Petrogenesis of Neoproterozoic Quartz Monzonite in Solwezi Region, Zambia: Constraint from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes
-
摘要:
研究卢菲利安弧地区新元古代与裂谷作用有关的基性–中酸性岩浆作用,对了解区域地壳生长和演化具有重要意义。研究表明,卢菲利安弧地区发育有大量新元古代与裂谷作用有关的基性岩类,但相关的中酸性岩岩浆作用却鲜有报道。笔者首次在赞比亚索卢韦齐地区发现有新元古代的石英二长岩体,锆石U–Pb年龄为(707.1±3.0)Ma。地球化学特征显示该岩体具有较低的MgO(0.46%~0.76%)、CaO(1.63%~1.76%)、K2O(0.49%~0.56%)、Mg#值(8~13)和Sr/Y值(1.14~2.50),较高的Al2O3(15.61%~16.02%)。岩体富集轻稀土和高场强元素HFSEs(Nb、Ta、Hf),(La/Yb)N值为6.64~7.86,亏损P、Ti、Zr和大离子亲石元素LILEs(Rb、Ba、Sr、K)。此外,石英二长岩具有低的初始87Sr/86Sr值(0.7058~0.7060),正的εNd(t)值(1.89~2.03)和锆石εHf(t)值(1.30~5.67),该特征与索卢韦齐地区新元古代早期辉长岩相似,推测石英二长岩可能为新生的镁铁质下地壳在中–低压条件下部分熔融形成的。综合地质年代学和岩石成因研究,笔者认为卢菲利安弧地区在新元古代经历了多阶段的地壳生长作用,后期侵位的地幔岩浆加热早期就位于下地壳的镁铁质岩石并导致其部分熔融,从而达到对地壳的改造作用。
Abstract:The study of mafic–intermediate and felsic magmatism related to Neoproterozoic rift in the Lufilian Arc is of great significance for understanding the crustal growth and secular evolution of the region. Studies have shown that there are a large number of Neoproterozoic mafic rocks which are related to rifting in the Lufilan arc, but a few of related intermediate and felsic magmatism are discovered. A Neoproterozoic quartz monzonite with a zircon U–Pb age of 707.1±3.0 Ma was first discovered and reported in the Lufilian Arc. The pluton is characterized by relatively low MgO (0.46%~0.76%), CaO (1.63%~1.76%), K2O (0.49%~0.56%), Mg# values (8~13) and Sr/Y ratios (1.14~2.50), as well as high Al2O3 content (15.61%~16.02%). REE–normalized patterns show enrichment in LREE with (La/Yb)N of 6.64~7.86 and their primitive mantle-normalized trace element patterns are characterized by depletion of LILEs (Rb, Ba, Sr, K) and P, Ti, Zr and enrichment of HFSEs (Nb, Ta, Hf). They have a low initial 87Sr/86Sr ratios (0.7058~0.7060) with positive εNd(t) values (1.89~2.03) and their zircon εHf(t) values range from 1.30 to 5.67, their isotopic data are similar to those of the Neoproterozoic mafic intrusions in the Solwezi region, suggesting that the quartz monzonite were generated by partial melting of newly emplaced mafic lower crust. In combination with the studies of geochronology and petrogenesis, it is concluded that the Lufilian Arc experienced a multi–stage crustal growth in the Neoproterozoic, the late intrusive mantle magma heated the mafic rocks emplaced in the lower crust at early stage, resulting in partial melting and reworking the early crust.
-
Key words:
- quartz monzonite /
- Neoproterozoic /
- petrogenesis /
- Lufilian arc /
- Zambia
-
-
图 1 赞比亚Solwezi地区石英二长岩分布(a)及南部非洲构造划分图(b)(据Katongo et al.,2002;Johnson et al.,2005; Selley et al.,2005)
Figure 1.
图 4 石英二长岩Zr/TiO2–Nb/Y图解(a)(据Middlemost,1994)和AR–SiO2图解(b)(据Wright,1969)
Figure 4.
图 6 原始地幔标准化微量元素(a)和球粒陨石标准化稀土元素(b)图解(据Sun et al.,1989)
Figure 6.
图 8 石英二长岩的Mg#–SiO2图解(a)(据Wang et al.,2005)和Th/U–Th图解(b)(据Rudnick et al.,2003)
Figure 8.
图 9 石英二长岩AFM图解和摩尔Na–K–Ca图解(据Zhao et al.,2010)
Figure 9.
图 10 石英二长岩的SiO2–TiO2(a)和SiO2–MgO(b)图解(据Jung et al.,2002)
Figure 10.
