Geochronology, Petrogeochemical Characteristics, Tectonic Setting of the Leucogranites (~1.0 Ga) in Central Africa and Its Relationship with Mineralization
-
摘要:
中部非洲的传统中元古代基巴拉造山带内发育大量与花岗岩−伟晶岩体系相关的金属矿产,尤其是以标志性的稀有金属(Nb−Ta−Li)、钨、锡和金等成矿作用为特色,成矿地质过程往往和罗迪尼亚超大陆聚合事件相对应。通常 认为,与成矿直接密切相关的花岗岩是新元古代早期的一套淡色花岗岩(G4花岗岩),即含Sn花岗岩。G4花岗岩过去通常被视作成矿母岩,长期以来受到广泛关注,但是前人的研究表明基巴拉带不同地区的G4花岗岩在野外判别标志、形成时限、地球化学特征等方面存在一定差异,导致对岩石类型、岩石成因及其产出的构造背景的认识还不统一。因此,笔者在系统收集、整理前人资料的基础上,详细总结G4花岗岩的野外岩石类型、年代学研究、全岩地球化学数据及同位素等方面特征,初步探讨成岩成矿过程。结果显示,G4花岗岩的源区物质以变泥质岩为主,岩浆形成方式主要是局部的部分熔融或深熔作用,并不像过去认为的那样来源于一个深部较大岩浆房的长期分异演化,而G4花岗岩的演化则与区域成矿作用存在直接关联。结合区域构造演化研究,推测G4花岗岩可能形成于基巴拉造山作用的同碰撞‒后碰撞阶段。
-
关键词:
- 中元古代基巴拉造山带 /
- G4花岗岩 /
- 成矿母岩 /
- 深熔作用
Abstract:A large number of mineral resources related to granite−pegmatite system that are found in the traditional Mesoproterozoic Kibaran belt in Central Africa, especially characterized by the distinctive mineralization of rare metals (Nb−Ta−Li), tungsten, tin and gold. The metallogenic events can be associated with the process of Rodinia amalgamation. Most of these mineral occurrences are linked to the early Neoproterozoic G4 leucogranitic intrusions, also termed “tin (−bearing) granites”. G4 granites have been extensively scrutinised because they are considered as the parental rocks to the ore mineralization in the region. The field identification criteria, timing, geochemical characteristics for G4 granites in different parts of Kibaran belt, however, have been shown to vary in previous studies. As a result, the type of rock, the petrogenesis of these parental granites and the geodynamic context is still a matter of debate. Combined with the disparate nature of datasets in the literature (e.g. field outcrops, petrography, geochronology, geochemistry and isotopes), the results show that the derivation of G4 granite is consistent with a meta−pelitic source, and these leucocratic granites could be considered more like anatectic migmatites rather than actual highly fractionated granites formed by fractionation out of large magma chambers. It has been largely established via the research of diagenetic and metallogenic processes that the protracted differentiation of G4 granites is the primary driver of diverse mineralization in the Kibaran belt. It’s hypothesized that the G4 granite was probably emplaced in the syncollisional to post−collisional stage of Kibaran orogeny when considering the regional tectonic background.
-
Key words:
- Mesoproterozoic Kibaran belt /
- G4 granites /
- ore−forming parent rock /
- anatectic melting
-
-
图 1 中部非洲传统基巴拉带区域地质简图 (据Debruyne et al.,2015修改)
Figure 1.
图 3 卢旺达G4花岗岩手标本、野外露头及镜下显微特征图(a~b据De Clercq et al.,2021;c~f据Nambaje et al.,2021a)
Figure 3.
图 6 G4花岗岩岩石成因类型判别图(据Whalen et al.,1987)
Figure 6.
图 9 含锂铝硅酸盐P–T相图 (据London,2018修改)
Figure 9.
