Karst Development Characteristics and Water Inrush Risk Assessment of Railway Tunnel in a Difficult and Dangerous Mountain Area
-
摘要:
某艰险山区铁路隧道是重要的控制工程,区域构造运动活跃、工程地质环境极为复杂,需穿越上三叠统波里拉组灰岩条带,岩溶突涌水问题突出。为了准确评价隧道涌突水的危险性,通过地质调绘、深孔钻探等手段,对隧道水文地质特征进行精细的调查和深入的分析,探明隧道岩溶发育特征及范围,将隧址区地下水径流系统分为局部表层、浅层和区域深层径流系统,并遵循多元、多层次的分析评价思路,选取不同评价指标,构建非可溶岩段和可溶岩段隧道涌突水危险性评价体系。评价结果显示,隧道涌突水问题总体以较低危险性为主,高和极高危险段仅约占隧道总长的4%和1%,主要受控于波里拉组灰岩条带和额艾顿断裂带。
Abstract:A railway tunnel in a difficult and dangerous mountain area is an important control project. The regional tectonic movement is active, and the engineering geological environment is extremely complex. In order to prepare to evaluate the risk of water inrush in the tun–nel, the hydrogeological characteristics of the Tunnel were investigated and analyzed in depth by means of geological mapping, deep hole drilling, etc. The groundwater runoff system in the site area is roughly divided into local surface runoff system, shallow runoff system and regional deep run off system, and following the multiple and multilevel analysis and evaluation ideas, different evaluation indicators are selected to construct tunnel surges in the insoluble rock section and the soluble rock section. According to the evaluation system of water inrush risk, it is concluded that the water inrush problem in the Tunnel is mainly of low risk, and the high and extremely high risk sections only account for about 4% and 1% of the total length of the tunnel, which is mainly controlled by limestone (T3b) and Eaideng fault zone.
-
Key words:
- railway tunnel /
- karst /
- water inrush /
- risk assessment
-
表 1 钻孔岩溶发育强度、特征表
Table 1. Strength and characteristics of karst development in boreholes
溶蚀强度 岩 溶 发 育 特 征 较强 孔内见溶洞发育;导水介质主要为溶洞、溶腔 中等 多为溶蚀破碎带,岩芯表明发育大量溶孔、溶腔,裂面锈染、夹泥膜,局部夹泥层;主要导水介质为破碎带松散孔隙、溶隙、溶腔,少部分为溶孔 弱 总体较完整,多无锈染及泥膜夹层,偶见溶孔。导水介质主要为发育较少的裂隙、贯通性较差的溶孔 表 2 非岩溶隧道涌突水风险性评价体系(THR)
Table 2. Risk assessment system for water inrush in non karst tunnels (THR)
岩石的渗透性和力学性质(R1) 渗透系数(m/d) >10 0.1~10 0.01~0.1 <0.01 渗透性分级 强透水 中等透水 弱透水 微透水 R11评分值 18~20 10~18 6~10 0~6 岩石力学性质 硬岩 较硬岩–软岩 软岩 R12评分值 14~20 10~14 6~10 0~6 地质构造(R2) 断裂构造(R21) 导水 破碎带宽(m) >50 10~50 5~10 1~5 <1 影响带宽(m) >100 20~100 10~20 5~10 <5 R21评分值 18~20 16~18 12~16 8~12 4~8 阻水 破碎带宽(m) >10 5~10 1~5 0.2~1 <0.2 影响带宽(m) >50 20~50 10~20 5~10 1~5 R21评分值 10~14 6~10 4~6 2~4 0~2 褶皱核部(R22) 褶皱形态 宽缓型 中缓型 紧闭型 岩层倾角 <30° 30°~60° >60° R22评分值 0~10 10~16 16~20 褶皱两翼及
