LA–ICP–MS U–Pb定年技术相关问题探讨

李艳广, 靳梦琪, 汪双双, 吕鹏瑞. 2023. LA–ICP–MS U–Pb定年技术相关问题探讨. 西北地质, 56(4): 274-282. doi: 10.12401/j.nwg.2023104
引用本文: 李艳广, 靳梦琪, 汪双双, 吕鹏瑞. 2023. LA–ICP–MS U–Pb定年技术相关问题探讨. 西北地质, 56(4): 274-282. doi: 10.12401/j.nwg.2023104
LI Yanguang, JIN Mengqi, WANG Shuangshuang, LÜ Pengrui. 2023. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique. Northwestern Geology, 56(4): 274-282. doi: 10.12401/j.nwg.2023104
Citation: LI Yanguang, JIN Mengqi, WANG Shuangshuang, LÜ Pengrui. 2023. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique. Northwestern Geology, 56(4): 274-282. doi: 10.12401/j.nwg.2023104

LA–ICP–MS U–Pb定年技术相关问题探讨

  • 基金项目: 陕西省自然科学基础研究计划项目“基于U–Th–Pb同位素年代学方法计算华山岩体中氦气资源量”(2021JQ-327)资助
详细信息
    作者简介: 李艳广(1984−),男,高级工程师,从事地质年代学研究工作。E–mail:liyanguangok@126.com
  • 中图分类号: P597

Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique

  • LA–ICP–MS U–Pb定年技术是地质科学中被广泛应用的重要手段。发展至今,该技术已相对成熟,但在实际工作中仍需要注意一些关键问题。笔者就该技术的样品准备、定年结果的取舍、铅丢失问题、普通铅问题和定年结果投图与解释等5个方面进行简要探讨。研究认为,对于复杂矿物进行U–Pb定年研究建议不分选出单矿物,而是采用矿物识别定位手段和LA–ICP–MS仪器相结合的技术手段,直接在岩石光片或探针片上进行原地原位微区定年分析,但要注意样品准备过程中可能存在的铅污染问题。在碎屑矿物定年结果选择方面,对于大于1.5 Ga的定年测点,笔者建议采用207Pb/206Pb年龄代表该颗粒的结晶年龄,而对于小于1.5 Ga的定年测点则应采用206Pb/238U年龄。对沉积岩最大沉积年龄的判断和选择主要依靠统计学方法,必要时需要结合地球化学数据和地质背景信息作为辅助判断依据。对于连续分布在谐和线上的年轻样品要提高警惕,需要采用谐和图、加权平均图、CL图像和元素含量等多种手段识别是否存在铅丢失不一致线。针对普通铅校正问题,笔者重点介绍了一种专用于碎屑矿物U–Pb定年的普通铅校正方法,并给出了计算过程。关于对矿物U–Pb定年结果加权平均值数据质量的评价,笔者着重讨论MSWD越接近于1表示数据质量越高的理论基础。总之,应用LA–ICP–MS 技术对矿物进行U–Pb定年研究需要综合考虑多个因素,才能得出准确、可靠和地质意义明确的定年结果。

  • 加载中
  • 图 1  锆石U–Pb定年测试数据统计图(37358个)(Voice et al.,2011Spencer et al., 2016

    Figure 1. 

    图 2  迭代法普通铅校正数学模型

    Figure 2. 

  • [1]

    Antonio S, Larry M H, Thomas C, et al. In situ petrographic thin section U–Pb dating of zircon, monazite, and titanite using laser ablation–MC–ICP-MS[J]. International Journal of Mass Spectrometry, 2006, 253, 87–97. doi: 10.1016/j.ijms.2006.03.003

    [2]

    Becquerel H. Sur les radiations émises par phosphorescence[J]. Comptes Rendus, 1896, 122, 420-421.

    [3]

    Bowes D R. The geology and geochemistry of lead ore deposits[J]. Earth-Science Reviews, 1977, 13(4), 315-384.

    [4]

    Cawood P A, Nemchin A A, Strachan R A. Provenance record of Laurentian passive-margin strata in the northern Caledonides: Implications for paleodrainage and paleogeography[J]. Geological Society of America Bulletin, 2007, 119, 993-1003. doi: 10.1130/B26152.1

    [5]

    Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting [J]. Geology, 2012, 40(10), 875−878.