表 1 石英二长岩LA–MC–ICP–MS锆石U–Pb定年结果统计表
Table 1. LA–MC–ICP–MS zircon U–Pb dating results of quartz monzonite
点号 含量(10–6) Th/U 比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 16 40 0.41 0.0660 0.0047 1.0286 0.0644 0.1164 0.0023 806 150 718 32 710 13 02 40 61 0.65 0.0654 0.0035 1.0255 0.0506 0.1157 0.0018 787 114 717 25 706 11 03 57 80 0.71 0.0649 0.0026 1.0240 0.0405 0.1154 0.0014 769 85 716 20 704 8 04 38 63 0.61 0.0639 0.0034 1.0135 0.0553 0.1149 0.0015 739 107 711 28 701 9 05 34 58 0.58 0.0647 0.0025 1.0228 0.0396 0.1154 0.0014 765 88 715 20 704 8 06 44 62 0.70 0.0626 0.0034 0.9963 0.0498 0.1166 0.0014 694 117 702 25 711 8 07 38 61 0.62 0.0642 0.0030 1.0147 0.0421 0.1161 0.0014 750 94 711 21 708 8 08 46 69 0.67 0.0639 0.0026 1.0094 0.0392 0.1159 0.0014 739 85 709 20 707 8 09 46 72 0.64 0.0647 0.0035 1.0240 0.0552 0.1152 0.0017 765 117 716 28 703 10 10 33 64 0.51 0.0663 0.0032 1.0660 0.0452 0.1197 0.0020 817 100 737 22 729 11 11 38 62 0.61 0.0653 0.0038 1.0088 0.0519 0.1148 0.0019 787 122 708 26 700 11 12 31 51 0.61 0.0629 0.0031 1.0011 0.0459 0.1171 0.0016 703 104 704 23 714 9 13 18 44 0.42 0.0646 0.0032 1.0163 0.0472 0.1155 0.0016 761 104 712 24 705 9 14 26 56 0.46 0.0639 0.0028 1.0209 0.0437 0.1156 0.0015 739 86 714 22 705 9 15 22 41 0.54 0.0652 0.0059 1.0126 0.0846 0.1150 0.0025 789 193 710 43 702 14 16 68 92 0.73 0.0640 0.0024 1.0266 0.0378 0.1166 0.0013 743 80 717 19 711 7 17 34 46 0.74 0.0635 0.0031 1.0250 0.0518 0.1172 0.0019 724 110 716 26 714 11 18 50 73 0.69 0.0620 0.0027 0.9886 0.0419 0.1151 0.0016 676 88 698 21 702 9 19 23 58 0.40 0.0628 0.0028 0.9975 0.0437 0.1159 0.0017 702 96 703 22 707 10 20 30 55 0.55 0.0628 0.0029 1.0036 0.0459 0.1160 0.0015 702 101 706 23 708 9 21 46 70 0.66 0.0626 0.0028 1.0059 0.0390 0.1165 0.0016 696 95 707 20 710 9 22 123 141 0.87 0.0601 0.0049 0.9851 0.0523 0.1164 0.0017 609 171 696 27 710 10 23 24 48 0.51 0.0623 0.0043 0.9686 0.0580 0.1154 0.0020 687 150 688 30 704 11 24 15 36 0.43 0.0616 0.0050 0.9823 0.0692 0.1171 0.0023 661 179 695 35 714 13 25 33 54 0.61 0.0618 0.0031 0.9824 0.0476 0.1157 0.0016 666 101 695 24 706 9 26 32 68 0.48 0.0651 0.0036 1.0315 0.0571 0.1150 0.0021 776 115 720 29 702 12 27 59 75 0.79 0.0639 0.0026 1.0250 0.0382 0.1163 0.0013 739 92 716 19 709 8 28 51 82 0.63 0.0636 0.0025 1.0208 0.0408 0.1162 0.0018 728 85 714 21 709 10 29 38 75 0.51 0.0628 0.0029 0.9909 0.0434 0.1152 0.0012 702 94 699 22 703 7 30 33 57 0.58 0.0616 0.0033 0.9899 0.0538 0.1158 0.0017 661 115 699 27 706 10 31 24 45 0.54 0.0631 0.0042 0.9713 0.0561 0.1157 0.0021 722 145 689 29 706 12 32 41 69 0.59 0.0628 0.0034 1.0104 0.0530 0.1168 0.0017 702 115 709 27 712 10 33 52 71 0.73 0.0640 0.0034 1.0180 0.0483 0.1162 0.0014 743 108 713 24 709 8 34 45 62 0.72 0.0645 0.0030 1.0215 0.0422 0.1151 0.0014 761 98 715 21 702 8 35 38 56 0.68 0.0614 0.0042 0.9744 0.0559 0.1152 0.0018 654 146 691 29 703 10 36 58 78 0.74 0.0635 0.0028 1.0205 0.0442 0.1164 0.0015 724 93 714 22 710 9 37 37 53 0.71 0.0639 0.0034 1.0104 0.0528 0.1155 0.0017 739 118 709 27 705 10 表 2 石英二长岩的主量元素(%)和微量元素(10−6)分析结果表