单斜地层(R23)岩层厚度(m) 巨厚层 厚层 中厚层 薄层 >1 0.5~1 0.1~0.5 <0.1 R231评分值 0~2 2~6 6~10 10~12 岩层倾角 <30° 30°~45° 45°~60° >60° R232评分值 0~6 6~10 10~14 14~20 地表汇水条件(R3) 地表地貌形态 开口沟谷切割 完整斜坡 缓坡台地、盆地 陡坡、冰蚀谷 R31评分值 15~20 10~15 0~10 地面坡度 0°~15° 15°~30° 30°~45° R32评分值 15~20 10~15 5~10 地下水位(R4) 隧道位于地下水位以下(m) 0~20 20~100 100~200 200~500 >500 R4评分值 18~20 14~18 10~14 6~10 4~6 冰川补给(R5) 冰雪覆盖面积(km2) 0~20 20~50 ≥50 R5评分值 0~12 12~18 18~20 表 3 危险等级划分表
Table 3. Hazard level classification table
THR 危险性
等级极高 高 中等 较低 低 评分 >77 62~77 38~62 23~38 0~23 评级 Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 单点最大
涌突水量(m3/d)>104 103~104 102~103 10~102 <10 表 4 岩溶隧道涌突水风险性评价体系(THK)
Table 4. Risk assessment system for water inrush in karst tunnels (THK)
岩石
可溶性
(K1)CaCO3含量(%) >75 50~75 25~50 5~25 0~5 岩石定名 灰岩 白云质灰岩
泥质云灰岩灰质白云岩
白云岩泥质灰岩
泥质灰云岩泥质
白云岩K11评分值 16~20 12~16 8~12 4~8 0~4 岩石的结构 生物碎屑结构 泥晶结构 粒屑结构 亮晶结构 粗晶结构 K12评分值 16~20 12~16 8~12 4~8 0~4 地质
构造
(K2)断裂 导水
断裂破碎带宽(m) ﹥10 2~10 1~2 0.1~1 <0.1 K2评分 17~20 14~17 10~14 6~10 0~6 阻水
断裂破碎带宽(m) ﹥10 5~10 1~5 0.2~1 <0.2 K2评分 14~17 10~14 6~10 4~6 0~4 褶皱 褶皱形态 宽缓型 中缓型 紧闭型 岩层倾角 <30° 30°~60° >60° K2评分 0~10 10~16 16~20 单斜 岩层组合类型 厚层状裂隙–
岩溶含水岩组厚层脉状岩溶–
裂隙含水岩组夹层式层岩–
裂隙含水岩组孔隙–裂隙岩
溶含水岩组K21评分 15~20 10~15 4~10 0~4 岩层倾角 <15° 15°~30° 30°~45° 45°~60° >60° K22评分 17~20 14~17 10~14 6~10 0~6 地表环
境特征
(K3)降雨入渗系数 >0.7 0.5~0.7 0.3~0.5 0.1~0.3 <0.1 K31评分 16~20 12~16 8~12 4~8 0~4 地面坡度 <10° 20°~10° 30°~20° 45°~30° >45° K31评分 16~20 12~16 8~12 4~8 0~4 隧道岩溶
分带(K4)岩溶水垂向分带 垂直渗流带 季节变动带 水平径流带 深部循环带 K4评分 0~6 6~16 14~18 8~12 等级划分 THK值 >77 62~77 38~62 23~38 0~23 危险性等级 极高风险(Ⅴ) 高风险(Ⅳ) 中等风险(Ⅲ) 较低风险(Ⅱ) 低风险(Ⅰ) 单点涌突水量(m3/h) >104 103~104 102~103 10~102 <10 -
[1] 匡星, 白明洲, 王成亮. 基于模糊评价方法的隧道岩溶突水地质灾害综合预警方法[J]. 公路交通科技, 2010, 27(11): 100-103 doi: 10.3969/j.issn.1002-0268.2010.11.018
KUANG Xing, BAI Ming-zhou, Wang Cheng-liang. Research of Comprehensive Warning of Wate rInrush Hazards in KarstTunnel Based onF uzzy Evaluation Method[J]. Journal of Highway and Transportation Research and Development, 2010, 27(11): 100-103. doi: 10.3969/j.issn.1002-0268.2010.11.018
[2] 李利平, 李术才, 陈军, 等. 2011. 基于岩溶突涌水风险评价的隧道施工许可机制及其应用研究[J]. 岩石力学与工程学报, 30(7): 1345-1355.
LI Liping, LI Shucai, CHEN Jun. CONSTRUCTION LICENSE MECHANISM AND ITS APPLICATION BASED ON KARST WATER
[3] 李术才, 周宗青, 李利平, 等. 岩溶隧道突水风险评价理论与方法及工程应用[J]. 岩石力学与工程学报, 2013, 32(09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018
LI Shucai, ZHOU Zongqing, LI Liping, et al. Theory and method of water inrush risk assessment in karst tunnel and its engineering application [J]. Journal of Rock Mechanics and Engineering, 2013, 32 (09): 1858-1867 doi: 10.3969/j.issn.1000-6915.2013.09.018
[4] 罗文艺. 岩溶隧道涌水风险评价体系及应用[J]. 铁道建筑, 2013 (02): 52-56
LUO Wenyi. Risk assessment system and application of water gushing in karst tunnel [J]. Railway Construction, 2013 (02): 52-56.
