Carboniferous-Permian Magmatism of Southern Mongolia, Central Asian Orogenic Belt and Its Tectonic Implications
-
摘要:
中亚造山带作为显生宙以来全球最大的增生型造山带,记录了古亚洲洋俯冲、增生、闭合的全过程。南蒙古地区位于中亚造山带南缘中段,其晚古生代先后发育弧岩浆活动以及与伸展活动相关的岩石组合,是研究陆壳增生和改造的热点区域。笔者结合区域地质特征及前人研究对南蒙古地区石炭纪—二叠纪这一关键时期的岩石组合做出系统梳理和总结,研究区石炭纪—二叠纪岩浆活动大致可以分为早石炭世(350~325 Ma),晚石炭世(320~305 Ma)和早二叠世(300~280 Ma)3个阶段。早石炭世(350~325 Ma)发育典型的弧岩浆岩且具有向南变年轻的趋势。此外,全岩Nd和锆石Hf同位素显示其主体具有显著的地幔贡献。综合前人认识,笔者认为这是古亚洲洋主洋盆以北多个次生的弧后洋盆俯冲后撤的结果。晚石炭世(320~305 Ma)以高硅花岗岩为主,尤其315~310 Ma的碱长花岗岩、碱长正长岩等是年轻弧地体重熔的产物,是俯冲大洋板片显著消耗的结束。早二叠世(300~280 Ma)发育伸展相关的岩石组合(如A型花岗岩、双峰式火山岩和基性岩墙),这些岩浆活动显示高温特征,且具有显著的地幔物质贡献。结合前人工作,特别是笔者的前期工作,上述岩浆活动是由石炭纪板片后撤之后高角度俯冲诱发的俯冲板片断离所造成,且前人研究成果表明南蒙古东西两侧均有类似的岩石、构造和沉积记录。因此,笔者提出,古亚洲洋主洋盆泥盆纪—二叠纪多期次的俯冲后撤导致了其北侧一系列次生的弧后洋盆的开启、俯冲至闭合,上述过程伴随了中亚造山带南缘最后一次大规模侧向增生及其结束后板片断离诱发的垂向地壳增生。
Abstract:As the largest Phanerozoic accretionary orogenic belt in the world, the Central Asian Orogenic Belt (CAOB) records the whole process of subduction, accretion and closure of the Paleo-Asian Ocean (PAO). The southern Mongolia, in the central segment of the southern CAOB, has successively developed rock associations of arc-magmatic activity and later extensional activity during the late Paleozoic, which is a key area for studying the accretion and transformation of continental crust. Combined with regional geological characteristics and previous studies, this paper systematically sorted out and summarized the rock association of the key period of Carboniferous-Permian in Southern Mongolia and the magmatic activity can be roughly divided into three stages: Early Carboniferous (350~325 Ma), Late Carboniferous (320~305 Ma), and the early Permian (300~280 Ma). During Early Carboniferous (350~325 Ma), the Southern Mongolia developed typical arc-type magmatic rocks having a southward migration trend. Whole-rock Nd and zircon Hf isotopes show that these rocks have significant mantle contribution. Combined with previous works, this resulted from slab retreating of a series of secondary back-are oceans of the PAO on the north of its main ocean basin. During Late Carboniferous (320~305 Ma), The southern Mongolia was dominated by high silica granites, especially the alkaline feldspar granites and syenites (315~310 Ma), which were produced by the remelting of earlier arc crusts, indicating the cessation of significant consumption of subducted oceanic plates. During the early Permian (300~280 Ma), extension-related magmatic rocks, such as A-type granite, bi-model volcanic rocks and basic dikes, were developed. The above magmatic activities showed the characteristics of high temperature and significant contribution of mantle materials. Therefore, we support that it was caused by the slab breakoff by high-angle subduction resulted from the aforementioned Carboniferous slab retreating. Previous studies show that there are similar rocks, structure and sedimentary records on both east and west sides of Southern Mongolia. Therefore, the Devonian-Permian subduction and slab retreating of the main basin of the PAO caused the opening, subduction and closure of a series of secondary back-arc basins on the northern side of the PAO, which were accompanied by the last large-scale lateral crustal accretion of the southern CAOB and its cessation with subsequent slab-breakoff-induced vertical crustal accretion.
-
-
图 1 中亚造山带地质简图(据肖文交等,2019修)
Figure 1.