Table 2. Major element (%) and trace element compositions (10−6) for quartz monzonite
样品号 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失 Cu Pb Zn Cr Ni Co Rb ZS05-1 60.90 15.80 6.99 2.83 1.76 0.76 0.54 8.00 1.01 0.2 0.023 0.87 11.7 1.74 26.5 4.67 11.1 10.7 3.16 ZS05-2 61.71 16.02 7.67 1.26 1.65 0.46 0.55 8.62 1.02 0.24 0.015 0.64 11.1 1.53 26.2 0.61 8.43 9.34 2.35 ZS05-3 61.34 15.61 8.48 1.30 1.67 0.46 0.56 8.24 1.02 0.24 0.016 0.93 11.9 1.15 22.4 0.60 8.16 8.46 1.96 ZS05-4 61.53 15.83 6.86 2.70 1.63 0.74 0.49 7.95 0.97 0.14 0.03 0.82 10.8 1.33 26.3 2.76 11.9 10.2 1.57 样品号 Cs Sr Ba V Sc Nb Ta Zr Hf Ga U Th La Ce Pr Nd Sm Eu Gd ZS05-1 0.04 154 66.2 6.96 26.1 89.9 5.31 848 31.3 34.3 1.70 8.69 78 147 26.3 105 20.9 6.01 19.1 ZS05-2 0.03 168 56.7 7.40 27.9 90.9 5.55 894 33.7 36.5 1.8 11.80 142 124 46.2 194 38.5 10.70 36.6 ZS05-3 0.03 134 49.0 5.22 25.4 89.5 5.28 844 32.0 33.0 1.46 8.39 128 130 42.4 180 36.2 10.00 34.1 ZS05-4 0.04 142 48.7 7.46 24.8 92.6 5.51 881 32.9 33.8 1.40 10.70 75 105 22.7 90 17.1 4.94 16.1 样品号 Tb Dy Ho Er Tm Yb Lu Y Mg# Th/U ΣREE δEu δCe (La/Yb)N 87Sr/86Sr(t) εNd(t) TDM2(Ma) ZS05-1 2.98 15.2 2.85 8.49 1.18 7.92 1.22 61.7 13 5.11 442.25 0.90 0.78 6.65 0.7058 1.89 1243 ZS05-2 5.79 30.5 5.71 16.20 2.23 14.1 2.08 131.0 9 6.56 668.61 0.86 0.37 6.79 / / / ZS05-3 5.50 28.2 5.22 15.00 2.02 13.0 1.90 118.0 8 5.75 631.54 0.86 0.42 6.64 0.7060 2.03 1232 ZS05-4 2.38 11.8 2.19 6.74 0.95 6.39 1.01 49.4 13 7.64 362.20 0.90 0.61 7.86 / / / 注:Mg#=100×(MgO/40.32)/(MgO/40.32 + FeOt/71.94)。 表 3 石英二长岩锆石原位Lu–Hf同位素结果表
Table 3. Zircon in situ Lu–Hf isotope data of quartz monzonite
点号 年龄(Ma) 176Yb/177Hf 2σ 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(t) 2σ TDM1 2σ TDM2 2σ 01 707 0.0361 0.0008 0.0012 0.0000 0.282383 0.000022 1.30 0.95 1233 30 1540 50 02 707 0.0331 0.0005 0.0011 0.0000 0.282462 0.000023 4.15 0.92 1118 32 1360 52 03 707 0.0491 0.0006 0.0015 0.0000 0.282466 0.000027 4.07 1.02 1127 38 1366 61 04 707 0.0384 0.0005 0.0012 0.0000 0.282497 0.000024 5.34 0.94 1072 34 1286 55 05 707 0.0314 0.0005 0.0010 0.0000 0.282495 0.000022 5.34 0.84 1071 30 1286 49 06 707 0.0382 0.0005 0.0013 0.0000 0.282471 0.000020 4.35 0.80 1113 29 1348 47 07 707 0.0345 0.0005 0.0011 0.0000 0.282425 0.000021 2.80 0.82 1173 30 1446 48 08 707 0.0387 0.0002 0.0012 0.0000 0.282421 0.000024 2.62 0.93 1181 34 1457 55 09 707 0.0440 0.0007 0.0014 0.0000 0.282400 0.000024 1.82 0.95 1215 34 1507 54 10 707 0.0542 0.0013 0.0017 0.0000 0.282426 0.000025 2.57 1.01 1189 36 1460 57 11 707 0.0315 0.0001 0.0010 0.0000 0.282393 0.000022 1.69 0.92 1215 31 1515 51 12 707 0.0287 0.0002 0.0010 0.0000 0.282401 