中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

吴兴源, 刘晓阳, 赵晓博, 任军平, 许康康, 孙宏伟, 周佐民, 龚鹏辉. 2023. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系. 西北地质, 56(5): 1-19. doi: 10.12401/j.nwg.2023077
引用本文: 吴兴源, 刘晓阳, 赵晓博, 任军平, 许康康, 孙宏伟, 周佐民, 龚鹏辉. 2023. 中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系. 西北地质, 56(5): 1-19. doi: 10.12401/j.nwg.2023077
WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, REN Junping, XU Kangkang, SUN Hongwei, ZHOU Zuomin, GONG Penghui. 2023. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization. Northwestern Geology, 56(5): 1-19. doi: 10.12401/j.nwg.2023077
Citation: WU Xingyuan, LIU Xiaoyang, ZHAO Xiaobo, REN Junping, XU Kangkang, SUN Hongwei, ZHOU Zuomin, GONG Penghui. 2023. Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization. Northwestern Geology, 56(5): 1-19. doi: 10.12401/j.nwg.2023077

中部非洲淡色花岗岩(约1.0 Ga)的年代学、岩石地球化学特征、构造背景及其与成矿的关系

  • 基金项目: 国家自然科学基金项目“花岗伟晶岩岩浆−热液演化及成岩成矿机制研究:以卢旺达Gatumba地区稀有金属花岗伟晶岩为例”(42003041),商务部援外项目“援卢旺达地质矿产调查”(jsyz20180051)联合资助。
详细信息
    作者简介: 吴兴源(1985−),男,硕士,高级工程师,主要从事岩石地球化学及矿床学研究。E−mail:wuxy0156@126.com
  • 中图分类号: P581;P597

Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization

  • 中部非洲的传统中元古代基巴拉造山带内发育大量与花岗岩−伟晶岩体系相关的金属矿产,尤其是以标志性的稀有金属(Nb−Ta−Li)、钨、锡和金等成矿作用为特色,成矿地质过程往往和罗迪尼亚超大陆聚合事件相对应。通常 认为,与成矿直接密切相关的花岗岩是新元古代早期的一套淡色花岗岩(G4花岗岩),即含Sn花岗岩。G4花岗岩过去通常被视作成矿母岩,长期以来受到广泛关注,但是前人的研究表明基巴拉带不同地区的G4花岗岩在野外判别标志、形成时限、地球化学特征等方面存在一定差异,导致对岩石类型、岩石成因及其产出的构造背景的认识还不统一。因此,笔者在系统收集、整理前人资料的基础上,详细总结G4花岗岩的野外岩石类型、年代学研究、全岩地球化学数据及同位素等方面特征,初步探讨成岩成矿过程。结果显示,G4花岗岩的源区物质以变泥质岩为主,岩浆形成方式主要是局部的部分熔融或深熔作用,并不像过去认为的那样来源于一个深部较大岩浆房的长期分异演化,而G4花岗岩的演化则与区域成矿作用存在直接关联。结合区域构造演化研究,推测G4花岗岩可能形成于基巴拉造山作用的同碰撞‒后碰撞阶段。

  • 加载中
  • 图 1  中部非洲传统基巴拉带区域地质简图 (据Debruyne et al.,2015修改)

    Figure 1. 

    图 2  卢旺达G4花岗岩的锆石阴极发光图

    Figure 2. 

    图 3  卢旺达G4花岗岩手标本、野外露头及镜下显微特征图(a~b据De Clercq et al.,2021;c~f据Nambaje et al.,2021a

    Figure 3. 

    图 4  G4花岗岩岩石地球化学分类判别图

    Figure 4. 

    图 5  G4花岗岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蜘蛛图(b)

    Figure 5. 

    图 6  G4花岗岩岩石成因类型判别图(据Whalen et al.,1987

    Figure 6. 

    图 7  G4花岗岩锆石测点年龄–Th/U值图

    Figure 7. 

    图 8  G4花岗岩源区成分判别图

    Figure 8. 

    图 9  含锂铝硅酸盐P–T相图 (据London,2018修改)

    Figure 9. 

    图 10  G4花岗岩构造环境判别图

    Figure 10. 

