Theoretical Analysis and Practical Exploration on Ecological Restoration of Mines with Multi-source Solid Wastes: Example from Yulin City, Shaanxi Province
-
摘要:
矿山环境修复治理与固体废弃物综合利用均是北方能源富集区亟待解决的生态问题。笔者基于“理论解析−案例研究−协同治理”的思路,以陕西榆林市为例,在系统分析工业固废与矿山生态受损现状的基础上,全面解析煤基固废协同修复矿山生态的政策优势、技术可行性及市场潜力,并提出基于固废结构、营养和环境功能改性制备土壤调理剂的路径技术。通过将土壤调理剂应用于风沙地治理、盐碱地改良和露天煤矿排土场土壤生态修复实践,发现施用土壤调理剂后风沙地、盐碱地和排土场土壤养分含量显著增加,植物生物量平均增幅分别为50.3%、36.0%和39.9%。研究成果为北方能源型城市煤基固废协同修复矿山土壤生态提供科学支撑。
Abstract:Mine environmental restoration and the comprehensive utilization of solid waste are two ecological issues that are highly concerned by the whole society at present. Based on the idea of "theoretical analysis−case study−collaborative governance", taking Yulin, Shaanxi Province as an example, this paper comprehensively analyzes the policy advantages, technical feasibility and market potential of multi-source solid waste collaborative mine ecological restoration on the basis of systematic analysis of the current situation of industrial solid waste and mine ecological restoration. Secondly, based on the multi-source solid waste modification of structure, nutrition and environmental function, a soil conditioner was prepared. Finally, through the practical exploration of applying soil conditioner to sand treatment, saline alkali land improvement and soil ecological restoration of mine waste dump, it is found that the average increase of above−ground biomass of plants in sand land, saline alkali land and waste dump after applying soil conditioner is 50.3%, 36.0% and 39.9% respectively. The present manuscript may provide scientific support for the coordinated ecological restoration of multi-source solid wastes in northern energy cities.
-
Key words:
- coal based solid waste /
- ecological restoration /
- soil conditioner /
- analysis
-
-
表 1 典型煤基固废营养元素及重金属含量表
Table 1. Nutrient elements and heavy metal content of typical coal-based solid waste
名 称 有机质(g/kg) 碱解氮(mg/kg) 速效磷(mg/kg) SiO2(%) Al2O3(%) Fe2O3(%) CaO(%) MgO(%) K2O(%) 粉煤灰 14.2 8.5 92.8 61.81 21.51 7.39 1.72 1.39 2.69 煤矸石 6.81 9.3 76.9 59.22 29.72 1.58 0.26 0.68 1.55 名称 Cr(mg/kg) Ni(mg/kg) Cu(mg/kg) Zn(mg/kg) Se(mg/kg) Cd(mg/kg) Pb(mg/kg) Hg(mg/kg) – 粉煤灰 22.3 14.2 4.5 60.0 12.7 0.36 10.2 0.03 – 煤矸石 42.5 23.9 34.0 45.2 3.7 0.34 15.8 0.03 – 国家标准① 250 220 100 300 25 0.6 170 3.4 – 注:①采用农用地土壤污染风险管控标准(试行)(GB15618-2018)。 表 2 煤基固废用于生态修复的技术及实例表
Table 2. Technology and examples of coal based solid waste used for ecological restoration
固废种类 立地条件 实施地点 主要内容 研究机构 粉煤灰 盐碱土 山东滨州市 耐盐菌复配工业固体废弃物改良盐碱土 南京农业大学(王悦等,2023) 赤红壤 华南某地 复合土壤调理剂修复土壤镉(Cd)污染 广东省地质检测试验中心(曹鹏等,2023) 砂土 银川市 粉煤灰配施有机肥改良风沙土 宁夏大学(田超,2022) 煤矸石 矸石 辽宁阜新市 微生物菌剂混施对煤矸石及苜蓿的影响 辽宁工程技术大学(孔涛等,2023) 褐土 北京市 煤矸石复配玉米秸秆、聚丙烯酰胺对植被生长及重金属的影响 北京林业大学(张汝翀等,2018) 沙土 呼和浩特市 煤矸石与城市污泥混合制备植生基质 北京林业大学(秦琪焜等,2022) 表 3 试验地土壤和土壤调理剂的基本性质表
Table 3. Basic properties of soil and soil conditioner in the test site