图 2 蒙古国构造地层地体图(据Badarch et al., 2002; Kröner et al., 2010修)
Figure 2.
图 3 南蒙古地区主要构造单元地层柱(据Badarch et al., 2002; Kröner et al., 2010; Zhou et al., 2023修)
Figure 3.
图 4 南蒙古地区石炭纪—早二叠世岩石TAS图解(a)(据Middlemost, 1994修)和K2O- SiO2图解(b)(据Peccerillo et al., 1976修)
Figure 4.
图 5 南蒙古地区石炭纪—早二叠世岩石A/NK-A/CNK图解(a)(据 Miniar et al., 1989修)和Rb-(Y+Nb)图解(b)(据Pearce, 1996修)
Figure 5.
图 6 南蒙古地区石炭纪—早二叠世岩石稀土元素配分模式图(a)及微量元素蛛网图(b)(球粒陨石标准化值和原始地幔标准化值引自Sun et al., 1989)
Figure 6.
图 8 南蒙古地区非造山岩浆活动示意图(据Kozlovsky et al., 2012修)
Figure 8.
图 9 南蒙古地区大地电磁阻抗的二维模型(据Comeau et al., 2020修)
Figure 9.
图 10 中亚造山带南缘南蒙古地区晚石炭—早二叠世构造演化示意图(据Zhou et al., 2021a修改)
Figure 10.
续表1 时期 采样地点 岩石类型 样品编号 年龄(Ma) 参考文献 石炭纪末期—早二叠世 阿塔斯默格德地区 花岗闪长岩 — 302±3 Yarmolyuk et al., 2008b 阿塔斯默格德地区 花岗片麻岩 28/5325 301.4±1.2 Kröner et al., 2010 阿塔斯默格德地区 花岗闪长岩 M33/06 299.9±1.6 Kröner et al., 2010 古尔万赛汗-汗默格德地区 基性岩墙 MG07;MG03-1 299±3 Zhou et al., 2021a 阿塔斯默格德地区 黑云母花岗岩 YuM-25/12 299±1 Kozlovsky et al., 2012 古尔万赛汗-伊赫山海地区 石英二长斑岩 T2-048 298±4 Guy et al., 2014 戈壁阿尔泰-额尔德尼地区 花岗岩 M135 295.7±2.2 Kröner et al., 2010 阿兹默格德地区 亚碱性花岗岩 — 294±5 Yarmolyuk et al., 2008b 古尔万赛汗-汗默格德地区 碱性花岗岩 Zircon 293.4±2.6 Gerdes et al., 2017 古尔万赛汗-汗默格德地区 碱性花岗岩 Late armstrongite 293±55 Gerdes et al., 2017 古尔万赛汗-汗默格德地区 碱性花岗岩 MG50-1 293±4 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 碱性花岗岩 Zircon early 292.8±2.6 Gerdes et al., 2017 曼达洛沃-曼达克山地区 花岗岩 51.7A 292.3±0.5 Blight et al., 2010 古尔万赛汗-汗默格德地区 碱性花岗岩 MG01-1 292±5 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 碱性花岗岩 KHB-1745 292±1 Kovalenko et al., 2006 曼达洛沃-曼达克山地区 亚碱性花岗岩 — 292±1 Yarmolyuk et al., 2008b 古尔万赛汗-汗默格德地区 碱性花岗岩 — 292±1 Yarmolyuk et al., 2008b 阿塔斯默格德地区 碱性花岗斑岩 YuM-24/1 292±1 Kozlovsky et al., 2012 古尔万赛汗-汗默格德地区 碱性花岗岩 Zircon late 291.7±2.6 Gerdes et al., 2017 古尔万赛汗-汗默格德地区 碱性花岗岩 Cyrtolite 290.8±2.5 Gerdes et al., 2017 古尔万赛汗-汗默格德地区 黑云母花岗岩 KhB-4448 290±1 Kovalenko et al., 2006 古尔万赛汗-汗默格德地区 碱性花岗岩 KhB-1807 290±1 Kovalenko et al., 2006 特西尔地区 闪长岩 M132 289.2±2.3 Kröner et al., 2010 古尔万赛汗-哈尔哈德地区 亚碱性花岗岩 YuM-18/117 289±3 Kozlovsky et al., 