表 1 基巴拉带(狭义)和卡拉戈维−安科连带中G4花岗岩、伟晶岩年龄数据及铌钽铁矿成矿年龄数据统计表
Table 1. Summary age data of the G4 granites, pegmatites and columbite−tantalite mineralization from the Kibara belt (sensu stricto) and Karagwe−Ankole belt
样品号 采样地点 构造位置 岩性/矿物 测年方法 年龄(Ma) 数据来源 Kasika 狭义基巴拉带 含锡花岗岩 全岩Rb−Sr 976±10 Cahen et al.,1979a Ki22 Kasika 狭义基巴拉带 含锡花岗岩 锆石U−Pb 986±10 Tack et al.,2010 Nzombe 狭义基巴拉带 含锡花岗岩 全岩Rb−Sr ~976 Cahen et al.,1979a Nyamakubi 狭义基巴拉带 含锡花岗岩 全岩Rb−Sr 976 Cahen et al.,1979a Kalima−Moga 狭义基巴拉带 含锡花岗岩 全岩Rb−Sr 989±28 Cahen et al.,1979a Mount Bia Massif 狭义基巴拉带 含锡花岗岩 全岩/单矿物Rb−Sr 966±21 Cahen et al.,1979a Mwanza Massif 狭义基巴拉带 含锡花岗岩 全岩Rb−Sr 977±18 Cahen et al.,1984 Kamituga 狭义基巴拉带 淡色花岗岩 全岩Rb−Sr 1020±50 Ledent et al.,1965 Maleba 狭义基巴拉带 淡色花岗岩 全岩Rb−Sr 1006±44 Ikingura,1989 Kirengo 卡拉戈维−安科连带 淡色花岗岩 全岩Rb−Sr 972±15 Cahen et al.,1984 CR181 Uwinkingi 卡拉戈维−安科连带 白云母花岗岩 锆石U−Pb 988±19 Nambaje et al.,2021a CR186 Musambira 卡拉戈维−安科连带 白云母二长花岗岩 锆石U−Pb 958±20 Nambaje et al.,2021a CR203 Muhanda 卡拉戈维−安科连带 白云母花岗岩 锆石U−Pb 945±31 Nambaje et al.,2021a CR159 Ruyenzi 卡拉戈维−安科连带 白云母花岗岩 独居石U−Pb 1011±18 Nambaje et al.,2021a CR175 Busasamana 卡拉戈维−安科连带 白云母花岗岩 独居石U−Pb 979±10 Nambaje et al.,2021a CR181 Uwinkingi 卡拉戈维−安科连带 白云母花岗岩 独居石U−Pb 976±11 Nambaje et al.,2021a CR186 Musambira 卡拉戈维−安科连带 白云母二长花岗岩 独居石U−Pb 997±8 Nambaje et al.,2021a CR203 Muhanda 卡拉戈维−安科连带 白云母花岗岩 独居石U−Pb 980±8 Nambaje et al.,2021a CR209 Kigali (Gisozi) 卡拉戈维−安科连带 白云母花岗岩 独居石U−Pb 1010±9 Nambaje et al.,2021a SDC18gr02 Masango 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 1014±53 De Clercq et al.,2021 SDC18gr05 Masango 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 959±43 De Clercq et al.,2021 SDC18gr07 Mushubati 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 993±26 De Clercq et al.,2021 SDC18gr08 Runda 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 999±46 De Clercq et al.,2021 SDC18gr15 Masango 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 974±15 De Clercq et al.,2021 SDC18gr18 Rukondo 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb ~1000 De Clercq et al.,2021 SDC18gr20 Nyanza 卡拉戈维−安科连带 二长花岗岩 锆石U−Pb 985±11 De Clercq et al.,2021 SDC18gr21 Kibuye 卡拉戈维−安科连带 正长花岗岩 锆石U−Pb ~1000 De Clercq et al.,2021 Nyabugogo 卡拉戈维−安科连带 伟晶岩 白云母Rb−Sr 975±29 Monteyne-Poulaert et al.,1962;Cahen,1964 Bijyojyo 卡拉戈维−安科连带 伟晶岩 白云母Rb−Sr 945±28 Gatumba 卡拉戈维−安科连带 伟晶岩 白云母Rb−Sr 940± 28 Rwinkwavu 卡拉戈维−安科连带 伟晶岩 白云母Rb−Sr 955±29 Gakara 卡拉戈维−安科连带 伟晶岩 全岩−白云母Rb−Sr 969±8 Brinckmann et al.,1983 Gakara 卡拉戈维−安科连带 伟晶岩 白云母Rb−Sr 969±17 Lehmann et al.,1994 Atondo deposit 狭义基巴拉带 伟晶岩 白云母Ar−Ar 986.6±5.3 Dewaele et al.,2015 Yubuli deposit 狭义基巴拉带 伟晶岩 白云母Ar−Ar 992.4±5.4 Dewaele et al.,2015 Lutshurukuru 狭义基巴拉带 伟晶岩 白云母Ar−Ar 1024.3±55 Dewaele et al.,2015 RG 9699 Manono−Kitotolo 狭义基巴拉带 伟晶岩 白云母Ar−Ar 938.8±5.1 Dewaele et al.,2016 RG 15993 Manono−Kitotolo 狭义基巴拉带 伟晶岩 白云母Ar−Ar 934.0±5.9 Dewaele et al.,2016 RG 3554 Manono-Kitotolo 狭义基巴拉带 伟晶岩(云英岩) 白云母Ar−Ar 923.3±8.3 Dewaele et al.,2016 续表1 样品号 采样地点 构造位置 岩性/矿物 测年方法 年龄(Ma) 数据来源 Kivuvu 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 963±9/−5 Romer et al.,1995 Ruhembe 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 968+33/−29 Romer et al.,1995 Sample 45 Mazakala 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 971.1±1.5 Melcher et al.,2008b,2009 Sample 110 Bassin Obea 狭义基巴拉带 铌钽铁矿 LA−ICP−MS U−Pb 971.8±7.0 Melcher et al.,2008a Coltan 48 Gatumba plant 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 1029±19 Dewaele et al.,2011 Coltan 84 Ruhanga 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 938+9.3/−8.5 Dewaele et al.,2011 Coltan 87 Buranga 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 936±14 Dewaele et al.,2011 Coltan 89 Shori (Gateko) 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 974.8±8.2 Dewaele et al.,2011 Coltan 93 Nyambisindu 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 951±15 Dewaele et