指标 风沙地 盐碱地 排土场 土壤调理剂 黄绵土背景值① 国家标准/GB15618-2018② 有机质(g/kg) 2.72 7.44 5.1 22.60 – – 有效氮(mg/kg) 9.65 28.25 18.07 48.28 – – 速效磷(mg/kg) 7.15 11.2 14.5 1689 – – 速效钾(mg/kg) 1.57 82.8 69.99 125 – – 含盐量(g/kg) 0.55 2.4 0.47 0.70 – – pH 8.64 9.11 8.19 7.73 – – Cr(mg/kg) 21 12 24 39 65.10 250.00 Ni(mg/kg) 16 18 19 23 27.6 190.00 Cu(mg/kg) 6 9 7 70 18.90 100.00 Zn(mg/kg) 26 32 31 190 65.60 300.00 As(mg/kg) 0.79 1.03 1.98 4.77 11.40 25.0 Cd(mg/kg) 0.01 0.05 0.03 ND – 0.60 Hg(mg/kg) 0.08 0.07 0.06 0.09 – 3.40 注:①引自《黄土高原土壤地球化学》;②《土壤环境质量农用地土壤污染风险管控标准(试行)》。 表 4 典型立地条件不同处理土壤理化性质变化表
Table 4. Changes in soil physicochemical properties under typical site conditions
立地条件 指标 处理 CK SD-T1/SA-T1 SD-T2/SA-T2 风沙地 有机质(g/kg) 2.45±0.12c 2.96±0.24b 2.66±0.10b 3.33±0.16a 有效氮(mg/kg) 16.20±0.81d 24.6±1.23c 28.3±1.42b 34.3±1.72a 速效磷(mg/kg) 17.6±0.88c 19.0±0.95c 28.30±1.42b 33.40±1.67a 速效钾(mg/kg) 58.00±2.9b 84.10±4.21a 89.80±4.07a 89.90±4.57a pH 8.54±0.06a 8.47±0.11a 8.45±0.10a 8.42±0.14a 盐碱地 有机质(g/kg) 10.21±0.24d 14.26±0.38a 13.55±0.10b 12.03±0.16c 有效氮(mg/kg) 17.44±0.03d 22.45±0.12c 28.43±0.20a 27.87±0.15b 速效磷(mg/kg) 34.97±0.33b 38.82±0.96a 37.54±0.32a 38.50±1.28a 速效钾(mg/kg) 119.80±0.51a 106.12±0.34d 110.55±0.14b 107.18±0.45c pH 8.56±0.06b 8.97±0.11a 8.15±0.10c 8.49±0.14b 排土场 有机质(g/kg) 5.10±0.53b 6.12±0.82a – – 有效氮(mg/kg) 18.07±1.22b 33.62±3.23a – -- 速效磷(mg/kg) 14.50±1.03b 22.8±1.02a – – 速效钾(mg/kg) 69.99±2.25a 72.8±2.31a – -- pH 8.19±0.11a 8.01±0.09a – – 注:不同字母表示差异显著(P<0.05)。 -
[1] 艾锋,张生,李强,等.蚯蚓肥复配土壤调理剂对盐碱地土壤性质及中科羊草生长的影响[J].山西农业科学,2023,51(05):531-538.
AI Feng, ZHANG Sheng, LI Qiang, et al. Effects of Earthworm Fertilizer Mixed with Soil Conditioner on Soil Properties in Saline Alkali Land and the Growth of Leymus Chinensis[J]. Journal of Shanxi Agricultural Sciences,2023,51(05):531-538.
[2] 白中科, 王文英. 黄土区大型露天煤矿剧烈扰动土地生态重建研究[J]. 应用生态学报, 1998, 9(6): 621–626.
BAI Zhongke, WANG Wenying. Ecological Rehabilitation of Drastically Disturbed Land at Large Opencut Coal Mine in Loess Area [J] Journal of Applied Ecology, 1998, 9 (6): 621– 626.
[3] 卞正富, 于昊辰, 侯竟, 等. 西部重点煤矿区土地退化的影响因素及其评估[J]. 煤炭学报, 2020, 45(1): 338–350 doi: 10.13225/j.cnki.jccs.YG19.1722
BIAN Zhengfu, YU Haochen, HOU Jing, et al. Influencing Factors and Evaluation of Land Degradation of 12 Coal Mine Areas in Western China [J]. Journal of Coal Industry, 2020, 45 (1): 338–350. doi: 10.13225/j.cnki.jccs.YG19.1722
[4] 曹馨, 梁希超, 钱媛, 等. 多源煤基固废协同共生利用的环境效益研究综述[J]. 福建师范大学学报(自然科学版), 2022, 38(4): 32-38
CAO Xin, LIANG Xichao, QIAN Yuan, et al. A Review of Research on Environmental Benefits of Multi-Source Solid Waste SymbioticUtilization [J]. Journal of Fujian Normal University (Natural Science Edition), 2022, 38 (4): 32-38.
[5] 曹鹏, 陈亚刚, 焦洪鹏, 等.一种复合土壤调理剂的制备及其镉(Cd)污染农田修复效果[J/OL].环境保护科学, 2023: 1–10. https://doi.org/10.16803/j.cnki.issn.1004-6216.202210038.