2012 古尔万赛汗-塔万塔希尔山地区 花岗闪长岩 T2-015 288±8 Guy et al., 2014 古尔万赛汗-汗默格德地区 碱性花岗岩 Zircon late 287.3±4.2 Gerdes et al., 2017 戈壁阿尔泰-额尔德尼地区 花岗岩 M65/06-1 286.8±1.8 Kröner et al., 2010 古尔万赛汗-伊赫山海地区 石英斑岩 T2-058 286±5 Guy et al., 2014 戈壁阿尔泰-巴彦查干地区 碱性花岗岩 BaTs-1/1 286±2 Kozlovsky et al., 2015 戈壁阿尔泰-哈尔乌祖尔地区 碱性花岗岩 BaTs-3/2 284±1 Kozlovsky et al., 2015 戈壁阿尔泰-乌兰乌尔地区 碱性花岗岩 KhT-4/11 284±1 Kozlovsky et al., 2015 古尔万赛汗-诺贡地区 碱性流纹岩 YuM-18/109 281±3 Kozlovsky et al., 2012 特西尔地区 花岗岩 M83/06 279.6±3.9 Kröner et al., 2010 戈壁阿尔泰-祖恩默格德地区 碱性花岗岩 DZB-1/1 279±1 Kozlovsky et al., 2015 戈壁阿尔泰-新津地区 花岗岩 M62/06-2 277±2.4 Kröner et al., 2010 表 1 南蒙古地区石炭纪—早二叠世岩浆岩年龄
Table 1. Age of Carboniferous-Early Permian magmatic rocks in southern Mongolia
时期 采样地点 岩石类型 样品编号 年龄(Ma) 参考文献 早石炭世 特西尔地区 花岗片麻岩 M107/06-2 350.4±1.7 Kröner et al., 2010 古尔万赛汗-奥尤陶勒盖矿床 花岗闪长岩 AJW03-074 350 Wainwright et al., 2011 阿兹默格德地区 花岗闪长岩 — 348±1 Yarmolyuk et al., 2008b 古尔万赛汗-奥尤陶勒盖矿床 英安岩 AJW03-091 347 Wainwright et al., 2011 古尔万赛汗-奥尤陶勒盖矿床 安山岩 AJW03-055 346 Wainwright et al., 2011 戈壁阿尔泰-坎德曼地区 花岗岩 — 345±2 Hrdličkovà et al., 2008 古尔万赛汗-奥尤陶勒盖矿床 安山岩 AJW03-183 345 Wainwright et al., 2011 特西尔地区 花岗岩 M103/06-2 340.9±2.5 Kröner et al., 2010 古尔万赛汗-汗默格德地区 安山岩 MG27-4 339±3 Zhou et al., 2021a 古尔万赛汗-佐格多铜矿床 花岗闪长岩 TS-37 335.1±4.4 Davaasuren et al., 2021 古尔万赛汗-奥尤陶勒盖矿床 流纹岩 AJW03-107;AJW03-125 335 Wainwright et al., 2011 古尔万赛汗-汗默格德地区 流纹斑岩 MG09-1 334±9 Zhou et al., 2021a 古尔万赛汗-布兰泽福克斯矿床 花岗闪长岩 BFD 333.6±0.6 Blight et al., 2010 曼达洛沃-纳林胡杜格地区 二长岩 JBSP010 333.22±0.6 Blight et al., 2010 古尔万赛汗-南丹亨迪地区 花岗闪长岩 2012SM-128 333±4 Zhu et al., 2016 古尔万赛汗-佐格多铜矿床 花岗闪长岩 TS-21 331.4 Davaasuren et al., 2021 曼达洛沃-奥尤特乌兰矿床 石英二长岩 88.3A 330±0.5 Blight et al., 2010 古尔万赛汗-佐格多铜矿床 二长花岗岩 TS-30 329.9 Davaasuren et al., 2021 古尔万赛汗-佐格多铜矿床 花岗闪长岩 TS-34 329.1 Davaasuren et al., 2021 古尔万赛汗-莫戈伊特山地区 石英斑岩 T2-025 329±6 Guy et al., 2014 巴兰地区 角闪石闪长岩 — 329±1 Yarmolyuk et al., 2008b 古尔万赛汗-佐格多铜矿床 花岗闪长岩 TS-29 326.4 Davaasuren et al., 2021 古尔万赛汗-佐格多铜矿床 二长花岗岩 TS-20 326.1 Davaasuren et al., 2021 古尔万赛汗-舒廷地区 石英二长岩 97.2A 325.4±1.0 Blight