al.,2011 Coltan 216 Nkegete 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 939±4 Dewaele et al.,2011 Coltan 219 Nkegete 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 958±0.4 Dewaele et al.,2011 Coltan 233 Bijyojyo 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 965+8.7/−8.6 Dewaele et al.,2011 Sample 155 Mobra 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 934.5±3.9 Melcher et al.,2015 Sample 40 Camp Bisengo 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 973.8±2.2、 Melcher et al.,2015 Sample 235 Ntunga 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 949.2±2.7 Melcher et al.,2008a Sample 43 Kakelo 狭义基巴拉带 铌钽铁矿 LA−ICP−MS U−Pb 962.8+8.7/−8.5 Melcher et al.,2015 Sample 44 Mapimo Mulungu 狭义基巴拉带 铌钽铁矿 LA−ICP−MS U−Pb 960±9 Melcher et al.,2015 Sample 45 Shabunda 狭义基巴拉带 铌钽铁矿 LA−ICP−MS U−Pb 964.3±5.4 Melcher et al.,2015 Sample 105 Kamisuku, Pangi 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 992.2±7.8 Melcher et al.,2015 Sample 106 Kibeke 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 960±5 Melcher et al.,2015 Sample 112 Masisi 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 950.2±4.4 Melcher et al.,2015 Sample 115 Mwenga 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 972.3±3.0 Melcher et al.,2015 Sample 119 Manono 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 940.2±5.1 Melcher et al.,2015 Sample 122 Manono 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 947.3±2.8 Melcher et al.,2015 Sample 156 Mwenga 狭义基巴拉带 铌钽铁矿 TIMS U−Pb 937.1±2.4 Melcher et al.,2015 Sample 41 Muhanga 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 971.9±4.9 Melcher et al.,2015 Sample 125 Nzida 卡拉戈维−安科连带 铌钽铁矿 TIMS U-Pb 936.5±6.6 Melcher et al.,2015 Sample 153 Ntunga 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 935±13 Melcher et al.,2015 Sample 136 Nemba 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 960.7±7.6 Melcher et al.,2015 Sample 169 Nemba 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 951±13 Melcher et al.,2015 Sample 150 Kibingo 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 929.4±6 Melcher et al.,2015 Sample 743 Myatano 1 卡拉戈维−安科连带 铌钽铁矿 LA−ICP−MS U−Pb 940±21 Melcher et al.,2015 Sample 381 Kanungu 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 983.4±0.6 Melcher et al.,2015 Sample 383 Mbulema 卡拉戈维−安科连带 铌钽铁矿 TIMS U−Pb 958.5±3.2 Melcher et al.,2015 表 2 G4花岗岩Sr–Nd同位素数据统计表
Table 2. Summary of Sr–Nd isotope data of the G4 granites
样品号/采样地点 年龄(Ga) (143Nd/144Nd)0 εNd(0) εNd(t) TDM(Ga) (87Sr/86Sr)0 (87Sr/86Sr)i 数据来源 Maleba 1.00 0.807 Ikingura,1989 Kirengo 0.972 0.778 Cahen et al.,1984 Mwanza 0.977 0.7002~0.731 CR175 1.00 0.512135 −9.8 −12.4 0.91744 0.744555 Nambaje et al.,2021a CR181 1.00 0.511672 −18.8 −9.9 2.52 0.805043 0.73339 CR203 1.00 0.511963 −13.2 −10.8 1.044317 0.728935 CR209 1.00 0.511834 −15.7 −11.2 3.81 0.840774 0.744413 CR186 1.00 0.511758 −17.2 −11.1 3.26 0.832353 0.739304 KR6 1.00 0.51196 −13 −9 3.54 Debruyne et al.,2015 KR9 1.00 0.5112 −28 −15 2.44 0.82361 0.73216 KR17 1.00 0.51194 −14 −11 5.27 1.51541 KR23 1.00 0.51165 −19 −11 2.64 0.96188 0.77202 KR24 1.00 0.51177 −17 −10 2.76 1.29481 0.85948 -
[1] 刘晓阳, 龚鹏辉, 许康康, 等. 坦桑尼亚乌本迪活动带西北部元古宙沉积盆地碎屑锆石U-Pb年龄及其地质意义[J]. 地质调查与研究, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002
LIU Xiaoyang, GONG Penghui, XU Kangkang, et al. U-Pb age of detrital ziron and its geological significance in the Proterozoic sediments basin in the northwestern Ubendian belt of Tanzania[J]. Geological Survey and Research, 2020, 1: 5–18. doi: 10.3969/j.issn.1672-4135.2020.01.002
[2] WANG Jie, LIU Xiaoyang, REN Junping, et al. Precambrian mineralization in Tanzania[J]. 华北地质, 2022, 45(1): 101-110.
王杰, 刘晓阳, 任军平, 等. 坦桑尼亚前寒武纪成矿作用[J]. North China Geology, 2022, 45(1): 101-110.
[3] 吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学: 地球科学, 2017, 47: 745–765.
