赞比亚索卢韦齐地区新元古代石英二长岩的成因:年代学、地球化学和Sr–Nd–Hf同位素约束

许康康, 孙凯, 吴兴源. 2023. 赞比亚索卢韦齐地区新元古代石英二长岩的成因:年代学、地球化学和Sr–Nd–Hf同位素约束. 西北地质, 56(5): 20-34. doi: 10.12401/j.nwg.2023116
引用本文: 许康康, 孙凯, 吴兴源. 2023. 赞比亚索卢韦齐地区新元古代石英二长岩的成因:年代学、地球化学和Sr–Nd–Hf同位素约束. 西北地质, 56(5): 20-34. doi: 10.12401/j.nwg.2023116
XU Kangkang, SUN Kai, WU Xingyuan. 2023. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes. Northwestern Geology, 56(5): 20-34. doi: 10.12401/j.nwg.2023116
Citation: XU Kangkang, SUN Kai, WU Xingyuan. 2023. Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes. Northwestern Geology, 56(5): 20-34. doi: 10.12401/j.nwg.2023116

赞比亚索卢韦齐地区新元古代石英二长岩的成因:年代学、地球化学和Sr–Nd–Hf同位素约束

  • 基金项目: 中国地质调查局项目(DD20190439、DD20551801),国家重点研发计划课题“环太平洋和非洲成矿域战略性矿产信息及成矿规律”(2021YFC2901804)联合资助。
详细信息
    作者简介: 许康康(1986–),男,高级工程师,主要从事地质矿产勘查与研究工作。E–mail:xukang06@163.com
  • 中图分类号: P581;P597

Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes

  • 研究卢菲利安弧地区新元古代与裂谷作用有关的基性–中酸性岩浆作用,对了解区域地壳生长和演化具有重要意义。研究表明,卢菲利安弧地区发育有大量新元古代与裂谷作用有关的基性岩类,但相关的中酸性岩岩浆作用却鲜有报道。笔者首次在赞比亚索卢韦齐地区发现有新元古代的石英二长岩体,锆石U–Pb年龄为(707.1±3.0)Ma。地球化学特征显示该岩体具有较低的MgO(0.46%~0.76%)、CaO(1.63%~1.76%)、K2O(0.49%~0.56%)、Mg#值(8~13)和Sr/Y值(1.14~2.50),较高的Al2O3(15.61%~16.02%)。岩体富集轻稀土和高场强元素HFSEs(Nb、Ta、Hf),(La/Yb)N值为6.64~7.86,亏损P、Ti、Zr和大离子亲石元素LILEs(Rb、Ba、Sr、K)。此外,石英二长岩具有低的初始87Sr/86Sr值(0.7058~0.7060),正的εNd(t)值(1.89~2.03)和锆石εHf(t)值(1.30~5.67),该特征与索卢韦齐地区新元古代早期辉长岩相似,推测石英二长岩可能为新生的镁铁质下地壳在中–低压条件下部分熔融形成的。综合地质年代学和岩石成因研究,笔者认为卢菲利安弧地区在新元古代经历了多阶段的地壳生长作用,后期侵位的地幔岩浆加热早期就位于下地壳的镁铁质岩石并导致其部分熔融,从而达到对地壳的改造作用。

  • 加载中
  • 图 1  赞比亚Solwezi地区石英二长岩分布(a)及南部非洲构造划分图(b)(据Katongo et al.,2002Johnson et al.,2005Selley et al.,2005

    Figure 1. 

    图 2  赞比亚穹窿区石英二长岩野外(a)、手标本(b)及显微照片(c、d)

    Figure 2. 

    图 3  石英二长岩代表性锆石CL图像(a)和锆石U–Pb年龄谐和图(b、c)

    Figure 3. 

    图 4  石英二长岩Zr/TiO2–Nb/Y图解(a)(据Middlemost,1994)和AR–SiO2图解(b)(据Wright,1969

    Figure 4. 

    图 5  石英二长岩主量元素和代表性微量元素Harker图解

    Figure 5. 