et al., 2010 古尔万赛汗-南丹亨迪地区 安山岩 2012SM-104 325±3 Zhu et al., 2016 古尔万赛汗-奥尤陶勒盖矿床 花岗岩 AJW03-132 324 Wainwright et al., 2011 晚石炭世 古尔万赛汗-奥尤陶勒盖矿床 花岗岩 AJW03-116 321 Wainwright et al., 2011 古尔万赛汗-南丹亨迪地区 石英闪长岩 T2-062 319±6 Guy et al., 2014 古尔万赛汗-巴彦奥沃地区 花岗岩 T2-029 319±5 Guy et al., 2014 阿塔斯默格德地区 碱性花岗岩 YuM-32/22 319±4 Kozlovsky et al., 2012 特西尔地区 碱性长石花岗岩 YUM-34/12 318.3±2.1 Yarmolyuk et al., 2017 古尔万赛汗-伊赫尔斯山地区 花岗岩 T2-046 318±9 Guy et al., 2014 古尔万赛汗-巴伦卡拉特地区 花岗闪长岩 T2-042 318±8 Guy et al., 2014 额尔德仁-塔文塔尔地区 花岗闪长岩 YUM-34/21 318±2.2 Yarmolyuk et al., 2017 戈壁阿尔泰-苏门可汗德地区 碱性长石花岗岩 YUM-34/13 317.3±2.3 Yarmolyuk et al., 2017 特西尔地区 碱性花岗岩 YUM-33/1 316.7±2.5 Yarmolyuk et al., 2017 古尔万赛汗-察夫齐尔胡杜格地区 流纹岩 2012SM-22 315±4 Zhu et al., 2016 古尔万赛汗-汗默格德地区 碱性长石花岗岩 MG44-3 315±2 Zhou et al., 2021b 古尔万赛汗-哈察维奇山地区 花岗岩 T2-019 314±5 Guy et al., 2014 古尔万赛汗-汗默格德地区 碱性长石花岗岩 MG04-1 313±2 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 碱性长石花岗岩 MG05-1 312±2 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 二长闪长岩 MG37-1 312±2 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 碱性长石花岗岩 MG08-5 311±4 Zhou et al., 2021b 古尔万赛汗-汗默格德地区 石英二长岩 MG36-1 311±2 Zhou et al., 2021b 察干乌拉-哈尔奥维地区 花岗岩 T1-192 308±4 Guy et al., 2014 古尔万赛汗-塞夫雷地区 石英二长岩 T1-239 307±6 Guy et al., 2014 古尔万赛汗-伊赫乌尔齐特乌尔山地区 花岗岩 2012SM-64 304±4 Zhu et al., 2014 -
[1] 陈维民, 白建科, 仇银江, 等. 西天山特克斯地区哈拉达拉基性岩体LA-ICP-MS锆石U-Pb定年及其地质意义[J]. 西北地质, 2017, 50(02): 69-79 doi: 10.3969/j.issn.1009-6248.2017.02.007
CHEN Weimin, BAI Jianke, CHOU Yinjiang, et al. LA-ICP-MS Zircon U-Pb Dating of the Haladala Basic Plution in Tekesi County, Western Tianshan and Its Geological Implication[J]. Northwestern Geology, 2017, 50(02): 69-79. doi: 10.3969/j.issn.1009-6248.2017.02.007
[2] 付超, 李俊建, 张帅, 等.中蒙边界地区侵入岩时空分布特征及对构造演化的启示[J].华北地质, 2023, 46(1): 1−19.
FU Chao, LI Junjian, ZHANG Shuai, et al. The temporal and spatial distribution characteristics of intrusive rocks in the border area between China and Mongolia and its implications for tectonic evolution[J]. North China Geology, 2023, 46(1): 1−19.
