型金刚石的特征[J]. 岩石学报, 2014, 30(8): 2113-2124
YANG JingSui, XU XiangZhen, BAI WenJi, et al. Features of diamond in ophiolite[J]. Acta Petrologica Sinica, 2014, 30(8): 2113-2124.
[22] 杨经绥, 连东洋, 吴魏伟, 等. 俯冲物质深地幔循环——地球动力学研究的一个新方向[J]. 地质学报, 2021, 95(1): 42-63 doi: 10.19762/j.cnki.dizhixuebao.2021038
YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Recycling of subducted crust in deep mantle: a new research orientation to earth dynamics[J]. Acta Geologica Sinica, 2021, 95(1): 42-63. doi: 10.19762/j.cnki.dizhixuebao.2021038
[23] 杨经绥, 连东洋, 吴魏伟, 等. 蛇绿岩中铬铁矿研究的问题与思考[J]. 地质学报, 2022, 96(5): 1608-1634 doi: 10.3969/j.issn.0001-5717.2022.05.007
YANG Jingsui, LIAN Dongyang, WU Weiwei, et al. Chromitites in ophiolites: questions and thoughts[J]. Acta Geologica Sinica, 2022, 96(5): 1608-1634. doi: 10.3969/j.issn.0001-5717.2022.05.007
[24] 臧遇时, 杨高学, 赵金凤. 蛇绿岩的定义、分类及其发展[J]. 西北地质, 2013, 46(2): 12−17.
ZANG Yushi, YANG Gaoxue, ZHAO Jinfeng. The Definition, Classification and Development of Ophiolites[J]. Northwestern Geology, 2013, 46(2): 12−17.
[25] 翟庆国, 高俊, 宋述光. 中国蛇绿岩与造山带大地构造研究: 前言[J]. 岩石学报, 2019, 35(10): 2943-2947 doi: 10.18654/1000-0569/2019.10.01
ZHAI QingGuo, GAO Jun, SONG ShuGuang. New progress in ophiolite and tectonics of China: Preface[J]. Acta Petrologica Sinica, 2019, 35(10): 2943-2947. doi: 10.18654/1000-0569/2019.10.01
[26] 张进, 邓晋福, 肖庆辉, 等. 蛇绿岩研究的最新进展[J]. 地质通报, 2012, 31(1): 1-12 doi: 10.3969/j.issn.1671-2552.2012.01.001
ZHANG Jin, DENG Jinfu, XIAO Qinghui, et al. New advances in the study of ophiolites[J]. Geological Bulletin of China, 2012, 31(1): 1-12. doi: 10.3969/j.issn.1671-2552.2012.01.001
[27] 张继恩, 陈艺超, 肖文交, 等. 蛇绿岩与蛇绿混杂带结构[J]. 地质科学, 2021, 56(2): 560-595 doi: 10.12017/dzkx.2021.029
ZHANG Ji'en, CHEN Yichao, XIAO Wenjiao, et al. Architecture of ophiolite and ophiolitic mélange[J]. Chinese Journal of Geology, 2021, 56(2): 560-595. doi: 10.12017/dzkx.2021.029
[28] 张向飞, 陈莉, 曹华文, 等. 中国新疆–中亚大地构造单元划分及演化简述[J]. 西北地质, 2023, 56(4): 1−39.
ZHANG Xiangfei, CHEN Li, CAO Huawen, et al. Division of Tectonic Units and Their Evolutions within Xinjiang, China to Central Asia[J]. Northwestern Geology, 2023, 56(4): 1−39.
[29] 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2): 225-237.
ZHU Dicheng, MO Xuanxue, WANG Liquan, et al. Hotspot-ridge interaction for the evolution of Neo-Tethys: insights from the Late Jurassic-Early Cretaceous magmatism in southern Tibet[J]. Acta Petrologica Sinica, 2008, 24(2): 225-237
[30] Arai S, Miura M. Formation and modification of chromitites in the mantle[J]. Lithos, 2016, 264: 277-295. doi: 10.1016/j.lithos.2016.08.039
[31] Bai W J, Zhou M F, Robinson P T. Possibly diamond-bearing mantle peridotites and podiform chromitites in the Luobusa and Donqiao ophiolites, Tibet[J]. Canadian Journal of Earth Sciences, 1993, 30(8): 1650-1659. doi: 10.1139/e93-143
[32] Buchs D M, Arculus R J, Baumgartner P O, et al. Oceanic intraplate volcanoes exposed: example from seamounts accreted in Panama[J]. Geology, 2011, 39: 335-338.