    图 6  原始地幔标准化微量元素(a)和球粒陨石标准化稀土元素(b)图解(据Sun et al.,1989

    Figure 6. 

    图 7  石英二长岩锆石εHft)–207Pb/206Pb年龄图解(a)和εNdt)–87Sr/86Sr(i)图解(b)

    Figure 7. 

    图 8  石英二长岩的Mg#–SiO2图解(a)(据Wang et al.,2005)和Th/U–Th图解(b)(据Rudnick et al.,2003

    Figure 8. 

    图 9  石英二长岩AFM图解和摩尔Na–K–Ca图解(据Zhao et al.,2010

    Figure 9. 

    图 10  石英二长岩的SiO2–TiO2(a)和SiO2–MgO(b)图解(据Jung et al.,2002

    Figure 10. 

    表 1  石英二长岩LA–MC–ICP–MS锆石U–Pb定年结果统计表

    Table 1.  LA–MC–ICP–MS zircon U–Pb dating results of quartz monzonite

    点号含量(10–6Th/U比值年龄(Ma)
    ThU 207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
    0116400.410.06600.00471.02860.06440.11640.00238061507183271013
    0240610.650.06540.00351.02550.05060.11570.00187871147172570611
    0357800.710.06490.00261.02400.04050.11540.001476985716207048
    0438630.610.06390.00341.01350.05530.11490.0015739107711287019
    0534580.580.06470.00251.02280.03960.11540.001476588715207048
    0644620.700.06260.00340.99630.04980.11660.0014694117702257118
    0738610.620.06420.00301.01470.04210.11610.001475094711217088
    0846690.670.06390.00261.00940.03920.11590.001473985709207078
    0946720.640.06470.00351.02400.05520.11520.00177651177162870310
    1033640.510.06630.00321.06600.04520.11970.00208171007372272911
    1138620.610.06530.00381.00880.05190.11480.00197871227082670011
    1231510.610.06290.00311.00110.04590.11710.0016703104704237149
    1318440.420.06460.00321.01630.04720.11550.0016761104712247059
    1426560.460.06390.00281.02090.04370.11560.001573986714227059
    1522410.540.06520.00591.01260.08460.11500.00257891937104370214
    1668920.730.06400.00241.02660.03780.11660.001374380717197117
    1734460.740.06350.00311.02500.05180.11720.00197241107162671411
    1850730.690.06200.00270.98860.04190.11510.001667688698217029
    1923580.400.06280.00280.99750.04370.11590.0017702967032270710
    2030550.550.06280.00291.00360.04590.11600.0015702101706237089
    2146700.660.06260.00281.00590.03900.11650.001669695707207109
    221231410.870.06010.00490.98510.05230.11640.00176091716962771010
    2324480.510.06230.00430.96860.05800.11540.00206871506883070411
    2415360.430.06160.00500.98230.06920.11710.00236611796953571413
    2533540.610.06180.00310.98240.04760.11570.0016666101695247069
    2632680.480.06510.00361.03150.05710.11500.00217761157202970212
    2759750.790.06390.00261.02500.03820.11630.001373992716197098
    2851820.630.06360.00251.02080.04080.11620.0018728857142170910
    2938750.510.06280.00290.99090.04340.11520.001270294699227037
    3033570.580.06160.00330.98990.05380.11580.00176611156992770610
    3124450.540.06310.00420.97130.05610.11570.00217221456892970612
    3241690.590.06280.00341.01040.05300.11680.00177021157092771210
    3352710.730.06400.00341.01800.04830.11620.0014743108713247098
    3445620.720.06450.00301.02150.04220.11510.001476198715217028
    3538560.680.06140.00420.97440.05590.11520.00186541466912970310
    3658780.740.06350.00281.02050.04420.11640.001572493714227109
    3737530.710.06390.00341.01040.05280.11550.0017 7391187092770510
    下载: 导出CSV