CAO Peng, CHEN Yagang, JIAO Hongpeng, et al. Preparation of a Composite Soil Conditioner and its Effect on Remediation of Cd-Contaminateo farmlsand [J/OL]. Environmental Protectio Science, 2023: 1–10. https://doi.org/10.16803/j.cnki.issn.1004-6216.202210038.
[6] 关冰, 吕林有, 赵艳, 等. 多源固废协同利用沙地生态治理的可行性探讨[J]. 水土保持应用技术, 2022(6): 4-6 doi: 10.3969/j.issn.1673-5366.2022.06.02
GUAN Bing, LV Linyou, ZHAO Yan, et al. Discussion on the Feasibility of Ecological Control of Sandy Land by the Coordinated Utilization of Multi-Source Solid Wastes[J]. Application Technology of Water and Soil Conservation, 2022 (6): 4-6. doi: 10.3969/j.issn.1673-5366.2022.06.02
[7] 郭莹莹. 固废与微生物菌剂复合措施对矿区植物生长与土壤改良的效应研究[D]. 阜新: 辽宁工程技术大学, 2022
GUO Yingying. Effects of Combined Measures of Solid Waste and Microbial Agent on Plant Growth and Soil Improvement in Mining Area [D]. Fuxin: University of Engineering and Technology, 2022.
[8] 胡振琪. 我国土地复垦与生态修复30年: 回顾、反思与展望[J]. 煤炭科学技术, 2019, 47(1): 25–35.
HU Zhenqi. 30 years of Land Reclamation and Ecological Restoration in China: Review, Reflection and Prospect [J]. Coal Science and Technology, 2019, 47 (1): 25 – 35.
[9] 李国政. 新时代矿山地质修复模式的升级与重塑: 基于“地质修复3.0”的概念分析[J]. 西北地质, 2019, 52(4): 270-278 doi: 10.3969/j.issn.1009-6248.2019.04.022
LI Guozheng. Upgrading and Reshaping of Mine Geological Restoration Model in the New Era: Conceptual Analysis Based on "Geological Restoration 3.0" [J]. Northwest Geology, 2019, 52 (4): 270-278. doi: 10.3969/j.issn.1009-6248.2019.04.022
[10] 李强, 艾锋, 柳永兵, 等.气化渣复配沙土对苜蓿生长及其越冬返青的影响[J].榆林学院学报,2023,33(02):34-37+46.
LI Qiang, AI Feng, LIU Yongbing, et al. Effects of Gasification Slag Mixed with Sandy Soil on the Growth of Alfalfa and Its Green after Winter[J]. Journal of Yulin College,2023,33(02):34-37+46.
[11] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845 doi: 10.13225/j.cnki.jccs.2021.0739
LIU Lang, RUAN Shishan, FANG Zhiyu, et al. Modification of Magnesium Slag and its Application in Mine Filling Field [J]. Coal Journal, 2021, 46 (12): 3833-3845. doi: 10.13225/j.cnki.jccs.2021.0739
[12] 刘艳丽, 李强, 陈占飞等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术, 2022, 50(11): 251-257 doi: 10.13199/j.cnki.cst.2021-0171
LIU Yanli, LI Qiang, CHEN Zhanfei, et al. Research Progress Characteristics Analysis and Comprehensive Utilization of Coal Gasification Slag [J]. Coal Science and Technology, 2022, 50(11): 251-257. doi: 10.13199/j.cnki.cst.2021-0171
[13] 马淑花, 王晓辉, 王月娇, 等. 《用于生态修复的粉煤灰(T/CACE 028—2021)》[S].北京:中国循环经济协会, 2021-04-20.
MA Shuhua, WANG Xiaohui, WANG Yuejiao, et al. Fly Ash for Ecological Restoration (T/CACE 028-2021)[S]. Beijing:China Circular Economy Association, Published on April 20th, 2021.
[14] 孙艺香. 基于国土空间规划视域下的工矿城镇发展模式—以陕北煤炭资源集中开采区为例[J]西北地质, 2021, 54(1): 247-255
SUN Yixiang. Analysis on Development Modes of Mining and Industrial Towns in Northern Shaanxi Province: A National Spatial Planning Perspective [J]. Northwest Geology, 2021, 54 (1): 247-255.
[15] 秦琪焜, 方健梅, 王根柱等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术, 2022, 50(7): 304-314
QIN Qikun, FANG Jianmei, WANG Genzhu, et al. Experimental Study of Planting Substrate Mixed with Coal Gangue and Municipal Sludge [J]. Coal Science and Technology, 2022, 50 (7): 304-314.