WU Fuyuan, LIU Xiaochi, JI Weiqiang, et al. Highly fractionated granites: Recognition and research[J]. Science China Earth Sciences, 2017, 47: 745–765.
[4] 吴兴源, 刘晓阳, 周佐民, 等. 卢旺达Gatumba地区花岗伟晶岩的地质、地球化学特征及其成因研究综述[J]. 地质调查与研究, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005
WU Xingyuan, LIU Xiaoyang, ZHOU Zuomin, et al. Overview on geological, geochemical features and genesis of the granitic pegmatites in Gatumba ara, Rwanda[J]. Geological Survey and Research, 2020, 43(01): 42-54. doi: 10.3969/j.issn.1672-4135.2020.01.005
[5] 赵振华, 增田彰正 M B 夏巴尼. 稀有金属花岗岩的稀土元素四分组效应[J]. 地球化学, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003
ZHAO Zhenhua, Akimasa Masuda M B Shabani. Tetrad effects of rare-earth elements in rare-metal granites[J]. Geochimica, 1992, 3: 221–233. doi: 10.3321/j.issn:0379-1726.1992.03.003
[6] 朱清, 顾本杰, 邹谢华, 等. 试论中非矿业合作的机遇与挑战[J]. 西北地质, 2023, 56(1): 174−185.
ZHU Qing, GU Benjie, ZOU Xiehua, et al. On the Opportunities and Challenges of China–Africa Mining Cooperation[J]. Northwestern Geology, 2023, 56(1): 174-185.
[7] Best M G. Igneous and metamorphic petrology[M]. Oxford: Blackwell Science, 2003.
[8] Boehnke P, Watson E B, Trail D, et al. Zircon saturation re-revisited[J]. Chemical Geology, 2013, 351: 324–334. doi: 10.1016/j.chemgeo.2013.05.028
[9] Brinckmann J, Lehmann B. Exploration de la Bastnaesite-Monazite dans la Région de Gakara-Burundi[R]. German Geological Survey, Hannover, Germany, 1983, 157.
[10] Brinckmann J, Lehmann B, Hein U, et al. La géologie et la minéralisation primaire de l’or de la Chaîne Kibarienne, nord-ouest du Burundi, Afrique orientale[J]. Geologisches Jahrbuch Reihe E Geophysik, 2001, 101: 3–195
[11] Cahen L & Ledent D. Précisions sur l’age, la pétrogénèse et la position stratigraphique des granites à étain de l’est de l’Afrique Centrale[J]. Bulletin de la Société belge de géologie, 1979, 88: 33–49.
[12] Cahen L, Ledent D, Villeneuve M. Existence d'une chaîne plissée protérozoïque supérieur au Kivu oriental (Zaïre): données géochronologiques relatives au Supergroupe de l'Itombwe[J]. Bulletin de la Société belge de géologie, 1979, 88: 71–83.
[13] Cahen L, Snelling N J, Delhal J, et al. The geochronology and evolution of Africa[D]. Clarendon Press, Oxford, 1984.
[14] Cahen L. État de la géochronologie du Rwanda[J]. Bulletin du Service Geologique de la Republique du Rwanda, 1964, 1: 35–38.
[15] Černý P & Ercit T S. Classification of granitic pegmatites revisited[J]. Canadian Mineralogist, 2005, 43(6): 2005-2026. doi: 10.2113/gscanmin.43.6.2005
[16] Chappell B W& White J A R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of Royal Society Edinburgh: Earth Sciences, 1992, 83: 1–26. doi: 10.1017/S0263593300007720
[17] Claire E B & Christopher J S. Strongly Peraluminous Granites across the Archean–Proterozoic transition[J]. Journal of Petrology, 2019, 60: 1299–1348. doi: 10.1093/petrology/egz033
[18] De Clercq F. Metallogenesis of Sn and W vein-type deposits in the Karagwe-Ankole belt (Rwanda) [D]. KU Leuven: Department of Earth and Environmental Sciences, 2012.
[19] De Clercq S, Chew D, O’Sullivan G, et al. Characterisation and geodynamic setting of the 1 Ga granitoids of the Karagwe-Ankole belt (KAB), Rwanda[J]. Precambrian Research, 2021, 356, 106124. doi: 10.1016/j.precamres.2021.106124
[20] Debruyne D, Hulsbosch N, Van Wilderode J, et al. Regional geodynamic context for the Mesoproterozoic Kibara Belt (KIB) and the Karagwe-Ankole Belt: Evidence from geochemistry and isotopes in the KIB[J]. Precambrian Research, 2015, 264: 82–97. doi: 10.1016/j.precamres.2015.04.001
[21] Dewaele S, Henjes-Kunst F, Melcher F, et al. Late Neoproterozoic overprinting of the cassiterite and columbite-tantalite bearing pegmatites of the Gatumba area, Rwanda (Central Africa)[J]. Journal of African Earth Sciences, 2011, 61(1): 10–26. doi: 10.1016/j.jafrearsci.2011.04.004
[22] Dewaele S, Hulsbosch N, Cryns Y, et al. Geological setting and timing of the world-class Sn, Nb–Ta and Li mineralization of Manono-Kitotolo (Katanga, Democratic Republic of Congo) [J]. Ore Geology Reviews, 2016, 72: 373–390. doi: 10.1016/j.oregeorev.2015.07.004
[23] Dewaele S, Muchez P, Burgess R, et al. Geological setting and timing of the cassiterite vein type mineralization of the Kalima area (Maniema, Democratic Republic of Congo) [J]. Journal of African Earth Sciences, 2015, 112 (A): 199–212.