    表 2  石英二长岩的主量元素(%)和微量元素(10−6)分析结果表

    Table 2.  Major element (%) and trace element compositions (10−6) for quartz monzonite

    样品号SiO2Al2O3Fe2O3FeOCaOMgOK2ONa2OTiO2P2O5MnO灼失CuPbZnCrNiCoRb
    ZS05-160.9015.806.992.831.760.760.548.001.010.20.0230.8711.71.7426.54.6711.110.73.16
    ZS05-261.7116.027.671.261.650.460.558.621.020.240.0150.6411.11.5326.20.618.439.342.35
    ZS05-361.3415.618.481.301.670.460.568.241.020.240.0160.9311.91.1522.40.608.168.461.96
    ZS05-461.5315.836.862.701.630.740.497.950.970.140.030.8210.81.3326.32.7611.910.21.57
    样品号CsSrBaVScNbTaZrHfGaUThLaCePrNdSmEuGd
    ZS05-10.0415466.26.9626.189.95.3184831.334.31.708.697814726.310520.96.0119.1
    ZS05-20.0316856.77.4027.990.95.5589433.736.51.811.8014212446.219438.510.7036.6
    ZS05-30.0313449.05.2225.489.55.2884432.033.01.468.3912813042.418036.210.0034.1
    ZS05-40.0414248.77.4624.892.65.5188132.933.81.4010.707510522.79017.14.9416.1
    样品号TbDyHoErTmYbLuYMg#Th/UΣREEδEuδCe(La/Yb)N87Sr/86Sr(tεNdtTDM2(Ma)
    ZS05-12.9815.22.858.491.187.921.2261.7135.11442.250.900.786.650.70581.891243
    ZS05-25.7930.55.7116.202.2314.12.08131.096.56668.610.860.376.79///
    ZS05-35.5028.25.2215.002.0213.01.90118.085.75631.540.860.426.640.70602.031232
    ZS05-42.3811.82.196.740.956.391.0149.4137.64362.200.900.617.86///
     注:Mg#=100×(MgO/40.32)/(MgO/40.32 + FeOt/71.94)。
    下载: 导出CSV

    表 3  石英二长岩锆石原位Lu–Hf同位素结果表

    Table 3.  Zircon in situ Lu–Hf isotope data of quartz monzonite

    点号年龄(Ma)176Yb/177Hf176Lu/177Hf176Hf/177HfεHftTDM1TDM2
    017070.03610.00080.00120.00000.2823830.0000221.300.95123330154050
    027070.03310.00050.00110.00000.2824620.0000234.150.92111832136052
    037070.04910.00060.00150.00000.2824660.0000274.071.02112738136661
    047070.03840.00050.00120.00000.2824970.0000245.340.94107234128655
    057070.03140.00050.00100.00000.2824950.0000225.340.84107130128649
    067070.03820.00050.00130.00000.2824710.0000204.350.80111329134847
    077070.03450.00050.00110.00000.2824250.0000212.800.82117330144648
    087070.03870.00020.00120.00000.2824210.0000242.620.93118134145755
    097070.04400.00070.00140.00000.2824000.0000241.820.95121534150754
    107070.05420.00130.00170.00000.2824260.0000252.571.01118936146057
    117070.03150.00010.00100.00000.2823930.0000221.690.92121531151551
    127070.02870.00020.00100.00000.2824010.0000202.050.81120028149346
    137070.02450.00030.00080.00000.2824900.0000245.230.95107334129355
    147070.03470.00010.00120.00000.2824150.0000272.431.02118838146960
    157070.03220.00050.00110.00000.2824770.0000264.641.10110036133060
    167070.04800.00030.00160.00000.2824730.0000234.290.89111833135253
    177070.02960.00060.00100.00000.2823900.0000231.630.91121733151953
    187070.03490.00020.00120.00000.2824350.0000243.130.97116034142555
    197070.04180.00030.00140.00000.2824880.0000254.910.95109235131356
    207070.02260.00010.00080.00000.2824170.0000232.670.91117432145453
    217070.03480.00070.00110.00000.2823950.0000241.720.92121633151354
    227070.03690.00090.00120.00000.2824700.0000264.350.99111237134859
    237070.06710.00070.00220.00000.2824520.0000263.251.00116937141759
    247070.02810.00030.00090.00000.2824830.0000254.951.01108635131057
    257070.03140.00060.00110.00000.2824520.0000223.780.98113332138453
    267070.03330.00060.00110.00000.2824110.0000262.330.98119136147558
    277070.02930.00210.00100.00010.2825040.0000245.670.97105734126556
    287070.04320.00010.00150.00000.2824360.0000233.050.96116732143052
    297070.02720.00010.00100.00000.2824320.0000253.140.95115735142457
    307070.03590.00070.00120.00000.2824880.0000215.020.87108530130649
    下载: 导出CSV
  • [1]