0.000020 2.05 0.81 1200 28 1493 46 13 707 0.0245 0.0003 0.0008 0.0000 0.282490 0.000024 5.23 0.95 1073 34 1293 55 14 707 0.0347 0.0001 0.0012 0.0000 0.282415 0.000027 2.43 1.02 1188 38 1469 60 15 707 0.0322 0.0005 0.0011 0.0000 0.282477 0.000026 4.64 1.10 1100 36 1330 60 16 707 0.0480 0.0003 0.0016 0.0000 0.282473 0.000023 4.29 0.89 1118 33 1352 53 17 707 0.0296 0.0006 0.0010 0.0000 0.282390 0.000023 1.63 0.91 1217 33 1519 53 18 707 0.0349 0.0002 0.0012 0.0000 0.282435 0.000024 3.13 0.97 1160 34 1425 55 19 707 0.0418 0.0003 0.0014 0.0000 0.282488 0.000025 4.91 0.95 1092 35 1313 56 20 707 0.0226 0.0001 0.0008 0.0000 0.282417 0.000023 2.67 0.91 1174 32 1454 53 21 707 0.0348 0.0007 0.0011 0.0000 0.282395 0.000024 1.72 0.92 1216 33 1513 54 22 707 0.0369 0.0009 0.0012 0.0000 0.282470 0.000026 4.35 0.99 1112 37 1348 59 23 707 0.0671 0.0007 0.0022 0.0000 0.282452 0.000026 3.25 1.00 1169 37 1417 59 24 707 0.0281 0.0003 0.0009 0.0000 0.282483 0.000025 4.95 1.01 1086 35 1310 57 25 707 0.0314 0.0006 0.0011 0.0000 0.282452 0.000022 3.78 0.98 1133 32 1384 53 26 707 0.0333 0.0006 0.0011 0.0000 0.282411 0.000026 2.33 0.98 1191 36 1475 58 27 707 0.0293 0.0021 0.0010 0.0001 0.282504 0.000024 5.67 0.97 1057 34 1265 56 28 707 0.0432 0.0001 0.0015 0.0000 0.282436 0.000023 3.05 0.96 1167 32 1430 52 29 707 0.0272 0.0001 0.0010 0.0000 0.282432 0.000025 3.14 0.95 1157 35 1424 57 30 707 0.0359 0.0007 0.0012 0.0000 0.282488 0.000021 5.02 0.87 1085 30 1306 49 -
[1] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[2] 陆松年. 新元古时期Rodinia超大陆研究进展述评[J]. 地质论评, 1998, 44(5): 489-495.
LU Songnian. A Review of Advance in the Research on the Neoproterozoic Rodinia Supercontinent[J]. Geological Review, 1988, 44(5): 489-495.
[3] 任云伟, 张家辉, 田辉, 等. 天镇-怀安地区新太古代末二长花岗岩的成因及动力背景[J]. 华北地质. 2022, 45(2): 76-86.
REN Yunwei, ZHANG Jiahui, TIAN Hui, et al. Petrogenesis and geodynamic settings of monzonitic granite at the end of the Neoarchean in Tianzhen-Huai'an area[J]. North China Geology, 2022, 45(2): 76-86.
[4] 徐焱, 张世红. 塔里木克拉通在Rodinia中的位置——研究进展与问题[J]. 地质调查与研究, 2020, 43(2): 169-176.
XU Yan, ZHANG Shihong. The position of Tarim Craton in Rodinia:advances and problems[J]. Geological Survey and Research, 2020, 43(2): 169-176.
[5] 许康康, 孙凯, 何胜飞, 等. 非洲中部新元古代Lufilian弧地区地质特征、成矿时代及构造演化历史[J]. 地质与勘探, 2021a, 57(03): 676-692.
XU Kangkang, SUN Kai, HE Shengfei, et al. Geological Characteristics and Metallogenic Age and Tectonic Evolution Histroy of Neoproterozoic Lufilian Arc in Central Africa[J]. Geology and Prospecting, 2021a, 57(03): 676-692.
[6] 许康康, 孙凯, 何胜飞, 等. 赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J]. 华北地质, 2021b, 44(03): 1-3.
XU Kangkang, SUN Kai, HE Shengfei, et al. Detrital zircon U-Pb dating of the garnet mica schist and its geological implications in the Solwezi area, Northwestern Zambia[J]. North China Geology, 2021b, 44(03): 1-3.