[16] 王悦, 陈爽, 曹锐等. 耐盐菌联合化学复合调理剂协同改良黄河三角洲盐碱土壤的效果[J]. 水土保持学报, 2023, 37(1): 354-360
WANG Yue, CHEN Shuang, CAO Rui, et al. Effects of Salt-tolerant Bacteria Combined with Chemical Compound Amendment on lmproving Saline-alkali Soil in the Yellow River Delta [J]. Journal of Water and Soil Conservation, 2023, 37 (1): 354-360.
[17] 王蒙. 神东矿区脱硫石膏和粉煤灰改良盐碱地的配比模式研究[D]. 内蒙古: 内蒙古农业大学, 2021
WANG Meng. Study on the Ratio Model ofDesulfurization Gypsum and Fly Ash toImprove Saline Land in Shendong Mining Area[D]. Inner Mongolia: Mongolia Agricultural University, 2021.
[18] 宋慧平, 安全, 申午艳, 等. 固废基土壤调理剂的制备及其矿区生态修复效果[J]. 环境工程, 2022, 40(12): 187-195+230
SONG Huiping, AN Quan, SHEN Wuyan, et al. Preparation of Solid Waste Based Soil Conditioner and its Ecological Restoration Effect in Mining Area [J]. Environmental Engineering, 2022, 40(12): 187-195+230.
[19] 田超. 粉煤灰、气化细渣对风沙土的改良效果及治理沙漠化的途径研究[D]. 银川: 宁夏大学, 2022, 303(7): 98-106
TIAN Chao. Study on the improvement effect of fly ash and gasification fine slag on aeolian sandy soil and the way to control desertification[D]. Yinchuan: Ningxia University, 2022, 303(7): 98-106.
[20] 况欣宇. 基于采矿固废的东部草原表土稀缺矿区土壤重构试验研究[D]. 北京: 中国地质大学, 2020
KUANG Xinyu. Experimental Study on Soil Reconstruction in Eastern Grassland Topsoil Scarce Mining Area Based on Mining Solid Waste[D]. Beijing: China University of Geosciences, 2020.
[21] 孔涛, 张开, 黄丽华, 等.菌剂混施对各粒径矸石性质及苜蓿生长的影响[J/OL].煤炭学报, 2023: 1–12. DOI: 10.13225/j.cnki.jccs.2022.0615.
KONG Tao, ZHANG Kai, HUANG Lihua, et al. The Effect of Mixed Application of Microbial Agents on the Properties of Various Particle Size Gangue and the Growth of Alfalfa [J/OL]. Journal of Coal Science, 2023, 1–12. DOI:10.13225/j.cnki.jccs.2022.0615.
[22] 郑瑞伦,朱永官,孙国新.人工技术土壤研究进展与展望[J/OL].土壤学报, 2023: 1–16. http://kns.cnki.net/kcms/detail/32.1119.P.20221108.1043.004.html
ZHENG Ruilun, ZHU Yongguan, SUN Guoxin. Progress and Prospect of Artificial Soil Research [J/OL]. Journal of Soil Science, 2023: 1–16. http://kns.cnki.net/kcms/detail/32.1119.P.20221108.1043.004.html
[23] 徐亚, 王京京, 李淑, 等. 黄河流域固废治理现状、问题与对策建议[J]. 环境科学研究, 2023, 36(2): 373-380 doi: 10.13198/j.issn.1001-6929.2022.11.05
XU Ya, WANG Jingjing, LI Shu, et al. Current Situation, Problems and Countermeasures of Solid Waste Treatment in the Yellow River Basin[J]. Environmental Science Research, 2023, 36(2): 373-380. doi: 10.13198/j.issn.1001-6929.2022.11.05
[24] 赵江, 王云康, 王建友, 等. 榆林市工业固体废弃物现状与应用进展[J]. 工业催化, 2022, 30(3): 1-7 doi: 10.3969/j.issn.1008-1143.2022.03.001
ZHAO Jiang, WANG Yunkang, WANG Jianyou, et al. Current Situation and Application Progress of Industrial Solid Waste in Yulin City[J]. Industrial Catalysis, 2022, 30 (3): 1-7 doi: 10.3969/j.issn.1008-1143.2022.03.001
[25] 张汝翀, 王冬梅, 张英, 等. 煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响[J]. 应用与环境生物学报, 2018, 24(4): 908-914 doi: 10.19675/j.cnki.1006-687x.2017.10020
ZHANG Ruchong, WANG Dongmei, ZHANG Ying, et al. The Effect of Coal Gangue Greening Matrix on the Growth of White Clover and its Resistance to Heavy Metal Pollution[J]. Journal of Applied and Environmental Biology, 2018, 24 (4): 908-914. doi: 10.19675/j.cnki.1006-687x.2017.10020
[26] Mkahal, Zeinab, Mamindy Pajany, Yannick, Maherzii, et al. Recycling of mineral solidwastes in backfill road materials: Technical and environmental investigations[J]. Waste and Biomass Valorization, 2021(3): 12-17.
-