    李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.

    LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.

    [2]

    陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998, 44(5): 489-495.

    LU Songnian. A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review, 1988, 44(5): 489-495.

    [3]

    任云伟, 张家辉, 田辉, 等. 天镇-怀安地区新太古代末二长花岗岩的成因及动力背景[J]. 华北地质. 2022, 45(2): 76-86.

    REN Yunwei, ZHANG Jiahui, TIAN Hui, et al. Petrogenesis and geodynamic settings of monzonitic granite at the end of the Neoarchean in Tianzhen-Huai'an area[J]. North China Geology, 2022, 45(2): 76-86.

    [4]

    徐焱, 张世红. 塔里木克拉通在Rodinia中的位置——研究进展与问题[J]. 地质调查与研究, 2020, 43(2): 169-176.

    XU Yan, ZHANG Shihong. The position of Tarim Craton in Rodinia:advances and problems[J]. Geological Survey and Research, 2020, 43(2): 169-176.

    [5]

    许康康, 孙凯, 何胜飞, 等. 非洲中部新元古代Lufilian弧地区地质特征、成矿时代及构造演化历史[J]. 地质与勘探, 2021a, 57(03): 676-692.

    XU Kangkang, SUN Kai, HE Shengfei, et al. Geological Characteristics and Metallogenic Age and Tectonic Evolution Histroy of Neoproterozoic Lufilian Arc in Central Africa[J]. Geology and Prospecting, 2021a, 57(03): 676-692.

    [6]

    许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021b, 44(03): 1-3.

    XU Kangkang, SUN Kai, HE Shengfei, et al. Detrital zircon U-Pb dating of the garnet mica schist and its geological implications in the Solwezi area, Northwestern Zambia[J]. North China Geology, 2021b, 44(03): 1-3.

    [7]

    Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505-539. doi: 10.1093/petrology/egi084

    [8]

    Armstrong R A, Master S, Robb L J. Geochronology of the Nchanga granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 32-40. doi: 10.1016/j.jafrearsci.2005.08.012

    [9]

    Arth J G, Hanson G N. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths[J]. Contributions to Mineralogy and Petrology, 1972, 37(2): 161-174. doi: 10.1007/BF00371074

    [10]

    Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53, 303-323. doi: 10.1016/0009-2541(85)90076-2

    [11]

    Barron J W. Stratigraphy, metamorphism, and tectonic history of the Solwezi area, Northwest Province, Zambia: Integrating geological field observations and airborne geophysics in the interpretation of regional geology[D]. Colorado School of Mines, Golden, CO. , USA, 2003: 1−233.