    表 1  基巴拉带(狭义)和卡拉戈维−安科连带中G4花岗岩、伟晶岩年龄数据及铌钽铁矿成矿年龄数据统计表

    Table 1.  Summary age data of the G4 granites, pegmatites and columbite−tantalite mineralization from the Kibara belt (sensu stricto) and Karagwe−Ankole belt

    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kasika狭义基巴拉带含锡花岗岩全岩Rb−Sr976±10Cahen et al.,1979a
    Ki22Kasika狭义基巴拉带含锡花岗岩锆石U−Pb986±10Tack et al.,2010
    Nzombe狭义基巴拉带含锡花岗岩全岩Rb−Sr~976Cahen et al.,1979a
    Nyamakubi狭义基巴拉带含锡花岗岩全岩Rb−Sr976Cahen et al.,1979a
    Kalima−Moga狭义基巴拉带含锡花岗岩全岩Rb−Sr989±28Cahen et al.,1979a
    Mount Bia Massif狭义基巴拉带含锡花岗岩全岩/单矿物Rb−Sr966±21Cahen et al.,1979a
    Mwanza Massif狭义基巴拉带含锡花岗岩全岩Rb−Sr977±18Cahen et al.,1984
    Kamituga狭义基巴拉带淡色花岗岩全岩Rb−Sr1020±50Ledent et al.,1965
    Maleba狭义基巴拉带淡色花岗岩全岩Rb−Sr1006±44Ikingura,1989
    Kirengo卡拉戈维−安科连带淡色花岗岩全岩Rb−Sr972±15Cahen et al.,1984
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩锆石U−Pb988±19Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩锆石U−Pb958±20Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩锆石U−Pb945±31Nambaje et al.,2021a
    CR159Ruyenzi卡拉戈维−安科连带白云母花岗岩独居石U−Pb1011±18Nambaje et al.,2021a
    CR175Busasamana卡拉戈维−安科连带白云母花岗岩独居石U−Pb979±10Nambaje et al.,2021a
    CR181Uwinkingi卡拉戈维−安科连带白云母花岗岩独居石U−Pb976±11Nambaje et al.,2021a
    CR186Musambira卡拉戈维−安科连带白云母二长花岗岩独居石U−Pb997±8Nambaje et al.,2021a
    CR203Muhanda卡拉戈维−安科连带白云母花岗岩独居石U−Pb980±8Nambaje et al.,2021a
    CR209Kigali (Gisozi)卡拉戈维−安科连带白云母花岗岩独居石U−Pb1010±9Nambaje et al.,2021a
    SDC18gr02Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb1014±53De Clercq et al.,2021
    SDC18gr05Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb959±43De Clercq et al.,2021
    SDC18gr07Mushubati卡拉戈维−安科连带二长花岗岩锆石U−Pb993±26De Clercq et al.,2021
    SDC18gr08Runda卡拉戈维−安科连带二长花岗岩锆石U−Pb999±46De Clercq et al.,2021
    SDC18gr15Masango卡拉戈维−安科连带二长花岗岩锆石U−Pb974±15De Clercq et al.,2021
    SDC18gr18Rukondo卡拉戈维−安科连带二长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    SDC18gr20Nyanza卡拉戈维−安科连带二长花岗岩锆石U−Pb985±11De Clercq et al.,2021
    SDC18gr21Kibuye卡拉戈维−安科连带正长花岗岩锆石U−Pb~1000De Clercq et al.,2021
    Nyabugogo卡拉戈维−安科连带伟晶岩白云母Rb−Sr975±29Monteyne-Poulaert et al.,1962Cahen,1964
    Bijyojyo卡拉戈维−安科连带伟晶岩白云母Rb−Sr945±28
    Gatumba卡拉戈维−安科连带伟晶岩白云母Rb−Sr940± 28
    Rwinkwavu卡拉戈维−安科连带伟晶岩白云母Rb−Sr955±29
    Gakara卡拉戈维−安科连带伟晶岩全岩−白云母Rb−Sr969±8Brinckmann et al.,1983
    Gakara卡拉戈维−安科连带伟晶岩白云母Rb−Sr969±17Lehmann et al.,1994
    Atondo deposit狭义基巴拉带伟晶岩白云母Ar−Ar986.6±5.3Dewaele et al.,2015
    Yubuli deposit狭义基巴拉带伟晶岩白云母Ar−Ar992.4±5.4Dewaele et al.,2015
    Lutshurukuru狭义基巴拉带伟晶岩白云母Ar−Ar1024.3±55Dewaele et al.,2015
    RG 9699Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar938.8±5.1Dewaele et al.,2016
    RG 15993Manono−Kitotolo狭义基巴拉带伟晶岩白云母Ar−Ar934.0±5.9Dewaele et al.,2016
    RG 3554Manono-Kitotolo狭义基巴拉带伟晶岩(云英岩)白云母Ar−Ar923.3±8.3Dewaele et al.,2016
    下载: 导出CSV
    续表1
    样品号采样地点构造位置岩性/矿物测年方法年龄(Ma)数据来源