[24] Dewaele S, Tack L, Fernandez-Alonso M, et al. Geology and mineralisation of the Gatumba area, Rwanda: Present state of knowledge[J]. Etudes Rwandaises, 2008, 16: 6−24.
[25] Dewaele S, Tack L, Fernandez-Alonso M. Cassiterite and columbite-tantalite (coltan) mineralisation in the Mesoproterozoic rocks of the northern part of the Kibara orogen (Central Africa): preliminary results[J]. Mededelingen der Zittingen van de Koninklijke Academie voor Overzeese Wetenschappen, 2009, 54: 341–357.
[26] Fernandez-Alonso M & Theunissen K. Airborne geophysics and geochemistry provide new insights in the intercontinental evolution of the Mesoproterozoic Kibaran belt (Central Africa) [J]. Geological Magazine, 1998, 135: 203–216. doi: 10.1017/S0016756898008310
[27] Fernandez-Alonso M, Cutten H, De Waele B, et al. The Mesoproterozoic Karagwe-Ankole Belt (formerly the NE Kibara Belt): the result of prolonged extensional intracratonic basin development punctuated by two short-lived far-field compressional events[J]. Precambrian Research, 2012, 216–219: 63–86.
[28] Fernandez-Alonso M, Lavreau J, Klerkx J. Geochemistry and geochronology of the Kibaran granites in Burundi, Central Africa: implications for the Kibaran Orogeny[J]. Chemical Geology, 1986, 57: 217–234. doi: 10.1016/0009-2541(86)90104-X
[29] Frost B R, Barnes C G, Collins W J, et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42: 2033–2048. doi: 10.1093/petrology/42.11.2033
[30] Gerards J & Ledent D. Grands traits de la géologie du Rwanda, différents types de roches granitiques et premières données sur les âges de ces roches[J]. Annales de la Société géologique de Belgique, 1970, 93: 477–489.
[31] Glover A S, Rogers W Z, Barton J E. Granitic pegmatites: storehouses of industrial minerals[J]. Elements, 2012, 8: 269-273. doi: 10.2113/gselements.8.4.269
[32] Goldmann S, Melcher F, Gäbler H E, et al. Mineralogy and Trace Element Chemistry of Ferberite/Reinite from Tungsten Deposits in Central Rwanda[J]. Minerals, 2013, 3: 121–144.
[33] Günther M A, Dulski P, Lavreau J, et al. The Kibaran tin granites: Hydrothermal alteration versus plate tectonic setting[R]. International Geological Correlation Programme, Project n◦255, Newsletter/Bulletin, 1989, 2: 21–27.
[34] Harris N, Massey J, Inger S. The role of fluids in the formation of High Himalayan leucogranites[A]. In: Treloar P J, Searle M P. (Eds. ), Himalayan Tectonics [C]. London: Geological Society, London, Special Publications, 1993: 391–400.
[35] Holdaway M J. Stability of andalusite and the aluminum silicate phase diagram[J]. American Journal of Science, 1971, 271 (2): 97–131. doi: 10.2475/ajs.271.2.97
[36] Hulsbosch N, Boiron M C, Dewaele S, et al. Fluid fractionation of tungsten during granite–pegmatite differentiation and the metal source of peri-batholitic W quartz veins: evidence from the Karagwe-Ankole Belt (Rwanda) [J]. Geochimica et Cosmochimica Acta, 2016, 175: 299–318. doi: 10.1016/j.gca.2015.11.020
[37] Hulsbosch N, Hertogen J, Dewaele S, et al. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups[J]. Geochimica et Cosmochimica Acta, 2014, 132: 349–374. doi: 10.1016/j.gca.2014.02.006
[38] Hulsbosch N, Van Daele J, Reinders N, et al. Structural control on the emplacement of contemporaneous Nb-Ta-Sn pegmatite intrusions and Sn quartz veins: insights from the Musha and Ntunga deposits of the Karagwe-Ankole Belt. Rwanda[J]. Journal of African Earth Sciences, 2017, 137: 24–32.
[39] Hulsbosch N. Nb-Ta-Sn-W distribution in granite-related ore systems: fractionation mechanisms and examples from the Karagwe-Ankole Belt of Central Africa[A]. In: Decree S, Robb L, Eds. Ore Deposits Origin Exploration and Exploitation[C]. Wiley, 2019: 75–107.
[40] Ikingura J R. Geology, geochemistry and genesis of stanniferous granites in the southern part of the Karagwe-Ankolean belt, NW Tanzania[D]. Carleton University, 1989.