    [12]

    Batumike M J, Kampunzu A B, Cailteux J H. Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: Implications for provenance, paleoweathering and geotectonic setting[J]. Journal of African Earth Sciences, 2006, 44(1): 97-115. doi: 10.1016/j.jafrearsci.2005.11.007

    [13]

    Batumike M J, Cailteux J L H, Kampunzu A B. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 2007, 11(3): 432-447. doi: 10.1016/j.gr.2006.04.012

    [14]

    Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365

    [15]

    Belousova E, Griffin W L, O'Reilly S Y, Fisher N L. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143, 602-622. doi: 10.1007/s00410-002-0364-7

    [16]

    Cai Y, Wang Y, Cawood P A, Zhang Y Z, Zhang A M. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008

    [17]

    Cailteux J. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization[J]. Journal of African Earth Sciences, 1994, 19(4): 279-301. doi: 10.1016/0899-5362(94)90015-9

    [18]

    Cailteux J L H, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 134-158. doi: 10.1016/j.jafrearsci.2005.08.001

    [19]

    Cailteux J L H, Kampunzu A B, Lerouge C. The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the Central African Copperbelt, its Cu–Co mineralisation, and regional correlations[J]. Gondwana Research, 2007, 11(3): 414-431. doi: 10.1016/j.gr.2006.04.016

    [20]

    Cailteux J , Putter T D. The Neoproterozoic Katanga Supergroup (D. R. Congo): State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 2019, 150: 522-531. doi: 10.1016/j.jafrearsci.2018.07.020

    [21]

    Cantagrel J M, Didier J, Gourgaud A. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism[J]. Physics of the earth and planetary interiors, 1984, 35(1-3): 63-76. doi: 10.1016/0031-9201(84)90034-7

    [22]

    Carmichael I S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99 W) Mexico[J]. Contributions to Mineralogy and Petrology, 2002, 143(6): 641-663. doi: 10.1007/s00410-002-0370-9

    [23]

    Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust[J]. Bulletin, 2013, 125(1-2): 14-32.

    [24]

    Clemens A. The granulite–granite connection[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Dordrecht, Kluwer, 1990: 25–36.

    [25]

    Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2-4): 287-306. doi: 10.1016/0012-821X(87)90227-5

    [26]

    Condie K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1-4): 97-108. doi: 10.1016/S0012-821X(98)00178-2

    [27]

    Condie K C, Kröner A. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 23(2): 394-402. doi: 10.1016/j.gr.2011.09.011

    [28]

    De Swardt A M J, Gerrard P, Simpson J. Major zones of transcurrent dislocation and superposition of orogenic belts in part of Central Africa[J]. Geological Society of America BulletinBull, 1965, 76(1): . 89-1. doi: 10.1130/0016-7606(1965)76[89:MZOTDA]2.0.CO;2

    [29]

    Dirks P H G M, Sithole T A. Eclogites in the Makuti gneisses of Zimbabwe: implications for the tectonic evolution of the Zambezi Belt in southern Africa[J]. Journal of Metamorphic Geology, 1999, 17(6): 593-612. doi: 10.1046/j.1525-1314.1999.00215.x

    [30]

    Eglinger A, André-Mayer A S, Vanderhaeghe O. Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J]. Ore Geology Reviews, 2013, 54: 197-213. doi: 10.1016/j.oregeorev.2013.04.003

    [31]

    El Desouky H A, Muchez P, Cailteux J. Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 2009, 36(4): 315-332. doi: 10.1016/j.oregeorev.2009.07.003

    [32]

    Flierdt T V D, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos, 2003, 67, 205–226. doi: 10.1016/S0024-4937(03)00016-1

    [33]

    Gao S, Rudnick R L, Yuan H , Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162

    [34]

    Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9

    [35]

    Griffin W L, Wang X, Jackson S E, Pearson NJ, O’Reilly S Y, Xu X S, Zhou X M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8

    [36]

    Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5): 515-533. doi: 10.1007/s00410-003-0448-z

    [37]

    Hanson R E, Wardlaw M S, Wilson T J, Mwale G. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: Constraints on pan-African deformation, plutonism, and transcurrent shearing in central Zambia[J]. Precambrian Reserch, 1993, 63: 189-209. doi: 10.1016/0301-9268(93)90033-X

    [38]

    Hitzman M W, Selley D, Bull S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history[J]. Economic Geology, 2010, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627

    [39]

    Johnson S P, Rivers T, De Waele B. A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south–central Africa: implications for Rodinia and Gondwana[J]. Journal of the Geological Society, 2005, 162(3): 433-450. doi: 10.1144/0016-764904-028