    Kivuvu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb963±9/−5Romer et al.,1995
    Ruhembe卡拉戈维−安科连带铌钽铁矿TIMS U−Pb968+33/−29Romer et al.,1995
    Sample 45Mazakala狭义基巴拉带铌钽铁矿TIMS U−Pb971.1±1.5Melcher et al.,2008b2009
    Sample 110Bassin Obea狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb971.8±7.0Melcher et al.,2008a
    Coltan 48Gatumba plant卡拉戈维−安科连带铌钽铁矿TIMS U−Pb1029±19Dewaele et al.,2011
    Coltan 84Ruhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb938+9.3/−8.5Dewaele et al.,2011
    Coltan 87Buranga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb936±14Dewaele et al.,2011
    Coltan 89Shori (Gateko)卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb974.8±8.2Dewaele et al.,2011
    Coltan 93Nyambisindu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±15Dewaele et al.,2011
    Coltan 216Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb939±4Dewaele et al.,2011
    Coltan 219Nkegete卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958±0.4Dewaele et al.,2011
    Coltan 233Bijyojyo卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb965+8.7/−8.6Dewaele et al.,2011
    Sample 155Mobra卡拉戈维−安科连带铌钽铁矿TIMS U−Pb934.5±3.9Melcher et al.,2015
    Sample 40Camp Bisengo狭义基巴拉带铌钽铁矿TIMS U−Pb973.8±2.2、Melcher et al.,2015
    Sample 235Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb949.2±2.7Melcher et al.,2008a
    Sample 43Kakelo狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb962.8+8.7/−8.5Melcher et al.,2015
    Sample 44Mapimo Mulungu狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb960±9Melcher et al.,2015
    Sample 45Shabunda狭义基巴拉带铌钽铁矿LA−ICP−MS U−Pb964.3±5.4Melcher et al.,2015
    Sample 105Kamisuku, Pangi狭义基巴拉带铌钽铁矿TIMS U−Pb992.2±7.8Melcher et al.,2015
    Sample 106Kibeke狭义基巴拉带铌钽铁矿TIMS U−Pb960±5Melcher et al.,2015
    Sample 112Masisi狭义基巴拉带铌钽铁矿TIMS U−Pb950.2±4.4Melcher et al.,2015
    Sample 115Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb972.3±3.0Melcher et al.,2015
    Sample 119Manono狭义基巴拉带铌钽铁矿TIMS U−Pb940.2±5.1Melcher et al.,2015
    Sample 122Manono狭义基巴拉带铌钽铁矿TIMS U−Pb947.3±2.8Melcher et al.,2015
    Sample 156Mwenga狭义基巴拉带铌钽铁矿TIMS U−Pb937.1±2.4Melcher et al.,2015
    Sample 41Muhanga卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb971.9±4.9Melcher et al.,2015
    Sample 125Nzida卡拉戈维−安科连带铌钽铁矿TIMS U-Pb936.5±6.6Melcher et al.,2015
    Sample 153Ntunga卡拉戈维−安科连带铌钽铁矿TIMS U−Pb935±13Melcher et al.,2015
    Sample 136Nemba卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb960.7±7.6Melcher et al.,2015
    Sample 169Nemba卡拉戈维−安科连带铌钽铁矿TIMS U−Pb951±13Melcher et al.,2015
    Sample 150Kibingo卡拉戈维−安科连带铌钽铁矿TIMS U−Pb929.4±6Melcher et al.,2015
    Sample 743Myatano 1卡拉戈维−安科连带铌钽铁矿LA−ICP−MS U−Pb940±21Melcher et al.,2015
    Sample 381Kanungu卡拉戈维−安科连带铌钽铁矿TIMS U−Pb983.4±0.6Melcher et al.,2015
    Sample 383Mbulema卡拉戈维−安科连带铌钽铁矿TIMS U−Pb958.5±3.2Melcher et al.,2015
    下载: 导出CSV