[3] 滕飞, 苏春乾, 夏明哲, 等. 北天山东段石英滩地区早二叠世火山岩岩石组合与岩浆生成动力学机制[J]. 西北地质, 2017, 50(01): 110-125 doi: 10.3969/j.issn.1009-6248.2017.01.011
TENG Fei, SU Chunqian, XIA Mingzhe, et al. The Early Permian Volcanic Rock Association and the Dynamics Mechanism for the Magma Generation in the Shiyingtan Area, Eastern Tianshan[J]. Northwestern Geology, 2017, 50(01): 110-125. doi: 10.3969/j.issn.1009-6248.2017.01.011
[4] 王博, 赵国春. 古亚洲洋的最终闭合时限: 来自白乃庙岛弧带东段二叠纪—三叠纪岩浆作用的证据[J]. 西北大学学报(自然科学版), 2021, (06): 1019-1030
WANG Bo, ZHAO Guochun. Final closure of the Paleo-Asian ocean: Constraints from permian-triassic magmatism in the eastern segment of the Bainaimiao Arc Belt[J]. Journal of northwest university (natural science edition), 2021, (06): 1019-1030.
[5] 肖文交, 宋东方, Windley B F, 等. 中亚增生造山过程与成矿作用研究进展[J]. 中国科学: 地球科学, 2019, 49(10): 1512-1545
XIAO Wenjiao, SONG Dongfang, Windley B F, et al. Research progress of accretive orogeny and mineralization in Central Asia [J]. Scientia Sinica(Terrae), 2014, 49(10): 1512-1545.
[6] 张永玲, 张治国, 刘希军, 等. 内蒙朝克山辉长岩中单斜辉石矿物化学特征及地质意义[J]. 西北地质, 2024, 57(1): 122−138.
ZHANG Yongling, ZHANG Zhiguo, LIU Xijun, et al. Mineralogical Chemistry Characteristics and Geological Significance of the Clinopyroxene from Chaokeshan Gabbro, Inner Mongolia[J]. Northwestern Geology, 2024, 57(1): 122−138.
[7] Badarch G, Cunningham W D, Windley B F. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1): 87-110. doi: 10.1016/S1367-9120(02)00017-2
[8] Blight J H S, Crowley Q G, Petterson M G, et al. Granites of the Southern Mongolia Carboniferous Arc: New geochronological and geochemical constraints[J]. Lithos, 2010, 116(1-2): 35-52. doi: 10.1016/j.lithos.2010.01.001
[9] Comeau M J, Becken M, Kaufl J S, et al. Evidence for terrane boundaries and suture zones across Southern Mongolia detected with a 2-dimensional magnetotelluric transect[J]. Earth Planets and Space, 2020, 72(1): 87-110. doi: 10.1186/s40623-020-01214-1
[10] Chai H, Ma Y F, Santosh M, et al. Late Carboniferous to early Permian oceanic subduction in central Inner Mongolia and its correlation with the tectonic evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 84: 245-259. doi: 10.1016/j.gr.2020.02.016
[11] Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019
[12] Chung S L, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 31(11): 1021-1024. doi: 10.1130/G19796.1
[13] Davies J H, Blanckenburg F V. Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens[J]. Earth and Planetary Science Letters, 1995, 129(1-4): 85-102. doi: 10.1016/0012-821X(94)00237-S
[14] Davaasuren O E, Koh S M, Kim N, et al. Late Paleozoic adakitic magmatism in the Zogdor Cu occurrences, southern Mongolia, and their tectonic implications: New SHRIMP zircon age dating, Lu-Hf isotope systematics and geochemical constraints[J]. Ore Geology Reviews, 2021, 138: 104356. doi: 10.1016/j.oregeorev.2021.104356
[15] Du L, Long X P, Yuan C, et al. Petrogenesis of Late Paleozoic diorites and A-type granites in the central Eastern Tianshan, NW China: Response to post-collisional extension triggered by slab breakoff[J]. Lithos, 2018, 318-319: 47-59. doi: 10.1016/j.lithos.2018.08.006
[16] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[17] Jahn B M. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic[J]. Geological Society London Special Publications, 2004, 226(1): 73-100. doi: 10.1144/GSL.SP.2004.226.01.05
[18] Jian P, Liu D, Kröner A, et al. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia[J]. Lithos, 2010, 118 (1-2): 169-190. doi: 10.1016/j.lithos.2010.04.014
[19] Han Y G, Zhao G C. Final amalgamation of the Tianshan and Junggar orogenic collage in the southwestern Central Asian Orogenic Belt: Constraints on the closure of the Paleo-Asian Ocean[J]. Earth-Science Reviews, 2018, 186: 129-152. doi: 10.1016/j.earscirev.2017.09.012
[20] Helo C, Hegner E, Kröner A, et al. Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth[J]. Chemical Geology, 2006, 227(3): 236-257.