    [40]

    Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 551-566. doi: 10.1007/s00410-002-0366-5

    [41]

    Kampunzu A B, Cailteux J. Tectonic evolution of the Lufilian Arc (Central Africa Copperbelt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 1999, 2(3): 401-421. doi: 10.1016/S1342-937X(05)70279-3

    [42]

    Kampunzu A B, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P. Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: Implications for Rodinia break-up[J]. Gondwana Research, 2000, 3(2): 125-153. doi: 10.1016/S1342-937X(05)70093-9

    [43]

    Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M, Melcher F. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 2009, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003

    [44]

    Katongo C, Koeberl C, Reimold W U, Mubu S. Remote sensing, field studies, petrography, and geochemistry of rocks in central Zambia: no evidence of a meteoritic impact in the area of the Lukanga Swamp[J]. Journal of African Earth Sciences, 2002, 35(3): 365-384. doi: 10.1016/S0899-5362(02)00150-1

    [45]

    Katongo C, Koller F, Kloetzli U, Koeberl C, Tembo F, De Waele B. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian–Zambezi belt, Zambia: Implications for tectonic setting and regional correlation[J]. Journal of African Earth Sciences, 2004, 40(5): 219-244. doi: 10.1016/j.jafrearsci.2004.12.007

    [46]

    Kemp A I S, Hawkesworth C J, Collins W J, Gray C M, Blevin P L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 2009, 284(3-4): 455-466. doi: 10.1016/j.jpgl.2009.05.011

    [47]

    Key R M, Liyungu A K, Njamu F M, Somwe V, Banda J, Mosley P N, Armstrong R A. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 2001, 33(3-4): 503-528. doi: 10.1016/S0899-5362(01)00098-7

    [48]

    Kushiro I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969, 267(A): 269-294.

    [49]

    Liu S, Hu R Z, Gao S, Feng C, Qi Y Q, Wang T, Feng G Y, Coulson I M. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004

    [50]

    Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003: 25-32.

    [51]

    Master S, Rainaud C, Armstrong R A, Phillips D, Robb L J. . Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 2005, 42(1-5): 41-60. doi: 10.1016/j.jafrearsci.2005.08.005

    [52]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37, 215-224. doi: 10.1016/0012-8252(94)90029-9

    [53]

    Muchez P, Vanderhaeghen P, El Desouky H, Schneider J, Boy A, Dewaele S, Cailteux J. Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5

    [54]

    Naydenov K V, Lehmann J, Saalmann K, Milani L, Kinnaird J A, Charlesworth G, Rankin W. New constraints on the Pan-African Orogeny in Central Zambia: A structural and geochronological study of the Hook Batholith and the Mwembeshi Zone[J]. Tectonophysics, 2014, 637: 80-105. doi: 10.1016/j.tecto.2014.09.010

    [55]

    Parman S W, Grove T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2).

    [56]

    Patchett P J, Kouvo O, Hedge C E , Tatsumoto M. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297. doi: 10.1007/BF00398923

    [57]

    Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru[J]. Journal of petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491

    [58]

    Porada H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989, 44(2): 103-136. doi: 10.1016/0301-9268(89)90078-8

    [59]

    Porada H, Berhorst V. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 2000, 30(3): 727-771. doi: 10.1016/S0899-5362(00)00049-X

    [60]

    Rainaud C, Master S, Armstrong R A, Phillips D, Robb L J. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 2005, 42(1-5): 1-31. doi: 10.1016/j.jafrearsci.2005.08.006

    [61]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891

    [62]

    Roberts M P, Clemens J D. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21, 825-828.

    [63]

    Roberts M P, Pin C, Clemens J D, et al. Petrogenesis of mafific to felsic plutonic rock associations: the Calc-alkaline Querigut Complex, French Pyrenees[J]. Journal of Petrology, 2000, 41, 809–844.