    表 2  G4花岗岩Sr–Nd同位素数据统计表

    Table 2.  Summary of Sr–Nd isotope data of the G4 granites

    样品号/采样地点年龄(Ga)143Nd/144Nd)0εNd(0)εNdtTDM(Ga)87Sr/86Sr)087Sr/86Sr)i数据来源
    Maleba1.000.807Ikingura,1989
    Kirengo0.9720.778Cahen et al.,1984
    Mwanza0.9770.7002~0.731
    CR1751.000.512135−9.8−12.40.917440.744555Nambaje et al.,2021a
    CR1811.000.511672−18.8−9.92.520.8050430.73339
    CR2031.000.511963−13.2−10.81.0443170.728935
    CR2091.000.511834−15.7−11.23.810.8407740.744413
    CR1861.000.511758−17.2−11.13.260.8323530.739304
    KR61.000.51196−13−93.54Debruyne et al.,2015
    KR91.000.5112−28−152.440.823610.73216
    KR171.000.51194−14−115.271.51541
    KR231.000.51165−19−112.640.961880.77202
    KR241.000.51177−17−102.761.294810.85948
    下载: 导出CSV
  • [1]

    刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    LIU Xiaoyang, GONG Penghui, XU Kangkang, et al. U-Pb age of detrital ziron and its geological significance in the Proterozoic sediments basin in the northwestern Ubendian belt of Tanzania[J]. Geological Survey and Research, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002

    [2]

    WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. 华北地质, 2022, 45(1): 101-110.

    王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. North China Geology, 2022, 45(1): 101-110.

    [3]

    吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47: 745–765.

    WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 2017, 47: 745–765.

    [4]

    吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    WU Xingyuan, LIU Xiaoyang, ZHOU Zuomin, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba ara, Rwanda[J]. Geological Survey and Research, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005

    [5]

    赵振华, 增田彰正 M B 夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    ZHAO Zhenhua, Akimasa Masuda M B Shabani. Tetrad effects of rare-earth elements in rare-metal granites[J]. Geochimica, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003

    [6]

    朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174−185.

    ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the Opportunities and Challenges of China–Africa Mining Cooperation[J]. Northwestern Geology, 2023, 56(1): 174-185.

    [7]

    Best M G. Igneous and metamorphic petrology[M]. Oxford: Blackwell Science, 2003.

    [8]

    Boehnke P, Watson E B, Trail D, et al. Zircon saturation re-revisited[J]. Chemical Geology, 2013, 351: 324–334. doi: 10.1016/j.chemgeo.2013.05.028

    [9]

    Brinckmann J, Lehmann B. Exploration de la Bastnaesite-Monazite dans la Région de Gakara-Burundi[R]. German Geological Survey, Hannover, Germany, 1983, 157.

    [10]

    Brinckmann J, Lehmann B, Hein U, et al. La géologie et la minéralisation primaire de l’or de la Chaîne Kibarienne, nord-ouest du Burundi, Afrique orientale[J]. Geologisches Jahrbuch Reihe E Geophysik, 2001, 101: 3–195

    [11]

    Cahen L & Ledent D. Précisions sur l’age, la pétrogénèse et la position stratigraphique des granites à étain de l’est de l’Afrique Centrale[J]. Bulletin de la Société belge de géologie, 1979, 88: 33–49.

    [12]

    Cahen L, Ledent D, Villeneuve M. Existence d'une chaîne plissée protérozoïque supérieur au Kivu oriental (Zaïre): données géochronologiques relatives au Supergroupe de l'Itombwe[J]. Bulletin de la Société belge de géologie, 1979, 88: 71–83.

    [13]

    Cahen L, Snelling N J, Delhal J, et al. The geochronology and evolution of Africa[D]. Clarendon Press, Oxford, 1984.

    [14]

    Cahen L. État de la géochronologie du Rwanda[J]. Bulletin du Service Geologique de la Republique du Rwanda, 1964, 1: 35–38.

    [15]

    Černý P & Ercit T S. Classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005

    [16]

    Chappell B W& White J A R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of Royal Society Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720

    [17]

    Claire E B & Christopher J S. Strongly Peraluminous Granites across the Archean–Proterozoic transition[J]. Journal of Petrology, 2019, 60: 1299–1348. doi: 10.1093/petrology/egz033

    [18]

    De Clercq F. Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda) [D]. KU Leuven: Department of Earth and Environmental Sciences, 2012.