[41] Kampunzu A B, Rumvegeri B T, Kapenda D, et al. Les Kibarides d’Afrique centrale et orientale: une chaîne de collision[J]. Geology for Development Newsletter, 1986, 5: 125–137.
[42] Klerkx J, Liégeois J P, Lavreau J, et al. Crustal evolution of the northern Kibaran Belt, Eastern and Central Africa[A]. In: Kröner A, Ed. Proterozoic Lithospheric Evolution[C]. American Geophysics Union, Geodynamics Series, 1987, 17: 217–233.
[43] Klerkx J, Liégeois J P, Lavreau J, et al. Granitoides kibariens précoces et tectonique tangentielle au Burundi: magmatisme bimodal lié a une distention crustale[A]. In: Klerkx J, Michot J, Eds. African Geology, A Volume in Honour of L. Cahen[C]. Tervuren, Royal Museum for Central Africa, 1984: 29–46.
[44] Koegelenberg C, Kisters A F M, Kramers J D, et al. U-Pb detrital zircon and 39Ar-40Ar muscovite ages from the eastern parts of the Karagwe-Ankole Belt: Tracking Paleoproterozoic basin formation and Mesoproterozoic crustal amalgamation along the western margin of the Tanzania Craton[J]. Precambrian Research, 2015, 269: 147–161. doi: 10.1016/j.precamres.2015.08.014
[45] Koegelenberg C, Kisters, A F M. Tectonic wedging, back-thrusting and basin development in the frontal parts of the Mesoproterozoic Karagwe-Ankole belt in NW Tanzania[J]. Journal of African Earth Sciences, 2014, 97: 87–98. doi: 10.1016/j.jafrearsci.2014.04.018
[46] Kokonyangi J W, Kampunzu A B, Armstrong R, et al. The Mesoproterozoic Kibaride belt (Katanga, SE D. R. Congo) [J]. Journal of African Earth Sciences, 2006, 46: 1–35. doi: 10.1016/j.jafrearsci.2006.01.017
[47] Kokonyangi J, Armstrong R, Kampunzu A B, et al. U-Pb zircon geochronology and petrology of granitoids from Mitwaba (Katanga, Congo): Implications for the evolution of the Meso-proterozoic Kibaran belt[J]. Precambrian Research, 2004, 132(1–2): 79– 106.
[48] Kokonyangi J, Okudiaira T, Kampunzu A B, et al. Geological evolution of the Kibarides Belt, Mitwaba, Democratic Republic of Congo, central Africa[J]. Gondwana Research, 2001, 4: 663–664. doi: 10.1016/S1342-937X(05)70460-3
[49] Lavreau J & Liégeois J P. Granites à étain et granito-gneiss burundiens au Rwanda (région de Kibuye): Âge et signification[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 289–294.
[50] Ledent D, Cahen L. Quelques données géochronologiques nouvelles sur les minéraux et roches du Kivu méridional[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1965, 1: 92–94.
[51] Ledent D. Données géochronologiques relatives aux granites Kibariens de type A (ou G1) et B (ou G2) du Shaba, du Rwanda, du Burundi et du SW Uganda[R]. Musée Royal d e l'Afrique Centrale, Tervuren. Dépt Géologie Minéralogie, Rapport Annales, 1978, 1: 101–105.
[52] Lehmann B, Halder S, Ruzindana Munana J, et al. The geochemical signature of rare-metal pegmatites in Central Africa: magmatic rocks in the Gatumba tin–tantalum mining district, Rwanda[J]. Journal of Geochemical Exploration, 2014, 144: 528–538. doi: 10.1016/j.gexplo.2013.11.012
[53] Lehmann B, Lavreau J. Tin granites of the northern Kibaran belt, Central Africa (Kivu/ Zaire, Rwanda, Burundi) [A]. In: Matheis G, Schandelmeier H, Eds. Current research in African Earth Sciences[C]. Balkema, Rotterdam, 1987: 33–56.
[54] Lehmann B, Nakai S, Höhndorf A, et al. REE mineralization at Gakara, Burundi: Evidence for anomalous upper mantle in the western Rift Valley [J]. Geochimica et Cosmochimica Acta, 1994, 58: 985–992. doi: 10.1016/0016-7037(94)90520-7
[55] Lehmann B. Magmatic enrichment of tin, in Metallogeny of Tin[M]. Berlin-Heidelberg-New York: Springer, 1990a.
[56] Lehmann B. Regional element distribution patterns and the problem of pregranitic tin enrichments, in Metallogeny of Tin[M]. Berlin‐Heidelberg-New York: Springer, 1990b.
[57] Lehmann B. Tin granites, geochemical heritage, magmatic differentiation[J]. Geologische Rundschau, 1987, 76(1): 177–185 doi: 10.1007/BF01820581
[58] Li X H, Li Z X, Ge W C, et al. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? [J]. Precambrian Research, 2003, 122: 45–83. doi: 10.1016/S0301-9268(02)00207-3
[59] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 2008, 160: 179–210. doi: 10.1016/j.precamres.2007.04.021
[60] Liégeois J P, Theunissen K, Nzogibwami E, et al. Granitoides syncinématiques Kibariens au Burundi: étude pétrographique, géochimique et géochronologique préliminaire[J]. Annales de la Societe Geologique de Belgique, 1982, 105: 345–356.
