Research Status and Prospect of Ecosystem Response Mechanism to Coal Mining in Ordos Basin
-
摘要:
煤炭开采在为国家能源安全做出重大贡献的同时也产生了严重的矿山环境问题,煤炭作为中国主体能源的局面短期内难以扭转,煤炭采动的生态系统响应机制与生态修复技术已经成为人与自然和谐共生的现代化建设中迫切需要解决的关键科技问题。笔者以国家大型能源基地鄂尔多斯盆地北部侏罗系煤田为研究区,在检索和分析大量文献资料的基础上,将煤炭开采的生态系统响应机制与生态修复关键技术按照地质环境、水环境、植被生态环境3个方面归纳总结研究进展,分析凝练目前仍存在的关键科技问题,并从多因素耦合作用下的生态系统响应机制与演化规律、生态问题快速智能识别与风险防控关键技术、人与自然和谐共生的现代化实现模式与路径等3个方面提出了进一步研究建议。
Abstract:While coal mining has made significant contributions to national energy security, it has also caused serious mining environmental problems. The situation of coal as the main energy source in China is difficult to reverse in the short term. The ecological response mechanism and technologies for ecological restoration caused by coal mining have become key technological issues that urgently need to be solved in the path of harmonious coexistence between humans and nature. This article takes the Jurassic coalfield in the northern part of the Ordos basin, a national large−scale energy base, as the research area. Based on the search and analysis of a large amount of literature, the ecological response mechanism and key ecological restoration technologies of coal mining are summarized in three aspects: geological environment, water environment, and vegetation ecological environment. The key scientific and technological issues that still exist are analyzed and condensed. Further research suggestions were proposed from three aspects: the response mechanism and evolution law of the ecosystem under the coupling of multiple factors, key technologies for rapid and intelligent identification of ecological problems and risk prevention and control, and the implementation pattern and path of harmonious coexistence between humans and nature.
-
图 1 榆林市矿区覆岩厚度分布以及冒裂区和弯曲变形区界线图(据张茂省等,2014)
Figure 1.
图 2 榆林市采煤对地下水影响区划图与近期煤炭资源开发规划图(据张茂省等,2014)
Figure 2.
图 3 林海煤矿突水后地下水位下降对植被生态影响水文地质剖面图(据 张茂省等,2014)
Figure 3.
-
[1] 毕银丽, 刘涛. 露天矿区植被协同演变多源数据时序分析——以准格尔矿区为例[J]. 煤炭科学技术, 2022, 50(01): 293-302
BI Yinli, LIU Tao. Time series analysis of multi-source data on vegetation co evolution in open pit mining areas: A case study of Jungar mining area [J]. Coal Science and Technology, 2022, 50 (01): 293-302.
[2] 毕银丽, 彭苏萍, 杜善周. 西部干旱半干旱露天煤矿生态重构技术难点及发展方向[J]. 煤炭学报, 2021, 46(05): 1355-1364 doi: 10.13225/j.cnki.jccs.st21.0707
BI Yinli, PENG Suping, DU Shanzhou. Technical difficulties and development direction of ecological reconstruction in arid and semi-arid open pit coal mines in western China [J]. Journal of Coal Industry, 2021, 46 (05): 1355-1364. doi: 10.13225/j.cnki.jccs.st21.0707
[3] 蔡怀恩. 彬长矿区地面塌陷特征及形成机理研究[D]. 西安: 西安科技大学, 2008
CAI Huaien. Study on the characteristics and formation mechanism of ground subsidence in Binchang mining area [D]. Xi’an: Xi’an University of Science and Technology, 2008.
[4] 陈旭. 遥感解译分析矿山开发对生态环境的影响[J]. 资源调查与环境, 2004(01): 13-17
CHEN Xu. Remote Sensing Interpretation and Analysis of the Impact of Mine Development on the Ecological Environment [J]. Resource Survey and Environment, 2004 (01): 13-17.
[5] 杜荣军. 大保当煤矿区潜水流场对采煤扰动的响应研究[D]. 西安: 西安科技大学, 2012
DU Rongjun. Study on the Response of Groundwater Flow Field to Coal Mining Disturbance in Dabaodang Coal Mine Area[D]. Xi’an: Xi’an University of Science and Technology, 2012
[6] 范立民, 马雄德. 保水采煤的理论与实践[M]. 北京: 科学出版社, 2019.