[7] Annen C, Blundy J D, Sparks R S J. The genesis of intermediate and silicic magmas in deep crustal hot zones[J]. Journal of Petrology, 2006, 47(3): 505-539. doi: 10.1093/petrology/egi084
[8] Armstrong R A, Master S, Robb L J. Geochronology of the Nchanga granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 32-40. doi: 10.1016/j.jafrearsci.2005.08.012
[9] Arth J G, Hanson G N. Quartz diorites derived by partial melting of eclogite or amphibolite at mantle depths[J]. Contributions to Mineralogy and Petrology, 1972, 37(2): 161-174. doi: 10.1007/BF00371074
[10] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation of platinum-group elements in terrestrial magmas[J]. Chemical Geology, 1985, 53, 303-323. doi: 10.1016/0009-2541(85)90076-2
[11] Barron J W. Stratigraphy, metamorphism, and tectonic history of the Solwezi area, Northwest Province, Zambia: Integrating geological field observations and airborne geophysics in the interpretation of regional geology[D]. Colorado School of Mines, Golden, CO. , USA, 2003: 1−233.
[12] Batumike M J, Kampunzu A B, Cailteux J H. Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: Implications for provenance, paleoweathering and geotectonic setting[J]. Journal of African Earth Sciences, 2006, 44(1): 97-115. doi: 10.1016/j.jafrearsci.2005.11.007
[13] Batumike M J, Cailteux J L H, Kampunzu A B. Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt[J]. Gondwana Research, 2007, 11(3): 432-447. doi: 10.1016/j.gr.2006.04.012
[14] Beard J S, Lofgren G E. Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6. 9 kb[J]. Journal of Petrology, 1991, 32(2): 365-401. doi: 10.1093/petrology/32.2.365
[15] Belousova E, Griffin W L, O'Reilly S Y, Fisher N L. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143, 602-622. doi: 10.1007/s00410-002-0364-7
[16] Cai Y, Wang Y, Cawood P A, Zhang Y Z, Zhang A M. Neoproterozoic crustal growth of the Southern Yangtze Block: Geochemical and zircon U-Pb geochronological and Lu-Hf isotopic evidence of Neoproterozoic diorite from the Ailaoshan zone[J]. Precambrian Research, 2015, 266: 137-149. doi: 10.1016/j.precamres.2015.05.008
[17] Cailteux J. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization[J]. Journal of African Earth Sciences, 1994, 19(4): 279-301. doi: 10.1016/0899-5362(94)90015-9
[18] Cailteux J L H, Kampunzu A B, Lerouge C, Kaputo A K, Milesi J P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt[J]. Journal of African Earth Sciences, 2005, 42(1-5): 134-158. doi: 10.1016/j.jafrearsci.2005.08.001
[19] Cailteux J L H, Kampunzu A B, Lerouge C. The Neoproterozoic Mwashya–Kansuki sedimentary rock succession in the Central African Copperbelt, its Cu–Co mineralisation, and regional correlations[J]. Gondwana Research, 2007, 11(3): 414-431. doi: 10.1016/j.gr.2006.04.016
[20] Cailteux J , Putter T D. The Neoproterozoic Katanga Supergroup (D. R. Congo): State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 2019, 150: 522-531. doi: 10.1016/j.jafrearsci.2018.07.020
[21] Cantagrel J M, Didier J, Gourgaud A. Magma mixing: origin of intermediate rocks and “enclaves” from volcanism to plutonism[J]. Physics of the earth and planetary interiors, 1984, 35(1-3): 63-76. doi: 10.1016/0031-9201(84)90034-7
[22] Carmichael I S. The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99 W) Mexico[J]. Contributions to Mineralogy and Petrology, 2002, 143(6): 641-663. doi: 10.1007/s00410-002-0370-9
[23] Cawood P A, Hawkesworth C J, Dhuime B. The continental record and the generation of continental crust[J]. Bulletin, 2013, 125(1-2): 14-32.
[24] Clemens A. The granulite–granite connection[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Dordrecht, Kluwer, 1990: 25–36.