[21] Hrdličkovà K, Bolormaa K, Buriánek D, et al. Petrology and age of metamorphosed rock in tectonic slices inside the Palaeozoic sediments of the eastern Mongolian Altay, SW Mongolia[J]. Journal of Geosciences, 2008, 53: 139-165.
[22] Hu C S, Li W B, Huang Q Y, et al. Geochemistry and petrogenesis of Late Carboniferous igneous rocks from southern Mongolia: Implications for the post-collisional extension in the southeastern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2017, 144: 141-154. doi: 10.1016/j.jseaes.2017.01.011
[23] Gerdes A, Kogarko L N, Vladykin N V. New data on the age and nature of the Khan-Bogd alkaline granites, Mongolia[J]. Doklady Earth Sciences, 2017, 477(1): 1320-1324. doi: 10.1134/S1028334X17110137
[24] Guy A, Schulmann K, Clauer N, et al. Late Paleozoic–Mesozoic tectonic evolution of the Trans-Altai and South Gobi Zones in southern Mongolia based on structural and geochronological data[J]. Gondwana Research, 2014, 25(1): 309-337. doi: 10.1016/j.gr.2013.03.014
[25] Kozlovsky A M, Yarmolyuk V V, Travin A V, et al. Stages and regularities in the development of Late Paleozoic anorogenic volcanism in the southern Mongolia Hercynides[J]. Doklady Earth Sciences, 2012, 445(1): 811-817. doi: 10.1134/S1028334X12070239
[26] Kozlovsky A M, Yarmolyuk V V, Salnikova E B, et al. Late Paleozoic anorogenic magmatism of the Gobi Altai (SW Mongolia): Tectonic position, geochronology and correlation with igneous activity of the Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2015, 113(1): 524-541.
[27] Kovalenko V I, Yarmoluyk V V, Sal’nikova E B, et al. Geology, Geochronology, and Geodynamics of the Khan Bogd Alkali Granite Pluton in Southern Mongolia[J]. Geotectonics, 2006, 40(6): 450-446. doi: 10.1134/S0016852106060033
[28] Kovalenko V I, Kozlovsky A M, Yarmolyuk V V. Comendite-Bearing Subduction Related Volcanic Associations in the Khan-Bogd Area, Southern Mongolia: Geochemical Data[J]. Petrology, 2010, 18(6): 571-595. doi: 10.1134/S0869591110060020
[29] Kröner A, Lehmann J, Schulmann K, et al. Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion[J]. American Journal of Science, 2010, 310(7): 523-574. doi: 10.2475/07.2010.01
[30] Kröner A, Kovach V, Belousova E, et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1): 103-125. doi: 10.1016/j.gr.2012.12.023
[31] Lehmann J, Schulmann K, Lexa O, et al. Structural constraints on the evolution of the Central Asian Orogenic Belt in SW Mongolia[J]. American Journal of Science, 2010, 61: 135-140.
[32] Li S, Chung S L, Wilde S A, et al. Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens[J]. Journal of Geophysical Research: Solid Earth, 2017, 122: 2291-2309.
[33] Liu H D, Cheng Y H, Santosh M, et al. Magmatism associated with lithospheric thinning, mantle upwelling, and extensional tectonics: Evidence from Carboniferous-Permian dyke swarms and granitoids from Inner Mongolia, Central Asian Orogenic Belt[J]. Lithos, 2021, 386: 106004.
[34] Long X P, Wu B, Sun M, et al. Geochronology and geochemistry of Late Carboniferous dykes in the Aqishan-Yamansu belt, Eastern Tianshan: evidence for a post-collisional slab breakoff[J]. Geoscience Frontiers, 2020, 11(1): 347-362. doi: 10.1016/j.gsf.2019.06.003
[35] Lu L, Qin Y, Han C Y, et al. Provenance and tectonic settings of the Late Paleozoic sandstones in central Inner Mongolia, NE China: Constraints on the evolution of the southeastern Central Asian Orogenic Belt[J]. Gondwana Research, 2020, 77: 111-135. doi: 10.1016/j.gr.2019.07.006
[36] Meissner R, Mooney W. Weakness of the lower continental crust: a condition for delamination, uplift, and escape[J]. Tectonophysics, 1998, 296: 47-60. doi: 10.1016/S0040-1951(98)00136-X
[37] Meng Q R. What drove late Mesozoic extension of the northern China-Mongolia tract[J]. Tectonophysics, 2003, 369(3): 155-174.