[5] 马致远, 刘方. 陕西渭北东西部隐伏岩溶地下水的差异[J]. 西北地质, 1998(01): 66-68
MA Zhiyuan, LIU Fang. Differences of concealed karst groundwater in eastern and western Weibei of Shaanxi Province[J]. Northwest Geology, 1998(01): 66-68.
[6] 毛邦燕, 许模, 蒋良文. 隧道岩溶突水、突泥危险性评价初探[J]. 中国岩溶, 2010, 29(2): 183-189 doi: 10.3969/j.issn.1001-4810.2010.02.013
MAO Bang-yan, XU Mo, JIANG Liang-wen. Preliminary study on risk assessment of water and mud inrush in karst tunne[J]. . CARSOLOGICA SINICA, 2010, 29(2): 183-189. doi: 10.3969/j.issn.1001-4810.2010.02.013
[7] 彭建兵, 崔鹏, 庄建琦. CZ铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, (12), 2377-2389
PENG Jianbing, CUI Peng, ZHUANG Jianqi. Challenges to engineering geology of Sichuan—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, (12), 2377-2389.
[8] 沈祥明, 刘坡拉, 汪继锋. 基于层次分析法的铁路岩溶隧道突水风险评[J]. 铁道工程学报, 2010( 12): 56-63 doi: 10.3969/j.issn.1006-2106.2010.12.013
SHEN Xiangming, LIU Pola, Wang Jifeng. Evaluation of water-inrush risks of karst tunnel with analytic hierarchy process[J]. Journal Of Railway Engineering Society, 2010( 12): 56-63. doi: 10.3969/j.issn.1006-2106.2010.12.013
[9] 王学平, 李稳哲. 地质构造对鄂尔多斯盆地南缘岩溶地下水的控制作用[J]. 西北地质, 2010, 43(03): 106-112 doi: 10.3969/j.issn.1009-6248.2010.03.014
WANG Xueping, LI Wenzhe. Geological Tectonics Control on the Karstic Water in the South Margin of the Ordos Basin[J]. Northwestn Geology, 2010, 43(03): 106-112. doi: 10.3969/j.issn.1009-6248.2010.03.014
[10] 徐钟. 复杂岩溶隧道涌突水演化机理及灾害综合防治研究—以新建叙大铁路为例[D]. 成都: 成都理工大学, 2018.
XU Zhong. Study on the evolution mechanism of water inrush in complex karst tunnels and comprehensive disaster prevention and control - taking the newly-built Xuzhou-Dalian Railway as an example [D]. Chengdu: Chengdu University of Technology, 2018.
[11] 许振浩, 李术才, 李利平, 等. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. 岩土力学, 2011, 32(6): 1757-1765 doi: 10.3969/j.issn.1000-7598.2011.06.027
XU Zhenhao, LI Shucai, LI Liping, et al. [J]Rock and Soil Mechanics, 2011, 32(6): 1757-1765. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.027
[12] 赵勇, 石少帅, 田四明, 李国良, 陶伟明, 郭伟东. CZ铁路雅安至林芝段隧道建造面临的主要工程技术难题与对策建议[J]. 隧道建设(中英文), 2021, 41(07): 1079-1090
ZHAO Yong, SHI Shaoshuai, TIAN Siming, LI Guoliang, TAO Weiming, GUO Weidong. Technical Difficulties and Countermeasure Suggestions in Tunnel Construction of Ya′an-Linzhi Section of Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41(07): 1079-1090.
[13] 周宗青, 李术才, 李利平, 等. 岩溶隧道突涌水危险性评价的属性识别模型及其工程应用[J]. 岩土力学, 2013, 34(03): 818-826 doi: 10.16285/j.rsm.2013.03.024
ZHOU Zongqing, LI Shucai, LI Liping, et al. Attribute identification model and its engineering application for risk assessment of water inrush in karst tunnels [J]. Geotechnical Mechanics, 2013, 34 (03): 818-826 doi: 10.16285/j.rsm.2013.03.024
[14] 朱珍, 王旭春, 袁永才, 等. 2015. 基于加权平均法的岩溶隧道突涌水风险评估[J]. 公路工程, 40(6): 51-54
ZHU Zhen, WANG Xuchun, YUAN Yongcai. Risk Assessment of Water Inrush in Karst Tunnels Based on Weighted Average Method[J]. Highway Engineering, 40(6): 51-54.
[15] Bogardi I. 1982. Bayesian Analysis of Underground Flooding[J]. Water Resources Research, 18(04): 1110-1116.