[25] Clemens J D, Vielzeuf D. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters, 1987, 86(2-4): 287-306. doi: 10.1016/0012-821X(87)90227-5
[26] Condie K C. Episodic continental growth and supercontinents: a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 1998, 163(1-4): 97-108. doi: 10.1016/S0012-821X(98)00178-2
[27] Condie K C, Kröner A. The building blocks of continental crust: evidence for a major change in the tectonic setting of continental growth at the end of the Archean[J]. Gondwana Research, 2013, 23(2): 394-402. doi: 10.1016/j.gr.2011.09.011
[28] De Swardt A M J, Gerrard P, Simpson J. Major zones of transcurrent dislocation and superposition of orogenic belts in part of Central Africa[J]. Geological Society of America BulletinBull, 1965, 76(1): . 89-1. doi: 10.1130/0016-7606(1965)76[89:MZOTDA]2.0.CO;2
[29] Dirks P H G M, Sithole T A. Eclogites in the Makuti gneisses of Zimbabwe: implications for the tectonic evolution of the Zambezi Belt in southern Africa[J]. Journal of Metamorphic Geology, 1999, 17(6): 593-612. doi: 10.1046/j.1525-1314.1999.00215.x
[30] Eglinger A, André-Mayer A S, Vanderhaeghe O. Geochemical signatures of uranium oxides in the Lufilian belt: from unconformity-related to syn-metamorphic uranium deposits during the Pan-African orogenic cycle[J]. Ore Geology Reviews, 2013, 54: 197-213. doi: 10.1016/j.oregeorev.2013.04.003
[31] El Desouky H A, Muchez P, Cailteux J. Two Cu–Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo[J]. Ore Geology Reviews, 2009, 36(4): 315-332. doi: 10.1016/j.oregeorev.2009.07.003
[32] Flierdt T V D, Hoernes S, Jung S, Masberg P, Hoffer E, Schaltegger U, Friedrichsen H. Lower crustal melting and the role of open-system processes in the genesis of syn-orogenic quartz diorite-granite-leucogranite associations: constraints from Sr-Nd-O isotopes from the Bandombaai Complex, Namibia. Lithos, 2003, 67, 205–226. doi: 10.1016/S0024-4937(03)00016-1
[33] Gao S, Rudnick R L, Yuan H , Liu X M, Liu Y S, Xu W L, Ling W L, Ayers J, Wang X C, Wang Q H. Recycling lower continental crust in the North China craton[J]. Nature, 2004, 432(7019): 892-897. doi: 10.1038/nature03162
[34] Griffin W L, Pearson N J, Belousova E, Jackson S E, van Achterbergh E, O’Reilly S Y. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147. doi: 10.1016/S0016-7037(99)00343-9
[35] Griffin W L, Wang X, Jackson S E, Pearson NJ, O’Reilly S Y, Xu X S, Zhou X M. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3-4): 237-269. doi: 10.1016/S0024-4937(02)00082-8
[36] Grove T L, Elkins-Tanton L T, Parman S W, Chatterjee N. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends[J]. Contributions to Mineralogy and Petrology, 2003, 145(5): 515-533. doi: 10.1007/s00410-003-0448-z
[37] Hanson R E, Wardlaw M S, Wilson T J, Mwale G. U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: Constraints on pan-African deformation, plutonism, and transcurrent shearing in central Zambia[J]. Precambrian Reserch, 1993, 63: 189-209. doi: 10.1016/0301-9268(93)90033-X
[38] Hitzman M W, Selley D, Bull S. Formation of sedimentary rock-hosted stratiform copper deposits through Earth history[J]. Economic Geology, 2010, 105(3): 627-639. doi: 10.2113/gsecongeo.105.3.627
[39] Johnson S P, Rivers T, De Waele B. A review of the Mesoproterozoic to early Palaeozoic magmatic and tectonothermal history of south–central Africa: implications for Rodinia and Gondwana[J]. Journal of the Geological Society, 2005, 162(3): 433-450. doi: 10.1144/0016-764904-028
[40] Jung S, Hoernes S, Mezger K. Synorogenic melting of mafic lower crust: constraints from geochronology, petrology and Sr, Nd, Pb and O isotope geochemistry of quartz diorites (Damara orogen, Namibia)[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 551-566. doi: 10.1007/s00410-002-0366-5
[41] Kampunzu A B, Cailteux J. Tectonic evolution of the Lufilian Arc (Central Africa Copperbelt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 1999, 2(3): 401-421. doi: 10.1016/S1342-937X(05)70279-3
[42] Kampunzu A B, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P. Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: Implications for Rodinia break-up[J]. Gondwana Research, 2000, 3(2): 125-153. doi: 10.1016/S1342-937X(05)70093-9
[43] Kampunzu A B, Cailteux J L H, Kamona A F, Intiomale M M, Melcher F. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 2009, 35(3-4): 263-297. doi: 10.1016/j.oregeorev.2009.02.003
[44] Katongo C, Koeberl C, Reimold W U, Mubu S. Remote sensing, field studies, petrography, and geochemistry of rocks in central Zambia: no evidence of a meteoritic impact in the area of the Lukanga Swamp[J]. Journal of African Earth Sciences, 2002, 35(3): 365-384. doi: 10.1016/S0899-5362(02)00150-1
[45] Katongo C, Koller F, Kloetzli U, Koeberl C, Tembo F, De Waele B. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian–Zambezi belt, Zambia: Implications for tectonic setting and regional correlation[J]. Journal of African Earth Sciences, 2004, 40(5): 219-244. doi: 10.1016/j.jafrearsci.2004.12.007
[46] Kemp A I S, Hawkesworth C J, Collins W J, Gray C M, Blevin P L. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: The Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 2009, 284(3-4): 455-466. doi: 10.1016/j.jpgl.2009.05.011
[47] Key R M, Liyungu A K, Njamu F M, Somwe V, Banda J, Mosley P N, Armstrong R A. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 2001, 33(3-4): 503-528. doi: 10.1016/S0899-5362(01)00098-7
[48] Kushiro I. The system forsterite-diopside-silica with and without water at high pressures[J]. American Journal of Science, 1969, 267(A): 269-294.