[7] 冯军发, 周英, 张开智等. 浅埋近距离多煤层采空区下厚关键层破断特征及支架工作阻力确定[J]. 采矿与安全工程学报, 2018, 35(02): 332-338
FENG Junfa, ZHOU Ying, ZHANG Kaizhi, et al. Fracture characteristics of thick key layers and determination of support working resistance in shallow and close distance multi seam goafs [J]. Journal of Mining and Safety Engineering, 2018, 35 (02): 332-338.
[8] 付战勇, 马一丁, 罗明, 陆兆华. 生态保护与修复理论和技术国外研究进展. 生态学报, 2019, 39(23): 9008-9021
FU Zhanyong, MA Yiding, LUO Ming, LU Zhaohua. Research progress in ecological protection and restoration theory and technology abroad Journal of Ecology, 2019, 39 (23): 9008-9021.
[9] 郭洋楠, 包玉英. 晋陕蒙生态脆弱区采煤沉陷地生态治理技术研究[J]. 煤炭科学技术, 2017, 45(S2): 4-7
GUO Yangnan, BAO Yuying. Research on ecological governance technology for coal mining subsidence in ecologically fragile areas in Shanxi, Shaanxi, and Inner Mongolia [J]. Coal Science and Technology, 2017, 45 (S2): 4-7.
[10] 侯恩科, 谢晓深, 冯栋等. 浅埋煤层开采地面塌陷裂缝规律及防治方法[J]. 煤田地质与勘探, 2022, 50(12): 30-40 doi: 10.12363/issn.1001-1986.22.05.0427
HOU Enke, XIE Xiaoshen, FENG Dong, et al. Regularity and prevention methods of ground subsidence cracks in shallow coal seam mining [J]. Coal Field Geology and Exploration, 2022, 50 (12): 30-40. doi: 10.12363/issn.1001-1986.22.05.0427
[11] 侯恩科, 谢晓深, 王双明等. 中深埋厚煤层开采地下水位动态变化规律及形成机制[J]. 煤炭学报, 2021, 46(05): 1404-1416
HOU Enke, XIE Xiaoshen, WANG Shuangming, et al. Dynamic variation and formation mechanism of underground water level during mining of moderately deep thick coal seams [J]. Journal of Coal Science, 2021, 46 (05): 1404-1416.
[12] 侯光才, 张茂省, 刘方. 鄂尔多斯盆地地下水勘查研究[M]. 北京: 地质出版社, 2008.
[13] 黄庆享. 浅埋煤层的矿压特征与浅埋煤层定义[M]. 北京: 科学出版社, 2018.
[14] 黄艳利, 郭亚超, 齐文跃, 李俊孟, 王佳奇, 欧阳神央, 吴来伟. 西部典型生态脆弱矿区采损地表植被盖度演化规律与退化机制[J]. 煤炭学报, 2022, 47(12): 4217-4227
HUANG Yanli, GUO Yachao, QI Wenyue, LI Junmeng, WANG Jiaqi, OUYANG Shenyang, WU Laiwei. Evolution and Degradation Mechanism of Surface Vegetation Coverage in Typical Ecological Vulnerable Mining Areas in the West [J]. Journal of Coal Industry, 2022, 47 (12): 4217-4227.
[15] 焦养泉, 王双明, 范立民等. 鄂尔多斯盆地侏罗纪含煤岩系地下水系统关键要素与格架模型[J]. 煤炭学报, 2020, 45(07): 2411-2422
JIAO Yangquan, WANG Shuangming, FAN Limin, et al. Key Elements and Framework Model of Groundwater System in Jurassic Coal-bearing Rocks in the Ordos Basin [J]. Journal of Coal Science, 2020, 45 (07): 2411-2422.
[16] 雷利卿, 岳燕珍, 孙九林等. 遥感技术在矿区环境污染监测中的应用研究[J]. 环境保护, 2002(02): 33-36 doi: 10.3969/j.issn.0253-9705.2002.02.011
LEI Liqing, YUE Yanzhen, SUN Jiulin, et al. Application of remote sensing technology in environmental pollution monitoring in mining areas [J]. Environmental Protection, 2002 (02): 33-36. doi: 10.3969/j.issn.0253-9705.2002.02.011
[17] 李全生, 李晓斌, 张凯等. 基于“空天地”一体化技术的岩层采动损伤监测与应用[J]. 煤炭学报, 2023, 48(01): 402-413
LI Quansheng, LI Xiaobin, ZHANG Kai, et al. Monitoring and application of mining damage in rock strata based on the "sky sky" integrated technology [J]. Journal of Coal Industry, 2023, 48 (01): 402-413.