[38] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3-4): 215-224. doi: 10.1016/0012-8252(94)90029-9
[39] Miniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[40] Niu Y Z, Shi G R, Ji W H, et al. Paleogeographic evolution of a Carboniferous–Permian sea in the southernmost part of the Central Asian Orogenic Belt, NW China: Evidence from microfacies, provenance and paleobiogeography[J]. Earth-Science Reviews, 2021, 220: 103738. doi: 10.1016/j.earscirev.2021.103738
[41] Peccerillo A, Taylor S R. Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[42] Safonova I, Maruyama S. Asia: a frontier for a future supercontinent Amasia[J]. International Geology Review, 2014, 56(9): 1051-1071. doi: 10.1080/00206814.2014.915586
[43] Sengör A C, Natal’in B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia[J]. Nature, 1993, 364: 299-306. doi: 10.1038/364299a0
[44] Shu L S, Zhu W B, Wang B, et al. The post-collision intracontinental rifting and olistostrome on the southern slope of Bogda Mountains, Xinjiang[J]. Acta Petrologica Sinica, 2005, 21(1): 25-36.
[45] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[46] Tang G J, Chung S L, Hawkesworth C J, et al. Short episodes of crust generation during protracted accretionary processes: Evidence from Central Asian Orogenic Belt, NW China[J]. Earth and Planetary Science Letters, 2017, 464:142-154.
[47] Wainwright A J, Tosdal R M, Wooden J L, et al. U–Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia[J]. Gondwana Research, 2011, 19(3): 764-787. doi: 10.1016/j.gr.2010.11.012
[48] Watson E B, Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types[J]. Earth Planetary Science Letters, 1983, 64: 295-304. doi: 10.1016/0012-821X(83)90211-X
[49] Wei R H, Gao Y F, Xu S C, et al. Carboniferous continental arc in the Hegenshan accretionary belt: Constrains from plutonic complex in central Inner Mongolia[J]. Lithos, 2018, 308-309: 242-261. doi: 10.1016/j.lithos.2018.03.010
[50] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[51] Windley B F, Alexeiev D, Xiao W J, et al. Tectonic models for accretion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, 2007, 164(1): 31-47. doi: 10.1144/0016-76492006-022
[52] Windley B F, Xiao W J. Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen[J]. Gondwana Research, 2018, 61: 73-87. doi: 10.1016/j.gr.2018.05.003
[53] Xiao W J, Windley B F, Hao J, et al. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenic belt [J]. Tectonics, 2003, 22(6): 1484-1505.
[54] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of central Asia[J]. American Journal of Science, 2004, 304(4): 370-395. doi: 10.2475/ajs.304.4.370
[55] Xiao W J, Windley B F, Sun S, et al. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion[J]. Annual Review of Earth and Planetary Sciences, 2015, 43(1): 477-507. doi: 10.1146/annurev-earth-060614-105254
[56] Xiao W J, Windley B F, Han C M, et al. Late Paleozoic to early Triassic multiple roll-back and oroclinal bending of the Mongolia collage in Central Asia[J]. Earth-Science Reviews, 2018, 186: 94-128. doi: 10.1016/j.earscirev.2017.09.020
[57] Xu B, Zhao G C, Li J H, et al. Ages and Hf isotopes of detrital zircons from the Permian strata in the Bengbatu are (Inner Mongolia) and tectonic implications[J]. Geoscience Frontiers, 2019, 10(1): 195-212. doi: 10.1016/j.gsf.2018.08.003
[58] Yang S H, Miao L C, Zhang F C, et al. Detrital zircon age spectra of the Gurvan Sayhan accretionary complex in South Mongolia: Constraints on the Late Paleozoic evolution of the southern Central Asian Orogenic Belt[J]. Journal of Asian Earth Sciences, 2019, 175: 213-229. doi: 10.1016/j.jseaes.2018.07.041
[59] Yarmolyuk V V, Kovalenko V I, Sal'nikova E B, et al. Geochronology of igneous rocks and formation of the late Paleozoic south Mongolian active margin of the Siberian continent[J]. Stratigraphy and Geological Correlation, 2008a, 16(2): 162-181. doi: 10.1134/S0869593808020056
[60] Yarmolyuk V V, Kovalenko V I, Kozlovsky A M, et al. Crust-forming processes in the Hercynides of the Central Asian Foldbelt[J]. Petrology, 2008b, 16(7): 679-709. doi: 10.1134/S0869591108070035
[61] Yarmolyuk V V, Kuzmin M I, Kozlovsky A M. Late Paleozoic-Early Mesozoic Within Plate Magmatism in North Asia: Traps, Rifts, Giant Batholiths, and the Geodynamics of Their Origin[J]. Petrology, 2013, 21(2): 115-142.