    [19]

    De Clercq S, Chew D, O’Sullivan G, et al. Characterisation and geodynamic setting of the 1 Ga granitoids of the Karagwe-Ankole belt (KAB), Rwanda[J]. Precambrian Research, 2021, 356, 106124. doi: 10.1016/j.precamres.2021.106124

    [20]

    Debruyne D, Hulsbosch N, Van Wilderode J, et al. Regional geodynamic context for the Mesoproterozoic Kibara Belt (KIB) and the Karagwe-Ankole Belt: Evidence from geochemistry and isotopes in the KIB[J]. Precambrian Research, 2015, 264: 82–97. doi: 10.1016/j.precamres.2015.04.001

    [21]

    Dewaele S, Henjes-Kunst F, Melcher F, et al. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 2011, 61(1): 10–26. doi: 10.1016/j.jafrearsci.2011.04.004

    [22]

    Dewaele S, Hulsbosch N, Cryns Y, et al. Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo) [J]. Ore Geology Reviews, 2016, 72: 373–390. doi: 10.1016/j.oregeorev.2015.07.004

    [23]

    Dewaele S, Muchez P, Burgess R, et al. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo) [J]. Journal of African Earth Sciences, 2015, 112 (A): 199–212.

    [24]

    Dewaele S, Tack L, Fernandez-Alonso M, et al. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge[J]. Etudes Rwandaises, 2008, 16: 6−24.

    [25]

    Dewaele S, Tack L, Fernandez-Alonso M. Cassiterite and columbite-tantalite (coltan) mineralisation in the Mesoproterozoic rocks of the northern part of the Kibara orogen (Central Africa): preliminary results[J]. Mededelingen der Zittingen van de Koninklijke Academie voor Overzeese Wetenschappen, 2009, 54: 341–357.

    [26]

    Fernandez-Alonso M & Theunissen K. Airborne geophysics and geochemistry provide new insights in the intercontinental evolution of the Mesoproterozoic Kibaran belt (Central Africa) [J]. Geological Magazine, 1998, 135: 203–216. doi: 10.1017/S0016756898008310

    [27]

    Fernandez-Alonso M, Cutten H, De Waele B, et al. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events[J]. Precambrian Research, 2012, 216–219: 63–86.

    [28]

    Fernandez-Alonso M, Lavreau J, Klerkx J. Geochemistry and geochronology of the Kibaran granites in Burundi, Central Africa: implications for the Kibaran Orogeny[J]. Chemical Geology, 1986, 57: 217–234. doi: 10.1016/0009-2541(86)90104-X

    [29]

    Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42: 2033–2048. doi: 10.1093/petrology/42.11.2033

    [30]

    Gerards J & Ledent D. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les âges de ces roches[J]. Annales de la Société géologique de Belgique, 1970, 93: 477–489.

    [31]

    Glover A S, Rogers W Z, Barton J E. Granitic pegmatites: storehouses of industrial minerals[J]. Elements, 2012, 8: 269-273. doi: 10.2113/gselements.8.4.269

    [32]

    Goldmann S, Melcher F, Gäbler H E, et al. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda[J]. Minerals, 2013, 3: 121–144.

    [33]

    Günther M A, Dulski P, Lavreau J, et al. The Kibaran tin granites: Hydrothermal alteration versus plate tectonic setting[R]. International Geological Correlation Programme, Project n◦255, Newsletter/Bulletin, 1989, 2: 21–27.

    [34]

    Harris N, Massey J, Inger S. The role of fluids in the formation of High Himalayan leucogranites[A]. In: Treloar P J, Searle M P. (Eds. ), Himalayan Tectonics [C]. London: Geological Society, London, Special Publications, 1993: 391–400.

    [35]

    Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram[J]. American Journal of Science, 1971, 271 (2): 97–131. doi: 10.2475/ajs.271.2.97

    [36]

    Hulsbosch N, Boiron M C, Dewaele S, et al. Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peri-batholitic W quartz veins: evidence from the Karagwe-Ankole Belt (Rwanda) [J]. Geochimica et Cosmochimica Acta, 2016, 175: 299–318. doi: 10.1016/j.gca.2015.11.020

    [37]

    Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349–374. doi: 10.1016/j.gca.2014.02.006

    [38]

    Hulsbosch N, Van Daele J, Reinders N, et al. Structural control on the emplacement of contemporaneous Nb-Ta-Sn pegmatite intrusions and Sn quartz veins: insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt. Rwanda[J]. Journal of African Earth Sciences, 2017, 137: 24–32.

    [39]

    Hulsbosch N. Nb-Ta-Sn-W distribution in granite-related ore systems: fractionation mechanisms and examples from the Karagwe-Ankole Belt of Central Africa[A]. In: Decree S, Robb L, Eds. Ore Deposits Origin Exploration and Exploitation[C]. Wiley, 2019: 75–107.