[61] London D. Ore-forming processes within granitic pegmatites[J]. Ore Geology Reviews, 2018, 101: 349–383. doi: 10.1016/j.oregeorev.2018.04.020
[62] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635–643.
[63] Melcher F, Graupner T, Gäbler H E, et al. Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: Constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology[J]. Ore Geology Reviews, 2015, 64: 667 –719. doi: 10.1016/j.oregeorev.2013.09.003
[64] Melcher F, Graupner T, Sitnikova M, et al. Ein Herkunftsnachweis für Niob-Tantalerze am Beispiel afrikanischer Selten-Element-Pegmatite[J]. Mitteilungen der Österreichischen Mineralogischen Gesellschaft, 2009, 155: 231–267.
[65] Melcher F, Sitnikova M A, Graupner T, et al. Fingerprinting of conflict minerals: columbite–tantalite (“coltan”) ores[N]. SGA News, 2008b, 23: 1–14.
[66] Melcher M, Graupner T, Henjes-Kunst F, et al. Analytical fingerprint of columbite–tantalite(coltan) mineralization in pegmatites: focus on Africa[A]. Proceedings, Ninth International Congress for Applied Mineralogy (ICAM), Brisbane, QLD[C]. Australasian Institute of Mining and Metallurgy, 2008a: 615–624.
[67] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37: 215–224. doi: 10.1016/0012-8252(94)90029-9
[68] Monteyne-Poulaert G, Delwiche R, Cahen L. Age de minéralisations pegmatitiques et filoniennnes du Rwanda et du Burundi [J]. Annales de la Société géologique de Belgique, 1962, 71: 272–295.
[69] Muchez P, Hulsbosch N, Dewaele S. 2014. Geological mapping and implications for Nb-Ta, Sn and W prospection in Geological Mapping and Implications for Nb-Ta, Sn and W Prospection in Rwanda[J]. Mededelingen der Zittingen Van de Koninklijke Academie Voor Overzeese Wetenschappen, 2014, 60(3–4): 515 –530.
[70] Nambaje C, Satish-Kumar M, Williams I S, et al. Granitic rocks from Rwanda: Vital clues to the tectonic evolution of the Karagwe-Ankole Belt[J]. Lithos, 2021a, 404–405, 106490.
[71] Nambaje C, Williams I S, Sajeev K. SHRIMP U-Pb dating of cassiterite: Insights into the timing of Rwandan tin mineralisation and associated tectonic processes[J]. Ore Geology Reviews, 2021b, 135: 104185. doi: 10.1016/j.oregeorev.2021.104185
[72] Nambaje C. Tectonic evolution and tin mineralisation of the Karagwe-Ankole Belt, Rwanda[D]. PhD Thesis, 2021.
[73] Patiño Douce A E & Beard J S. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar[J]. Journal of Petrology, 1995, 36: 707–738. doi: 10.1093/petrology/36.3.707
[74] Patiño Douce A E & Johnston A D. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites[J]. Contributions to Mineralogy and Petrology, 1991, 107: 202–218. doi: 10.1007/BF00310707
[75] Patiño Douce A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? [J]. Geological Society, London, Special Publications, 1999, 168: 55–75. doi: 10.1144/GSL.SP.1999.168.01.05
[76] Pearce J A, Harris N B, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956–983. doi: 10.1093/petrology/25.4.956
[77] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds. ), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230–249.
[78] Peeters L. Contribution à la géologie des terrains anciens du Ruanda-Urundi et du Kivu. Annales du Musée Royale du Congo belge, Tervuren, série in 8°[J]. Sciences Géologiques, 1956, 16: 1–197.
[79] Pohl W & Günther M A. The origin of Kibaran (late Mid‐Proterozoic) tin, tungsten and gold quartz vein deposits in Central Africa: a fluid inclusions study[J]. Mineralium Deposita, 1991, 26(1): 51–59.
[80] Pohl W L, Biryabarema M, Lehmann B. Early Neoproterozoic rare metal (Sn, Ta, W) and gold metallogeny of the Central Africa Region: a review[J]. Applied Earth Science, 2013, 122(2): 66–82. . doi: 10.1179/1743275813Y.0000000033
[81] Pohl W. Metallogeny of the northeastern Kibara belt, Central Africa–recent perspectives[J]. Ore Geology Reviews, 1994, 9: 105–130. doi: 10.1016/0169-1368(94)90024-8
[82] Romer R L & Lehmann B. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi[J]. Economic Geology, 1995, 90: 2303–2309. doi: 10.2113/gsecongeo.90.8.2303
[83] Rubatto D, Chakraborty S, Dasgupta S. Timescales of crustal melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) inferred from trace element-constrained monazite and zircon chronology[J]. Contributions to Mineralogy and Petrology, 2013, 165: 349–372. doi: 10.1007/s00410-012-0812-y
[84] Rubatto D, Hermann J, Berger A, et al. Protracted fluid-induced melting during Barrovian metamorphism in the Central Alps[J]. Contributions to Mineralogy and Petrology, 2009, 158 (6): 703–722. doi: 10.1007/s00410-009-0406-5
[85] Rubatto D. Zircon: The Metamorphic Mineral[J]. Reviews In Mineralogy & Geochemistry, 2017, 83 (1): 261–295.