[33] Buckman S, Aitchison J C. Tectonic evolution of Paleozoic terranes in West Junggar, Xinjiang, NW China[C]. Aspects of the Tectonic Evolution of China. Geological Society of London Special Publication, 2004, 226: 101-129.
[34] Chen S, Pe-Piper G, Piper D J W, et al. Ophiolitic mélanges in crustal-scale fault zones: Implications for the Late Palaeozoic tectonic evolution in West Junggar, China[J]. Tectonics, 2014, 33: 2419-2443. doi: 10.1002/2013TC003488
[35] Choulet F, Faure M, Cluzel D, et al. From oblique accretion to transpression in the evolution of the Altaid collage: New insights from West Junggar, northwestern China[J]. Gondwana Research, 2012, 21: 530-547. doi: 10.1016/j.gr.2011.07.015
[36] Coleman R G. Ophiolites[M]. Springer, Berlin, Heidelberg, New York, 1977, 1-220.
[37] Dai J G, Wang C S, Polat A, et al. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172-173: 1-16. doi: 10.1016/j.lithos.2013.03.011
[38] Dickey J S. A hypothesis of origin for podiform chromite deposits[J]. Geochimica et Cosmochimica Acta, 1975, 39(6): 1061-1074.
[39] Dilek Y, Furnes H. Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems[J]. Lithos, 2009, 113: 1-20. doi: 10.1016/j.lithos.2009.04.022
[40] Dilek Y, Furnes H. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere[J]. Geological Society of America Bulletin, 2011, 123: 387-411. doi: 10.1130/B30446.1
[41] Dilek Y, Furnes H. Ophiolites and their origins[J]. Elements, 2014, 10: 93-100. doi: 10.2113/gselements.10.2.93
[42] Du H Y, Chen J F, Ma X, et al. Origin and tectonic significance of the Hoboksar ophiolitic mélange in northern West Junggar (NW China)[J]. Lithos, 2019, 336-337: 293-309. doi: 10.1016/j.lithos.2019.04.010
[43] Duncan R A, Keller R A. Radiometric ages for basement rocks from the Emperor Seamounts, ODP Leg 197[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(8): 1-13.
[44] Feng Y M, Coleman R G, Tilton G R, et al. Tectonic evolution of the West Junggar region, Xinjiang, China[J]. Tectonics, 1989, 8: 729-752. doi: 10.1029/TC008i004p00729
[45] Hofmann A, Jochum K. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project[J]. Journal of Geophysical Research, 1996, 101: 831-839.
[46] Huang H, Wang T, Tong Y, et al. Rejuvenation of ancient micro-continents during accretionary orogenesis: insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt[J]. Earth-Science Reviews, 2020, 208: 103-255.
[47] Huang Z, Yang J S, Zhu Y W, et al. The study of deep mineral association in chromitites of the Hegenshan ophiolite, Inner Mongolia, China[J]. Acta Geologica Sinica, 2015, 89(z2): 30-31.
[48] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306: 229-240. doi: 10.1016/j.jpgl.2011.04.006
[49] Jahn B M, Wu F Y, Chen B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic[J]. Transactions of the Royal Society of Edinburgh, 2000, 91: 181-193. doi: 10.1017/S0263593300007367
[50] Li H, Li Y J, Yang G X, et al. Prospecting for ophiolite-type chromite deposit in Sartohay, West Junggar (NW China): Constraints from geological and geophysical data[J]. Ore GeologyReviews, 2023, 156: 105379. doi: 10.1016/j.oregeorev.2023.105379
[51] Li H Y, Zhao R P, Li J, et al. Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc [J]. Nature Communications, 2021, 12(1): 6015. doi: 10.1038/s41467-021-26322-8
[52] Lian D Y, Yang J S. Ophiolite-hosted diamond: a new window for probing carbon cycling in the deep mantle[J]. Engineering, 2019, 5: 406-420. doi: 10.1016/j.eng.2019.02.006
[53] Liu Y J, Xiao W J, Ma Y F, et al. Oroclines in the Central Asian Orogenic Belt[J]. National Science Review, 2023, 10: nwac243. doi: 10.1093/nsr/nwac243
[54] Morgan W J. 1971. Convection plumes in the lower mantle[J]. Nature, 1971, 230: 42-43. doi: 10.1038/230042a0
[55] Nicolas A, Boudier F. Where ophiolites come from and what they tell us[J]. Geological Society of America Special Papers, 2003, 373: 137-152.