    [40]

    Ikingura J R. Geology, geochemistry and genesis of stanniferous granites in the southern part of the Karagwe-Ankolean belt, NW Tanzania[D]. Carleton University, 1989.

    [41]

    Kampunzu A B, Rumvegeri B T, Kapenda D, et al. Les Kibarides d’Afrique centrale et orientale: une chaîne de collision[J]. Geology for Development Newsletter, 1986, 5: 125–137.

    [42]

    Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, Eastern and Central Africa[A]. In: Kröner A, Ed. Proterozoic Lithospheric Evolution[C]. American Geophysics Union, Geodynamics Series, 1987, 17: 217–233.

    [43]

    Klerkx J, Liégeois J P, Lavreau J, et al. Granitoides kibariens précoces et tectonique tangentielle au Burundi: magmatisme bimodal lié a une distention crustale[A]. In: Klerkx J, Michot J, Eds. African Geology, A Volume in Honour of L. Cahen[C]. Tervuren, Royal Museum for Central Africa, 1984: 29–46.

    [44]

    Koegelenberg C, Kisters A F M, Kramers J D, et al. U-Pb detrital zircon and 39Ar-40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton[J]. Precambrian Research, 2015, 269: 147–161. doi: 10.1016/j.precamres.2015.08.014

    [45]

    Koegelenberg C, Kisters, A F M. Tectonic wedging, back-thrusting and basin development in the frontal parts of the Mesoproterozoic Karagwe-Ankole belt in NW Tanzania[J]. Journal of African Earth Sciences, 2014, 97: 87–98. doi: 10.1016/j.jafrearsci.2014.04.018

    [46]

    Kokonyangi J W, Kampunzu A B, Armstrong R, et al. The Mesoproterozoic Kibaride belt (Katanga, SE D. R. Congo) [J]. Journal of African Earth Sciences, 2006, 46: 1–35. doi: 10.1016/j.jafrearsci.2006.01.017

    [47]

    Kokonyangi J, Armstrong R, Kampunzu A B, et al. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Meso-proterozoic Kibaran belt[J]. Precambrian Research, 2004, 132(1–2): 79– 106.

    [48]

    Kokonyangi J, Okudiaira T, Kampunzu A B, et al. Geological evolution of the Kibarides Belt, Mitwaba, Democratic Republic of Congo, central Africa[J]. Gondwana Research, 2001, 4: 663–664. doi: 10.1016/S1342-937X(05)70460-3

    [49]

    Lavreau J & Liégeois J P. Granites à étain et granito-gneiss burundiens au Rwanda (région de Kibuye): Âge et signification[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 289–294.

    [50]

    Ledent D, Cahen L. Quelques données géochronologiques nouvelles sur les minéraux et roches du Kivu méridional[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1965, 1: 92–94.

    [51]

    Ledent D. Données géochronologiques relatives aux granites Kibariens de type A (ou G1) et B (ou G2) du Shaba, du Rwanda, du Burundi et du SW Uganda[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1978, 1: 101–105.

    [52]

    Lehmann B, Halder S, Ruzindana Munana J, et al. The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda[J]. Journal of Geochemical Exploration, 2014, 144: 528–538. doi: 10.1016/j.gexplo.2013.11.012

    [53]

    Lehmann B, Lavreau J. Tin granites of the northern Kibaran belt, Central Africa (Kivu/ Zaire, Rwanda, Burundi) [A]. In: Matheis G, Schandelmeier H, Eds. Current research in African Earth Sciences[C]. Balkema, Rotterdam, 1987: 33–56.

    [54]

    Lehmann B, Nakai S, Höhndorf A, et al. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley [J]. Geochimica et Cosmochimica Acta, 1994, 58: 985–992. doi: 10.1016/0016-7037(94)90520-7

    [55]

    Lehmann B. Magmatic enrichment of tin, in Metallogeny of Tin[M]. Berlin-Heidelberg-New York: Springer, 1990a.

    [56]

    Lehmann B. Regional element distribution patterns and the problem of pregranitic tin enrichments, in Metallogeny of Tin[M]. Berlin‐Heidelberg-New York: Springer, 1990b.

    [57]

    Lehmann B. Tin granites, geochemical heritage, magmatic differentiation[J]. Geologische Rundschau, 1987, 76(1): 177–185 doi: 10.1007/BF01820581

    [58]

    Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 2003, 122: 45–83. doi: 10.1016/S0301-9268(02)00207-3

    [59]

    Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160: 179–210. doi: 10.1016/j.precamres.2007.04.021

    [60]

    Liégeois J P, Theunissen K, Nzogibwami E, et al. Granitoides syncinématiques Kibariens au Burundi: étude pétrographique, géochimique et géochronologique préliminaire[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 345–356.