    [64]

    Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C. Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites: implications for the obduction process[J]. Lithos, 2009, 112, 163-187. doi: 10.1016/j.lithos.2009.02.006

    [65]

    Rudnick R L, Gao S. Composition of the continental crust[J]. In, Rudnick R L, Holland H D, Turekian K K, eds.Treatise on Geochemistry[M]. Elsevier-Pergamon, Oxford, 2003: 1−64.

    [66]

    Scherer, E. , Munker, C. , Mezger, K. , Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293, 683-687. doi: 10.1126/science.1061372

    [67]

    Selley D, Broughton D, Scott R J, Hitzman M, Bull S W, Large R R, Pollington N. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 2005, 100: 965-1000.

    [68]

    Shaw A, Downes H, Thirlwall M F. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central[J]. Chemical Geology, 1993, 107(1-2): 1-18. doi: 10.1016/0009-2541(93)90098-4

    [69]

    Smithies R H, Champion D C. 2000. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41, 1653–1671. doi: 10.1093/petrology/41.12.1653

    [70]

    Stein M, Hofmann A W. Mantle plumes and episodic crustal growth[J]. Nature, 1994, 372, 63–68. doi: 10.1038/372063a0

    [71]

    Stern R A, Hanson G N. Archean high-Mg granodiorite-a derivative of light rare-earth element-enriched monzodiorite of mantle origin. Journal of Petrology, 1991, 32, 201–238.

    [72]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [73]

    Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 1982, 60(2): 305-317. doi: 10.1016/0012-821X(82)90009-7

    [74]

    Tembo F, Kampunzu A B, Porada H. Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia[J]. Journal of African Earth Sciences, 1999, 28(2): 403-425. doi: 10.1016/S0899-5362(99)00012-3

    [75]

    Unrug R. The Lufilian Arc: a microplate in the Pan-African collision zone of the Congo and the Kalahari cratons[J]. Precambrian Research, 1983, 21(3-4): 181-196. doi: 10.1016/0301-9268(83)90040-2

    [76]

    Vielzeuf D, Clemens J D, Pin C, et al. Granites, granulites, and crustal differentiation[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Kluwer, Dordrecht, 1990: 59–85.

    [77]

    Vinyu M L, Hanson R E, Martin M W, Bowring S A, Jelsma H A, Krol M A, Dirks P H G M. U-Pb and 40Ar/39Ar geochronological constraints on the tectonic evolution of the easternmost part of the Zambezi orogenic belt, northeast Zimbabwe[J]. Precambrian Research, 1999, 98(1-2): 67-82. doi: 10.1016/S0301-9268(99)00039-X

    [78]

    Wang Q, McDermott F, Xu J, Bellon H, Zhu Y T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1

    [79]

    Wang Y J, Zhang A M, Fan W M, Zhang Y H, Zhang Y Z. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.

    [80]

    Watters W A. Diorite and associated intrusive and metamorphic rocks between Port William and Paterson Inlet, Stewart Island, and on Ruapuke Island[J]. New Zealand journal of geology and geophysics, 1978, 21(4): 423-442. doi: 10.1080/00288306.1978.10424067

    [81]

    Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222

    [82]

    Yuan, H. L. , Gao, S. , Liu, X. M. , Li, H. M. , 2004. Accurate U-Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28, (3), 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x

    [83]

    Zhao J H, Zhou M F, Zheng J P, Fang S M. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block: constraints from the Xixiang dioritic intrusion, South China[J]. Lithos, 2010, 120(3-4): 439-452. doi: 10.1016/j.lithos.2010.09.005

    [84]

    Zhou Y, Liang X, Liang X, Jiang Y, Wang C, Fu J G, Shao T B. U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: new clues for the early crustal evolution of southeastern South China[J]. Gondwana Research, 2015, 27(4): 1586-1598. doi: 10.1016/j.gr.2014.01.015

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1069
  • PDF下载数:  81
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
修回日期:  2023-06-11
录用日期:  2023-06-12
刊出日期:  2023-10-20

目录