[56] O'Connor J M, Duncan R A. Evolution of the Walvis Ridge-Rio Grande Rise Hot Spot System: Implications for African and South American Plate motions over plumes[J]. Journal of Geophysical Research, 1990, 95(B11): 17475-17502 doi: 10.1029/JB095iB11p17475
[57] O'Neill C, Müller D, Steinberger B. Geodynamic implications of moving Indian Ocean hotspots[J]. Earth and Planetary Science Letters, 2003, 215: 151-168. doi: 10.1016/S0012-821X(03)00368-6
[58] Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[A]. Marginal basin geology[C]. London: Blackwell Scientific Publications, 1984: 77−94.
[59] Qiu T, Zhu Y F. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry[J]. Lithos, 2018, 302-303: 427-446. doi: 10.1016/j.lithos.2018.01.029
[60] Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(3): Q03X12.
[61] Reagan M K, Mcclelland W C, Girard G, et al. The geology of the southern Mariana Fore-Arc crust: implications for the scale of Eocene volcanism in the Western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.jpgl.2013.08.013
[62] Rui H C, Yang J S, Lian D Y, et al. Deep origin of mantle peridotites from the Aladağ ophiolite, Turkey: Implication from trace element geochemistry of pyroxenes and mineralogy of ophiolitic diamonds[J]. Journal of Asian Earth Sciences, 2022, 228: 105153. doi: 10.1016/j.jseaes.2022.105153
[63] Safonova I Y, Santosh M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes[J]. Gondwana Research, 2014, 25: 126-158. doi: 10.1016/j.gr.2012.10.008
[64] Sengör A M C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-307. doi: 10.1038/364299a0
[65] Shen P, Pan H D, Cao C, et al. The formation of the Suyunhe large porphyry Mo deposit in the West Junggar terrain, NW China: zircon U-Pb age, geochemistry and Sr-Nd-Hf isotopic results[J]. Ore Geology Reviews, 2017, 81: 808-828. doi: 10.1016/j.oregeorev.2016.02.015
[66] Shervais J W, Reagan M K, Haugen E, et al. Magmatic response to subduction initiation: part 1. fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2019, 20: 314-338. doi: 10.1029/2018GC007731
[67] Shervais J W, Reagan M K, Godard M, et al. Magmatic response to subduction initiation, Part II: boninites and related rocks of the Izu-Bonin arc from IODP expedition 352[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(1): e2020GC009093.
[68] Shi R D, Griffin W L, O`Reilly S Y, et al. Archean mantle contributes to the genesis of chromitite in the Palaeozoic Sartohay ophiolite, Asiatic Orogenic Belt, northwestern China[J]. Precambrian Research, 2012, 1: 87-94.
[69] Taylor R N, Nesbitt R W, Vidal P, et al. Mineralogy, chemistry, and genesis of the boninite series volcanics, chichijima, bonin islands, Japan[J]. Journal of Petrology, 1994, 35: 577-617. doi: 10.1093/petrology/35.3.577
[70] Tian Y Z, Yang J S, Robinson P T, et al. Diamond discovered in high-al chromitites of the Sartohay ophiolite, Xinjiang Province, China[J]. Acta Geologica Sinica, 2015, 89(2): 332-340. doi: 10.1111/1755-6724.12433
[71] Wakabayashi J, Dilek Y. What constitutes‘emplacement’of an ophiolite?: Mechanisms and relationship to subduction initiation and formation of metamorphic soles[J]. Geological Society, London, Special Publications, 2003, 218: 427⁃447.