[49] Liu S, Hu R Z, Gao S, Feng C, Qi Y Q, Wang T, Feng G Y, Coulson I M. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China[J]. Lithos, 2008, 106, 365-379. doi: 10.1016/j.lithos.2008.09.004
[50] Ludwig K R. User's Manual for Isoplot 3.00, a Geochronological Toolkit for Microsoft Excel[M]. Geochronological Center, Special Publication No. 4, Berkeley, 2003: 25-32.
[51] Master S, Rainaud C, Armstrong R A, Phillips D, Robb L J. . Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 2005, 42(1-5): 41-60. doi: 10.1016/j.jafrearsci.2005.08.005
[52] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37, 215-224. doi: 10.1016/0012-8252(94)90029-9
[53] Muchez P, Vanderhaeghen P, El Desouky H, Schneider J, Boy A, Dewaele S, Cailteux J. Anhydrite pseudomorphs and the origin of stratiform Cu–Co ores in the Katangan Copperbelt (Democratic Republic of Congo)[J]. Mineralium Deposita, 2008, 43(5): 575-589. doi: 10.1007/s00126-008-0183-5
[54] Naydenov K V, Lehmann J, Saalmann K, Milani L, Kinnaird J A, Charlesworth G, Rankin W. New constraints on the Pan-African Orogeny in Central Zambia: A structural and geochronological study of the Hook Batholith and the Mwembeshi Zone[J]. Tectonophysics, 2014, 637: 80-105. doi: 10.1016/j.tecto.2014.09.010
[55] Parman S W, Grove T L. Harzburgite melting with and without H2O: Experimental data and predictive modeling[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B2).
[56] Patchett P J, Kouvo O, Hedge C E , Tatsumoto M. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes[J]. Contributions to Mineralogy and Petrology, 1982, 78(3): 279-297. doi: 10.1007/BF00398923
[57] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru[J]. Journal of petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
[58] Porada H. Pan-African rifting and orogenesis in southern to equatorial Africa and eastern Brazil[J]. Precambrian Research, 1989, 44(2): 103-136. doi: 10.1016/0301-9268(89)90078-8
[59] Porada H, Berhorst V. Towards a new understanding of the Neoproterozoic-Early Palaeozoic Lufilian and northern Zambezi Belts in Zambia and the Democratic Republic of Congo[J]. Journal of African Earth Sciences, 2000, 30(3): 727-771. doi: 10.1016/S0899-5362(00)00049-X
[60] Rainaud C, Master S, Armstrong R A, Phillips D, Robb L J. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt (Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 2005, 42(1-5): 1-31. doi: 10.1016/j.jafrearsci.2005.08.006
[61] Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of petrology, 1995, 36(4): 891-931. doi: 10.1093/petrology/36.4.891
[62] Roberts M P, Clemens J D. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21, 825-828.
[63] Roberts M P, Pin C, Clemens J D, et al. Petrogenesis of mafific to felsic plutonic rock associations: the Calc-alkaline Querigut Complex, French Pyrenees[J]. Journal of Petrology, 2000, 41, 809–844.
[64] Rolland Y, Galoyan G, Bosch D, Sosson M, Corsini M, Fornari M, Verati C. Jurassic back-arc and Cretaceous hot-spot series in the Armenian ophiolites: implications for the obduction process[J]. Lithos, 2009, 112, 163-187. doi: 10.1016/j.lithos.2009.02.006
[65] Rudnick R L, Gao S. Composition of the continental crust[J]. In, Rudnick R L, Holland H D, Turekian K K, eds.Treatise on Geochemistry[M]. Elsevier-Pergamon, Oxford, 2003: 1−64.