    [61]

    London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349–383. doi: 10.1016/j.oregeorev.2018.04.020

    [62]

    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.

    [63]

    Melcher F, Graupner T, Gäbler H E, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667 –719. doi: 10.1016/j.oregeorev.2013.09.003

    [64]

    Melcher F, Graupner T, Sitnikova M, et al. Ein Herkunftsnachweis für Niob-Tantalerze am Beispiel afrikanischer Selten-Element-Pegmatite[J]. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 2009, 155: 231–267.

    [65]

    Melcher F, Sitnikova M A, Graupner T, et al. Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores[N]. SGA News, 2008b, 23: 1–14.

    [66]

    Melcher M, Graupner T, Henjes-Kunst F, et al. Analytical fingerprint of columbite–tantalite(coltan) mineralization in pegmatites: focus on Africa[A]. Proceedings, Ninth International Congress for Applied Mineralogy (ICAM), Brisbane, QLD[C]. Australasian Institute of Mining and Metallurgy, 2008a: 615–624.

    [67]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215–224. doi: 10.1016/0012-8252(94)90029-9

    [68]

    Monteyne-Poulaert G, Delwiche R, Cahen L. Age de minéralisations pegmatitiques et filoniennnes du Rwanda et du Burundi [J]. Annales de la Société géologique de Belgique, 1962, 71: 272–295.

    [69]

    Muchez P, Hulsbosch N, Dewaele S. 2014. Geological mapping and implications for Nb-Ta, Sn and W prospection in Geological Mapping and Implications for Nb-Ta, Sn and W Prospection in Rwanda[J]. Mededelingen der Zittingen Van de Koninklijke Academie Voor Overzeese Wetenschappen, 2014, 60(3–4): 515 –530.

    [70]

    Nambaje C, Satish-Kumar M, Williams I S, et al. Granitic rocks from Rwanda: Vital clues to the tectonic evolution of the Karagwe-Ankole Belt[J]. Lithos, 2021a, 404–405, 106490.

    [71]

    Nambaje C, Williams I S, Sajeev K. SHRIMP U-Pb dating of cassiterite: Insights into the timing of Rwandan tin mineralisation and associated tectonic processes[J]. Ore Geology Reviews, 2021b, 135: 104185. doi: 10.1016/j.oregeorev.2021.104185

    [72]

    Nambaje C. Tectonic evolution and tin mineralisation of the Karagwe-Ankole Belt, Rwanda[D]. PhD Thesis, 2021.

    [73]

    Patiño Douce A E & Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36: 707–738. doi: 10.1093/petrology/36.3.707

    [74]

    Patiño Douce A E & Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107: 202–218. doi: 10.1007/BF00310707

    [75]

    Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 1999, 168: 55–75. doi: 10.1144/GSL.SP.1999.168.01.05

    [76]

    Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956–983. doi: 10.1093/petrology/25.4.956

    [77]

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds. ), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230–249.

    [78]

    Peeters L. Contribution à la géologie des terrains anciens du Ruanda-Urundi et du Kivu. Annales du Musée Royale du Congo belge, Tervuren, série in 8°[J]. Sciences Géologiques, 1956, 16: 1–197.

    [79]

    Pohl W & Günther M A. The origin of Kibaran (late Mid‐Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusions study[J]. Mineralium Deposita, 1991, 26(1): 51–59.

    [80]

    Pohl W L, Biryabarema M, Lehmann B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: a review[J]. Applied Earth Science, 2013, 122(2): 66–82. . doi: 10.1179/1743275813Y.0000000033

    [81]

    Pohl W. Metallogeny of the northeastern Kibara belt, Central Africa–recent perspectives[J]. Ore Geology Reviews, 1994, 9: 105–130. doi: 10.1016/0169-1368(94)90024-8

    [82]

    Romer R L & Lehmann B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90: 2303–2309. doi: 10.2113/gsecongeo.90.8.2303

    [83]

    Rubatto D, Chakraborty S, Dasgupta S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology[J]. Contributions to Mineralogy and Petrology, 2013, 165: 349–372. doi: 10.1007/s00410-012-0812-y

    [84]

    Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps[J]. Contributions to Mineralogy and Petrology, 2009, 158 (6): 703–722. doi: 10.1007/s00410-009-0406-5

    [85]

    Rubatto D. Zircon: The Metamorphic Mineral[J]. Reviews In Mineralogy & Geochemistry, 2017, 83 (1): 261–295.