[72] Wang T, Tong Y, Xiao W J, et al. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data[J]. National Science Review, 2022, 9: nwab210. doi: 10.1093/nsr/nwab210
[73] Wang T, Tong Y, Huang H, et al. Granitic record of the assembly of the Asian continent[J]. Earth-Science Reviews, 2023a, 237: 104298. doi: 10.1016/j.earscirev.2022.104298
[74] Wang T, Huang H, Zhang J J, et al. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023b, 10: nwac283. doi: 10.1093/nsr/nwac283
[75] Wang Z H, Sun S, Li J L, et al. , Petrogenesis of tholeiite associations in Kudi ophiolite (western Kunlun Mountains, northwestern China): implications for the evolution of back-arc basins[J]. Contributions to Mineralogy and Petrology, 2002, 143: 471-483. doi: 10.1007/s00410-002-0358-5
[76] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic belt[J]. Journal of the Geological Society, 2007, 164: 31-47. doi: 10.1144/0016-76492006-022
[77] Xiao W J, Windley B F, Sun S, et al. A tale of amalgamation of three collage systems in the permian-middle Triassic in Central Asia: oroclines, sutures and terminal accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 477-507. doi: 10.1146/annurev-earth-060614-105254
[78] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
[79] Xiao W J, Song D F, Windley B F, et al. Research progresses of the accretionary processes and metallogenesis of the Central Asian Orogenic Belt[J]. Science China Earth Sciences, 2020, 63: 329-361. doi: 10.1007/s11430-019-9524-6
[80] Xiong F H, Yang J S, Robinson P T, et al. Diamonds discovered from high–Cr podiform chromitites of Bulqiza, eastern Mirdita ophiolite, Albania[J]. Acta Geologica Sinica, 2017, 91(2): 455-468. doi: 10.1111/1755-6724.13111
[81] Xu X Z, Yang J S, Robinson P T, et al. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet[J]. Gondwana Research, 2015, 27: 686-700. doi: 10.1016/j.gr.2014.05.010
[82] Yan Q S, Castillo P, Shi X F, et al. Geochemistry and petrogenesis of volcanic rocks from Daimao Seamount (South China Sea) and their tectonic implications[J]. Lithos, 2015, 218-219: 117-126. doi: 10.1016/j.lithos.2014.12.023
[83] Yang G X. Subduction initiation triggered by collision: A review based on examples and models[J]. Earth-Science Reviews, 2022, 232: 104129. doi: 10.1016/j.earscirev.2022.104129
[84] Yang G X, Li Y J, Santosh M, et al. A Neoproterozoic seamount in the Paleoasian Ocean: evidence from zircon U-Pb geochronology and geochemistry of the Mayile ophiolitic mélange in West Junggar, NW China[J]. Lithos, 2012a, 140-141: 53-65. doi: 10.1016/j.lithos.2012.01.026
[85] Yang G X, Li Y J, Gu P Y, et al. Geochronological and geochemical study of the Darbut Ophiolitic complex in the West Junggar (NW China): implications for petrogenesis and tectonic evolution[J]. Gondwana Research, 2012b, 21: 1037-1049. doi: 10.1016/j.gr.2011.07.029
[86] Yang G X, Li Y J, Santosh M, et al. Geochronology and geochemistry of basaltic rocks from the Sartuohai ophiolitic mélange, NW China: Implications for a Devonian mantle plume within the Junggar Ocean[J]. Journal of Asian Earth Sciences, 2012c, 59: 141-155. doi: 10.1016/j.jseaes.2012.07.020
[87] Yang G X, Li Y J, Santosh M, et al. Geochronology and Geochemistry of Basalts from the Karamay Ophiolitic Mélange in West Junggar (NW China): Implications for Devonian-Carboniferous Intra-oceanic Accretionary Tectonics of the Southern Altaids[J]. Geological Society of America Bulletin, 2013, 125: 401-419. doi: 10.1130/B30650.1