[86] Rumvegeri B T & Katabarwa J B. Géochimie des granitoïdes kibariens du Kivu (Est-Zaire) et du Rwanda: Implications géodynamiques[J]. Comptes Rendus L’Académie Sci. Sér. IIa Sci. Terre Planètes, 1990, 311: 959–961.
[87] Rumvegeri B T, Bingen B. Derron M H. Tectonomagmatic evolution of the Kibaran Belt in Central Africa and its relationships with mineralizations: a review[J]. Africa Geoscience Review, 2004, 11: 65–73.
[88] Rumvegeri B T. Le Précambrien de l’Ouest du lac Kivu (Zaïre) et sa place dans l’évolution géodynamique de l’Afrique centrale et orientale[J]. IGCP 255, Newsletter, 1989, 2: 73–76.
[89] Rumvegeri B T. Le Précambrien de l'Ouest du lac Kivu (Zaı̈re) et sa place dans l'évolution géodynamique de l'Afrique centrale et orientale[D]. Thèse Doctoral, Université de Lubumbashi, 1987.
[90] Rumvegeri B T. Tectonic significance of Kibaran structures in Central and Eastern Africa[J]. Journal of African Earth Sciences, 1991, 13: 267–276. doi: 10.1016/0899-5362(91)90010-V
[91] Shaw R A, Goodenough KM, Roberts NMW, et al. Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland[J]. Precambrian Research, 2016, 281: 338-362. doi: 10.1016/j.precamres.2016.06.008
[92] Sun S S & McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19
[93] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45 (1-4): 29–44. doi: 10.1016/S0024-4937(98)00024-3
[94] Tack L, Liégeois J P, Deblond A, et al. Kibaran A-Type Granitoids and Mafic Rocks Generated by Two Mantle Sources in a Late Orogenic Setting (Burundi)[J]. Precambrian Research, 1994, 68: 323–356. doi: 10.1016/0301-9268(94)90036-1
[95] Tack L, Wingate M T D, Waele B D, et al. The 1375 Ma “ Kibaran event ” in Central Africa: Prominent emplacement of bimodal magmatism under extensional regime[J]. Precambrian Research, 2010, 180 (1–2): 63–84.
[96] Turekian K K & Wedepohl K H. Distribution of the Elements in Some Major Units of the Earth’s Crust[J]. Geological Society of America Bulletin, 1961, 72: 175–192. doi: 10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
[97] Van Daele J, Hulsbosch N, Dewaele S, et al. Mixing of magmatic-hydrothermal and metamorphic fluids and the origin of peribatholitic Sn vein-type deposits in Rwanda[J]. Ore Geology Reviews, 2018, 101: 481–501. doi: 10.1016/j.oregeorev.2018.07.020
[98] Van Daele J, Jacques D, Hulsbosch N, et al. Integrative structural study of the Kibuye-Gitarama-Gatumba area (West Rwanda): A contribution to reconstruct the Meso- and Neoproterozoic tectonic framework of the Karagwe-Ankole Belt[J]. Precambrian Research, 2021, 353, 106009. doi: 10.1016/j.precamres.2020.106009
[99] Varlamoff N. Transitions entre les filons de quartz et les pegmatites stannifères de la région de Musha-Ntunga (Ruanda) [J]. Annales de la Société Géologique de Belgique, 1969, 92: 193–213.
[100] Villeneuve M, Gärtner A, Kalikone C, et al. U-Pb Ages and Provenance of Detrital Zircon from Metasedimentary Rocks of the Nya-Ngezie and Bugarama Groups (D. R. Congo): A Key for the Evolution of the Mesoproterozoic Kibaran-Burundian Orogen in Central Africa[J]. Precambrian Research, 2019, 328: 81–98. doi: 10.1016/j.precamres.2019.04.003
[101] Villeneuve M, Wazi N, Kalikone C, et al. A Review of the G4 “Tin Granites” and Associated Mineral Occurrences in the Kivu Belt (Eastern Democratic Republic of the Congo) and Their Relationships with the Last Kibaran Tectono-Thermal Events[J]. Minerals, 2022, 12(6): 737. doi: 10.3390/min12060737
[102] Wang X S, Gao J, Klemd R, et al. From arc accretion to continental collision in the eastern Jiangnan Orogen: evidence from two phases of S-type granites[J]. Precambrian Research, 2019, 321: 199–211. doi: 10.1016/j.precamres.2018.12.010
[103] Watson E B & Harrison T M. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 1983, 64: 295–304.
[104] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407–419. doi: 10.1007/BF00402202
[105] White A J R & Chappell B W. Ultrametamorphism and granitoid genesis[J]. Tectonophysics, 1977, 43: 7–22. doi: 10.1016/0040-1951(77)90003-8
-