[62] Yarmolyuk V V, Kozlovsky A M, Travin A V. Late Paleozoic anorogenic magmatism in Southern Mongolia: Evolutionary stages and structural control[J]. Doklady Earth Sciences, 2017, 475(1): 753-757. doi: 10.1134/S1028334X17070200
[63] Zhang D H, Huang B C, Zhao G C, et al. Quantifying the extent of the Paleo-Asian Ocean during the Late Carboniferous to Early Permian[J]. Geophysical Research Letters, 2021, 48(15): e2021GL094498.
[64] Zhang S H, Zhao Y, Liu J M, et al. Different sources involved in generation of continental arc volcanism: The Carboniferous–Permian volcanic rocks in the northern margin of the North China block[J]. Lithos, 2016, 240-243: 382-401. doi: 10.1016/j.lithos.2015.11.027
[65] Zhang X H, Yuan L L, Xue F H, et al. Early Permian A-type granites from central Inner Mongolia, North China: Magmatic tracer of post-collisional tectonics and oceanic crustal recycling[J]. Gondwana Research, 2015, 28(1), 311-327. doi: 10.1016/j.gr.2014.02.011
[66] Zhang Y Y, Sun M, Yuan C, et al. Alternating Trench Advance and Retreat: Insights from Paleozoic Magmatism in the Eastern Tianshan, Central Asian Orogenic Belt[J]. Tectonics, 2018, 37: 2142-2164. doi: 10.1029/2018TC005051
[67] Zhao G C, Wang Y J, Huang B C, et al. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea[J]. Earth-Science Reviews, 2018, 186: 262-286. doi: 10.1016/j.earscirev.2018.10.003
[68] Zhou H, Zhao G C, Han Y G, et al. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc[J]. Lithos, 2018, 314-315: 119-139. doi: 10.1016/j.lithos.2018.05.020
[69] Zhou H, Zhao G C, Li J H, et al. Magmatic evidence for middle-late Permian tectonic evolution on the northern margin of the North China Craton[J]. Lithos, 2019, 336-337: 125-142. doi: 10.1016/j.lithos.2019.04.002
[70] Zhou H, Zhao G C, Han Y G, et al. The Late Carboniferous to Early Permian high silica magmatism in the Southern Mongolia: Implications for tectonic evolution and continental growth[J]. Gondwana Research, 2021a, 97: 34-50. doi: 10.1016/j.gr.2021.05.005
[71] Zhou H, Zhao G C, Han Y G, et al. Magmatic evidence for Late Carboniferous-Early Permian slab breakoff and extension of the southern Mongolia collage system in Central Asia[J]. Gondwana Research, 2021b, 89: 105-118. doi: 10.1016/j.gr.2020.09.006
[72] Zhou H, Zhao G C, Han Y G, et al. Carboniferous slab-retreating subduction of backarc oceans: the final large-scale lateral accretion of the southern Central Asian Orogenic Belt[J]. Science Bulletin, 2022, 67(13): 1388-1398. doi: 10.1016/j.scib.2022.05.002
[73] Zhou H, Zhao G C, Han Y G, et al. The early Permian high-temperature felsic magmatism induced by slab breakoff in Southern Mongolia, Central Asian Orogenic Belt and its tectonic implications[J]. Lithos, 2023, 442-443: 107083. doi: 10.1016/j.lithos.2023.107083
[74] Zhu M S, Baatar M, Miao L C, et al. Zircon ages and geochemical compositions of the Manlay ophiolite and coeval island arc: Implications for the tectonic evolution of South Mongolia[J]. Journal of Asian Earth Sciences, 2014, 96(15): 108-122.
[75] Zhu M S, Miao L C, Baatar M, et al. Late Paleozoic magmatic record of Middle Gobi area, South Mongolia and its implications for tectonic evolution: Evidences from zircon U–Pb dating and geochemistry[J]. Journal of Asian Earth Sciences, 2016, 115: 507-519. doi: 10.1016/j.jseaes.2015.11.002
-