[18] 李晓婷, 杨丽帆, 邹友峰等. 采煤胁迫下干旱区植被生长周期红边指数动态变化[J]. 煤炭学报, 2021, 46(05): 1508-1520 doi: 10.13225/j.cnki.jccs.st21.0186
LI Xiaoting, YANG Lifan, ZOU Youfeng, et al. Dynamic change of red edge index of vegetation growth cycle in arid areas under coal mining stress [J]. Journal of Coal Science, 2021, 46 (05): 1508-1520. doi: 10.13225/j.cnki.jccs.st21.0186
[19] 刘瑞瑞, 刘洋, 方刚等. 袁大滩煤矿覆岩破坏规律及顶板水害防治对策[J]. 煤矿安全, 2022, 53(07): 82-91
LIU Ruirui, LIU Yang, FANG Gang, et al. Law of overburden damage and countermeasures for roof water damage in Yuandatan Coal Mine [J]. Coal Mine Safety, 2022, 53 (07): 82-91.
[20] 刘伟,尹勤瑞,刘祥宏.煤矿区生态自然修复及其人工促进模式探讨[J/OL].煤田地质与勘探, 2023:1–14.
LIU Wei, YIN Qinrui, LIU Xianghong. Discussion on the ecological and natural restoration and artificial promotion model in coal mining areas [J/OL]. Coal Field Geology and Exploration, 2023: 1–14.
[21] 刘英,雷少刚,李心慧, 等.干旱矿区植被引导型修复中干旱阈值的生态机制[J/OL].煤炭学报, 2023:1-19.
LIU Ying, LEI Shaogang, LI Xinhui, et al. Ecological mechanism of drought threshold in vegetation guided restoration in arid mining areas [J/OL]. Journal of Coal Industry, 2023: 1–19
[22] 钱鸣高, 许家林, 缪协兴. 煤矿绿色开采技术的研究与实践[J]. 能源技术与管理, 2004(04): 1-4 doi: 10.3969/j.issn.1672-9943-B.2004.01.002
QIAN Minggao, XU Jialin, MIAO Xiexing. Study and application of the green mining technology[J]. Energy Technology and Management, 2004 (04): 1-4. doi: 10.3969/j.issn.1672-9943-B.2004.01.002
[23] 乔玉良, 连胤卓, 邬明权. 基于遥感与GIS数据融合的煤矿资源开发动态分析[J]. 煤炭学报, 2008, No. 168(09): 1020-1024 doi: 10.3321/j.issn:0253-9993.2008.09.013
QIAO Yuliang, LIAN Yinzhuo, WU Mingquan. Dynamic analysis of coal resource development based on remote sensing and GIS data fusion [J]. Journal of Coal Industry, 2008, No. 168 (09): 1020-1024. doi: 10.3321/j.issn:0253-9993.2008.09.013
[24] 师本强. 陕北浅埋煤层矿区保水开采影响因素研究[D]. 西安: 西安科技大学, 2012
SHI Benqiang. Research on the influencing factors of water conservation mining in shallow coal seam mining areas in northern Shaanxi [D].Xi’an: Xi’an University of Science and Technology, 2012.