[88] Yang G X, Li Y J, Xiao W J, et al. OIB-type rocks within West Junggar ophiolitic mélanges: evidence for the accretion of seamounts[J]. Earth-Science Reviews, 2015a, 150: 477-496. doi: 10.1016/j.earscirev.2015.09.002
[89] Yang G X, Li Y J, Tong L L, et al. An overview of oceanic island basalts in accretionary complexes and seamounts accretion in the western Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 179: 385-398. doi: 10.1016/j.jseaes.2019.04.011
[90] Yang G X, Li Y J, Tong L L, et al. An Early Cambrian plume-induced subduction initiation event within the Junggar Ocean: Insights from ophiolitic mélanges, arc magmatism, and metamorphic rocks[J]. Gondwana Research, 2020b, 88: 45-66. doi: 10.1016/j.gr.2020.07.002
[91] Yang G X, Li Y J, Tong L L, et al. Natural observations of subduction initiation: Implications for the geodynamic evolution of the Paleo-Asian Ocean[J]. Geosystems and geoenvironment, 2022, 1: 100009. doi: 10.1016/j.geogeo.2021.10.004
[92] Yang J S, Meng F C, Xu X Z, et al. Diamonds, native elements and metal alloys from chromitites of the Ray-Iz ophiolite of the Polar Urals[J]. Gondwana Research, 2015b, 27: 459-485. doi: 10.1016/j.gr.2014.07.004
[93] Yang J S, Wu W W, Lian D Y, et al. Peridotites, chromitites and diamonds in ophiolites[J]. Nature Reviews Earth & Environment, 2021, 2: 198-212.
[94] Yang Y Q, Zhao L, Zheng R G, et al. An early Ordovician fossil seamount of the Hongguleleng-Balkybey Ocean in the Northern West Junggar terrane (NW China) and its implications for the ocean evolution[J]. Journal of Asian Earth Sciences, 2020a, 194: 10406.
[95] Yao J L, Cawood P A, Zhao G C. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly[J]. Nature Communications, 2021, 12: 4189. doi: 10.1038/s41467-021-24422-z
[96] Zhang C, Zhai M G, Allen B, et al. Implications of Paleozoic ophiolites from Western Junggar, NW China, for the tectonics of Central Asia[J]. Journal of Geological Society, 1993, 150: 551-561. doi: 10.1144/gsjgs.150.3.0551
[97] Zhang J E, Chen Y C, Xiao W J, et al. Architecture of ophiolitic mélanges in the Junggar region, NW China[J]. Geosystems and Geoenvironment, 2022b, https://doi.org/10.1016/j.geogeo.2022.100175.
[98] Zhang P, Wang G C, Polat A, et al. Geochemistry of mafic rocks and cherts in the Darbut and Karamay ophiolitic mélanges in West Junggar, northwest China: Evidence for a Late Silurian to Devonian back-arc basin system[J]. Tectonophysics, 2018, 745: 395-411. doi: 10.1016/j.tecto.2018.08.018
[99] Zhou M F, Robinson P T, Malpas J, et al. Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal of Asian Earth Sciences, 2001, 19: 517-534. doi: 10.1016/S1367-9120(00)00048-1
[100] Zhou M F, RobinsonP T, Su B X, et al. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits: The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 2014, 26(1): 262-283. doi: 10.1016/j.gr.2013.12.011
[101] Zhou M F, Robinson P T, Malpas J, et al. Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21. doi: 10.1093/petrology/37.1.3
[102] Zhu Q M, Zhu Y F. Platinum-group minerals and Fe–Ni minerals in the Sartohay podiform chromitite (west Junggar, China): Implications for T–pH–fO2–fS2 conditions during hydrothermal alteration[J]. Ore Geology Reviews, 2019, 112: 103020. doi: 10.1016/j.oregeorev.2019.103020
[103] Zhu Q M, Zhu Y F. Petrology and geochemistry of ultramafic and mafic rocks in the late Silurian-early Devonian darbut ophiolitic mélange of west Junggar (NORTHWESTERN CHINA): implications for petrogenesis and tectonic evolution[J]. International Geology Review, 2022, 64: 2601-2625. doi: 10.1080/00206814.2021.1995788