[66] Scherer, E. , Munker, C. , Mezger, K. , Calibration of the lutetium-hafnium clock[J]. Science, 2001, 293, 683-687. doi: 10.1126/science.1061372
[67] Selley D, Broughton D, Scott R J, Hitzman M, Bull S W, Large R R, Pollington N. A new look at the geology of the Zambian Copperbelt[J]. Economic Geology, 2005, 100: 965-1000.
[68] Shaw A, Downes H, Thirlwall M F. The quartz-diorites of Limousin: elemental and isotopic evidence for Devono-Carboniferous subduction in the Hercynian belt of the French Massif Central[J]. Chemical Geology, 1993, 107(1-2): 1-18. doi: 10.1016/0009-2541(93)90098-4
[69] Smithies R H, Champion D C. 2000. The Archaean high-Mg diorite suite: links to tonalite–trondhjemite–granodiorite magmatism and implications for early Archaean crustal growth. Journal of Petrology, 41, 1653–1671. doi: 10.1093/petrology/41.12.1653
[70] Stein M, Hofmann A W. Mantle plumes and episodic crustal growth[J]. Nature, 1994, 372, 63–68. doi: 10.1038/372063a0
[71] Stern R A, Hanson G N. Archean high-Mg granodiorite-a derivative of light rare-earth element-enriched monzodiorite of mantle origin. Journal of Petrology, 1991, 32, 201–238.
[72] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[73] Tatsumi Y. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures[J]. Earth and Planetary Science Letters, 1982, 60(2): 305-317. doi: 10.1016/0012-821X(82)90009-7
[74] Tembo F, Kampunzu A B, Porada H. Tholeiitic magmatism associated with continental rifting in the Lufilian Fold Belt of Zambia[J]. Journal of African Earth Sciences, 1999, 28(2): 403-425. doi: 10.1016/S0899-5362(99)00012-3
[75] Unrug R. The Lufilian Arc: a microplate in the Pan-African collision zone of the Congo and the Kalahari cratons[J]. Precambrian Research, 1983, 21(3-4): 181-196. doi: 10.1016/0301-9268(83)90040-2
[76] Vielzeuf D, Clemens J D, Pin C, et al. Granites, granulites, and crustal differentiation[J]. In: Vielzeuf D, Vidal P, eds. Granulites and Crustal Evolution[M]. Kluwer, Dordrecht, 1990: 59–85.
[77] Vinyu M L, Hanson R E, Martin M W, Bowring S A, Jelsma H A, Krol M A, Dirks P H G M. U-Pb and 40Ar/39Ar geochronological constraints on the tectonic evolution of the easternmost part of the Zambezi orogenic belt, northeast Zimbabwe[J]. Precambrian Research, 1999, 98(1-2): 67-82. doi: 10.1016/S0301-9268(99)00039-X
[78] Wang Q, McDermott F, Xu J, Bellon H, Zhu Y T. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting[J]. Geology, 2005, 33(6): 465-468. doi: 10.1130/G21522.1
[79] Wang Y J, Zhang A M, Fan W M, Zhang Y H, Zhang Y Z. Origin of paleosubduction-modifified mantle for Silurian gabbro in the Cathaysia block: geochronological and geochemical evidence[J]. Lithos, 2013, 160, 37-54.
[80] Watters W A. Diorite and associated intrusive and metamorphic rocks between Port William and Paterson Inlet, Stewart Island, and on Ruapuke Island[J]. New Zealand journal of geology and geophysics, 1978, 21(4): 423-442. doi: 10.1080/00288306.1978.10424067
[81] Wright J B. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis[J]. Geological Magazine, 1969, 106(4): 370-384. doi: 10.1017/S0016756800058222
[82] Yuan, H. L. , Gao, S. , Liu, X. M. , Li, H. M. , 2004. Accurate U-Pb age and trace element determination of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research, 28, (3), 353-370. doi: 10.1111/j.1751-908X.2004.tb00755.x
[83] Zhao J H, Zhou M F, Zheng J P, Fang S M. Neoproterozoic crustal growth and reworking of the Northwestern Yangtze Block: constraints from the Xixiang dioritic intrusion, South China[J]. Lithos, 2010, 120(3-4): 439-452. doi: 10.1016/j.lithos.2010.09.005
[84] Zhou Y, Liang X, Liang X, Jiang Y, Wang C, Fu J G, Shao T B. U–Pb geochronology and Hf-isotopes on detrital zircons of Lower Paleozoic strata from Hainan Island: new clues for the early crustal evolution of southeastern South China[J]. Gondwana Research, 2015, 27(4): 1586-1598. doi: 10.1016/j.gr.2014.01.015
-