[25] 孙亚军, 张莉, 徐智敏等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展[J]. 煤炭学报, 2022, 47(01): 423-437 doi: 10.13225/j.cnki.jccs.YG21.1937
SUN Yajun, ZHANG Li, XU Zhimin, et al. Multifield interaction mechanism and research progress on the formation and evolution of mine water quality in coal mining areas [J]. Journal of Coal Industry, 2022, 47 (01): 423-437. doi: 10.13225/j.cnki.jccs.YG21.1937
[26] 王家臣, 许家林, 杨胜利等. 煤矿采场岩层运动与控制研究进展——纪念钱鸣高院士“砌体梁”理论40年[J]. 煤炭科学技术, 2023, 51(01): 80-94 doi: 10.13199/j.cnki.cst.2022-2071
WANG Jiachen, XU Jialin, YANG Shengli, et al. Progress in research on strata movement and control in coal mining stopes - Commemoration of Academician Qian Minggao's 40 years of "masonry beam" theory [J]. Coal Science and Technology, 2023, 51 (01): 80-94. doi: 10.13199/j.cnki.cst.2022-2071
[27] 王金安, 尚新春, 刘红等. 采空区坚硬顶板破断机理与灾变塌陷研究[J]. 煤炭学报, 2008, No. 167(08): 850-855 doi: 10.13225/j.cnki.jccs.2008.08.004
WANG Jin'an, SHANG Xinchun, LIU Hong, et al. Study on the fracture mechanism and catastrophic collapse of hard roof in goaf [J]. Journal of Coal Industry, 2008, No. 167 (08): 850-855. doi: 10.13225/j.cnki.jccs.2008.08.004
[28] 王金安, 赵志宏, 侯志鹰. 浅埋坚硬覆岩下开采地表塌陷机理研究[J]. 煤炭学报, 2007, No. 157(10): 1051-1056 doi: 10.3321/j.issn:0253-9993.2007.10.010
WANG Jin'an, ZHAO Zhihong, HOU Zhiying. Study on the mechanism of surface subsidence during mining under shallow hard overburden [J]. Journal of Coal Industry, 2007, No. 157 (10): 1051-1056. doi: 10.3321/j.issn:0253-9993.2007.10.010
[29] 王珊珊, 季民, 胡瑞林等. 基于InSAR-GIS的矿区地面沉降动态分析平台的实现与应用[J]. 煤炭学报, 2012, 37(S2): 307-312 doi: 10.13225/j.cnki.jccs.2012.s2.036
WANG Shanshan, JI Min, HU Ruilin, et al. Implementation and application of InSAR GIS based dynamic analysis platform for land subsidence in mining areas [J]. Journal of Coal Industry, 2012, 37 (S2): 307-312. doi: 10.13225/j.cnki.jccs.2012.s2.036
[30] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017, 42(01): 17-26 doi: 10.13225/j.cnki.jccs.2016.5041
WANG Shuangming, DU Huadong, WANG Shengquan. Analysis of soil and vegetation damage process and mechanism in coal mining subsidence area in northern Shenmu [J]. Journal of Coal Industry, 2017, 42 (01): 17-26. doi: 10.13225/j.cnki.jccs.2016.5041
[31] 王双明, 黄庆享, 范立民, 等. 生态脆弱区煤炭开发与生态水位保护[M]. 北京: 科学出版社, 2010.
[32] 王小燕, 王丽云, 马宁. 神东矿区植被覆盖和土壤侵蚀时空动态分析[J]. 人民黄河, 2022, 44(05): 124-127 doi: 10.3969/j.issn.1000-1379.2022.05.025
WANG Xiaoyan, WANG Liyun, MA Ning. Spatial and temporal dynamic analysis of vegetation cover and soil erosion in Shendong mining area [J]. People's Yellow River, 2022, 44 (05): 124-127. doi: 10.3969/j.issn.1000-1379.2022.05.025
[33] 吴侃, 胡振琪, 常江, 葛家新. 开采引起的地表裂缝分布规律[J]. 中国矿业大学学报, 1997a(02): 56-59
WU Kan, HU Zhenqi, CHANG Jiang, GE Jiaxin. Distribution of surface fractures caused by mining [J]. Journal of China University of Mining and Technology, 1997 (02): 56-59.
[34] 吴侃, 李亮, 敖建锋等. 开采沉陷引起地表土体裂缝极限深度探讨[J]. 煤炭科学技术, 2010, 38(06): 108-111+103 doi: 10.13199/j.cst.2010.06.109.wuk.024
WU Kan, LI Liang, AO Jianfeng, et al. Discussion on the limit depth of surface soil cracks caused by mining subsidence [J]. Coal Science and Technology, 2010, 38 (06): 108-111+103. doi: 10.13199/j.cst.2010.06.109.wuk.024
[35] 吴侃, 周鸣, 胡振琪. 开采引起的地表裂缝深度和宽度预计[J]. 阜新矿业学院学报(自然科学版), 1997b(06): 649-652
WU Kan, ZHOU Ming, HU Zhenqi. Prediction of the depth and width of surface fractures caused by mining [J]. Journal of Fuxin Mining Institute (Natural Science Edition), 1997 (06): 649-652.