    [86]

    Rumvegeri B T & Katabarwa J B. Géochimie des granitoïdes kibariens du Kivu (Est-Zaire) et du Rwanda: Implications géodynamiques[J]. Comptes Rendus L’Académie Sci. Sér. IIa Sci. Terre Planètes, 1990, 311: 959–961.

    [87]

    Rumvegeri B T, Bingen B. Derron M H. Tectonomagmatic evolution of the Kibaran Belt in Central Africa and its relationships with mineralizations: a review[J]. Africa Geoscience Review, 2004, 11: 65–73.

    [88]

    Rumvegeri B T. Le Précambrien de l’Ouest du lac Kivu (Zaïre) et sa place dans l’évolution géodynamique de l’Afrique centrale et orientale[J]. IGCP 255, Newsletter, 1989, 2: 73–76.

    [89]

    Rumvegeri B T. Le Précambrien de l'Ouest du lac Kivu (Zaı̈re) et sa place dans l'évolution géodynamique de l'Afrique centrale et orientale[D]. Thèse Doctoral, Université de Lubumbashi, 1987.

    [90]

    Rumvegeri B T. Tectonic significance of Kibaran structures in Central and Eastern Africa[J]. Journal of African Earth Sciences, 1991, 13: 267–276. doi: 10.1016/0899-5362(91)90010-V

    [91]

    Shaw R A, Goodenough KM, Roberts NMW, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008

    [92]

    Sun S S & McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19

    [93]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45 (1-4): 29–44. doi: 10.1016/S0024-4937(98)00024-3

    [94]

    Tack L, Liégeois J P, Deblond A, et al. Kibaran A-Type Granitoids and Mafic Rocks Generated by Two Mantle Sources in a Late Orogenic Setting (Burundi)[J]. Precambrian Research, 1994, 68: 323–356. doi: 10.1016/0301-9268(94)90036-1

    [95]

    Tack L, Wingate M T D, Waele B D, et al. The 1375 Ma “ Kibaran event ” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180 (1–2): 63–84.

    [96]

    Turekian K K & Wedepohl K H. Distribution of the Elements in Some Major Units of the Earth’s Crust[J]. Geological Society of America Bulletin, 1961, 72: 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    [97]

    Van Daele J, Hulsbosch N, Dewaele S, et al. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda[J]. Ore Geology Reviews, 2018, 101: 481–501. doi: 10.1016/j.oregeorev.2018.07.020

    [98]

    Van Daele J, Jacques D, Hulsbosch N, et al. Integrative structural study of the Kibuye-Gitarama-Gatumba area (West Rwanda): A contribution to reconstruct the Meso- and Neoproterozoic tectonic framework of the Karagwe-Ankole Belt[J]. Precambrian Research, 2021, 353, 106009. doi: 10.1016/j.precamres.2020.106009

    [99]

    Varlamoff N. Transitions entre les filons de quartz et les pegmatites stannifères de la région de Musha-Ntunga (Ruanda) [J]. Annales de la Société Géologique de Belgique, 1969, 92: 193–213.

    [100]

    Villeneuve M, Gärtner A, Kalikone C, et al. U-Pb Ages and Provenance of Detrital Zircon from Metasedimentary Rocks of the Nya-Ngezie and Bugarama Groups (D. R. Congo): A Key for the Evolution of the Mesoproterozoic Kibaran-Burundian Orogen in Central Africa[J]. Precambrian Research, 2019, 328: 81–98. doi: 10.1016/j.precamres.2019.04.003

    [101]

    Villeneuve M, Wazi N, Kalikone C, et al. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events[J]. Minerals, 2022, 12(6): 737. doi: 10.3390/min12060737

    [102]

    Wang X S, Gao J, Klemd R, et al. From arc accretion to continental collision in the eastern Jiangnan Orogen: evidence from two phases of S-type granites[J]. Precambrian Research, 2019, 321: 199–211. doi: 10.1016/j.precamres.2018.12.010

    [103]

    Watson E B & Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295–304.

    [104]

    Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419. doi: 10.1007/BF00402202

    [105]

    White A J R & Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 1977, 43: 7–22. doi: 10.1016/0040-1951(77)90003-8

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1170
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2023-03-14
修回日期:  2023-04-25
录用日期:  2023-04-26
刊出日期:  2023-10-20

目录