[36] 吴秦豫, 姚喜军, 梁洁等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境, 2022, 36(08): 101-109 doi: 10.13448/j.cnki.jalre.2022.205
WU Qinyu, YAO Xijun, LIANG Jie, et al. The spatiotemporal intensity of vegetation cover improvement and degradation effects in coal mining areas of Ordos City [J]. Resources and Environment in Arid Areas, 2022, 36 (08): 101-109. doi: 10.13448/j.cnki.jalre.2022.205
[37] 席莎. 内蒙古自治区煤炭矿区地面塌陷严重程度分析[D]. 北京:中国地质大学, 2012
XI Sha. Analysis on the severity of ground subsidence in coal mining areas in Inner Mongolia Autonomous Region [D]. Beijing: China University of Geosciences , 2012.
[38] 许强, 董秀军, 李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版), 2019, 44(07): 957-966
XU Qiang, DONG Xiujun, LI Weile. Early identification, monitoring and early warning of major geological hazards based on the integration of sky, air, and earth [J]. Journal of Wuhan University (Information Science Edition), 2019, 44 (07): 957-966.
[39] 杨达明. 厚煤层高强度开采覆岩“两带”特征及形成机制研究[D]. 焦作: 河南理工大学, 2019
YANG Daming. Study on the characteristics and formation mechanism of "two zones" of overlying rock during high-strength mining in thick coal seams [D]. Jiaozuo: Henan University of Technology, 2019.
[40] 杨治林, 余学义. 浅埋煤层长壁开采顶板岩层的后屈曲性态[J]. 煤炭学报, 2007, No. 151(04): 337-340 doi: 10.3321/j.issn:0253-9993.2007.04.001
YANG Zhilin, YU Xueyi. Postbuckling behavior of roof strata in shallow seam longwall mining [J]. Journal of Coal Industry, 2007, No. 151 (04): 337-340. doi: 10.3321/j.issn:0253-9993.2007.04.001
[41] 张凯, 李全生, 戴华阳等. 矿区地表移动“空天地”一体化监测技术研究[J]. 煤炭科学技术, 2020, 48(02): 207-213
ZHANG Kai, LI Quansheng, DAI Huayang, et al. Research on the "sky sky sky" integrated monitoring technology for surface movement in mining areas [J]. Coal Science and Technology, 2020, 48 (02): 207-213.
[42] 张茂省, 党学亚, 等. 干旱半干旱地区水资源及其环境问题——陕北榆林能源化工基地例析[M]. 北京: 科学出版社, 2014.
[43] 张茂省, 董英, 杜荣军等. 陕北能源化工基地采煤对地下水资源的影响及对策[J]. 地学前缘, 2010, 17(06): 235-246
ZHANG Maosheng, DONG Ying, DU Rongjun, et al. The impact of coal mining in the energy and chemical industry base in northern Shaanxi on groundwater resources and countermeasures [J]. Geoscience Frontier, 2010, 17 (06): 235-246.
[44] 张茂省, 卢娜. 植被生态对气候变化和人类活动的响应——以陕西省榆林能源化工基地为例[J]. 地质论评, 2013, 59(05): 909-918
ZHANG Maosheng, LU Na. Response of vegetation ecology to climate change and human activities: A case study of Yulin Energy and Chemical Industry Base in Shaanxi Province [J]. Geological Review, 2013, 59 (05): 909-918.
[45] 张茂省, 卢娜, 陈劲松. 陕北能源化工基地地下水开发的植被生态效应及对策[J]. 地质通报, 2008, 159(08): 1299-1312 doi: 10.3969/j.issn.1671-2552.2008.08.029
ZHANG Maosheng, LU Na, CHEN Jinsong. Ecological Effects of Vegetation and Countermeasures for Groundwater Development in Energy and Chemical Industry Base in Northern Shaanxi [J]. Geological Bulletin, 2008, No. 159 (08): 1299-1312. doi: 10.3969/j.issn.1671-2552.2008.08.029
[46] Venkataraman G, Kumar P S, Ratha S D, et al. Open cast mine monitoring and environmental impact studies through remote sensing - a case study from Goa, India[J]. Geocarto International, 1997, 12(2): 39–53.