    [6]

    Condon D J, Bowring S A. A user’s guide to Neoproterozoic geochronology[A]. In Arnaud E, Halverson G P, Shields-Zhou G (Eds.). The Geological Record of Neoproterozoic Glaciations [R]. Geological Society of London, 2011: 135-146.

    [7]

    Chiarenzelli J, Kratzmann D, Selleck B, et al. Age and provenance of Grenville supergroup rocks, Trans-Adirondack Basin, constrained by detrital zircons[J]. Geology, 2014, 43, 183-186.

    [8]

    David J, Chew D, Petrus J. Apatite U-Pb dating with LA-ICP MS[J]. Chemical Geology, 2011, 280(1-2), 1-20. doi: 10.1016/j.chemgeo.2010.07.008

    [9]

    Dickinson W R, Gehrels G E. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1-2), 115–125. doi: 10.1016/j.jpgl.2009.09.013

    [10]

    Fleet M E. The geochemistry of lead[A]. In Holland H D, Turekian K K (Eds. ). Treatise on geochemistry[M]. Oxford: Elsevier, 2003, 9: 1–51.

    [11]

    Fripiat J J. Lead isotopes in minerals[A]. In Henderson P (Ed. ). Rare earth element geochemistry[M]. Amsterdam: Elsevier, 1984: 571–584.

    [12]

    Hiess J, Condon D J, McLean N, et al. 238U/235U systematics in terrestrial uranium-bearing minerals[J]. Science, 2012, 335, 1610–1614. doi: 10.1126/science.1215507

    [13]

    Herriott T M, Crowley J L, Schmitz M D, et al. Exploring the law of detrital zircon: LA-ICP-MS and CA-TIMS geochronology of Jurassic forearc strata, Cook Inlet, Alaska, USA[J]. Geology, 2019, 47(11), 1044-1048. doi: 10.1130/G46312.1

    [14]

    Horstwood M S A, Košler J, Gehrels G, et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting[J]. Geostandards and Geoanalytical Research, 2016, 40(3), 311−332.

    [15]

    Hisatoshi I, Shimpei U, Futoshi N, et al. Zircon U–Pb dating using LA-ICP-MS: Quaternary tephras in Yakushima Island, Japan[J]. Journal of Volcanology and Geothermal Research, 2017, 338, 92-100. doi: 10.1016/j.jvolgeores.2017.02.003

    [16]

    Jaffey A H, Flynn K F, Glendenin L E, et al. Precision measurement of half-lives and specific activities of 235U and 238U[J]. Physical Review C, 1971, 4(5), 1889-1906. doi: 10.1103/PhysRevC.4.1889

    [17]

    Li Y G, Song S G, Yang X Y, et al. Age and composition of Neoproterozoic diabase dykes in North Altyn Tagh, northwest China: implications for Rodinia break-up[J]. International Geology Review, 2023a, 65(7): 1000-1016. doi: 10.1080/00206814.2020.1857851

    [18]

    Li Y, Yuan F, Simon M J, Li X, et al. (2023). Combined garnet, scheelite and apatite U–Pb dating of mineralizing events in the Qiaomaishan Cu–W skarn deposit, eastern China[J]. Geoscience Frontiers, 2023b, 14(1): 17-32.

    [19]

    Lin M, Zhang G, Li N, et al. (2021). An Improved In Situ Zircon U‐Pb Dating Method at High Spatial Resolution (≤ 10 μm spot) by LA‐MC‐ICP‐MS and its Application[J]. Geostandards and Geoanalytical Research, 2021, 45(2): 265-285. doi: 10.1111/ggr.12374

    [20]

    Lin J, Liu Y, Yang Y, et al. Calibration and correction of LA-ICP-MS and LA-MC-ICP-MS analyses for element contents and isotopic ratios[J]. Solid Earth Sciences, 2016. 1(1), 5-27. doi: 10.1016/j.sesci.2016.04.002

    [21]

    Liu E, Zhao J X, Wang H, et al. LA-ICPMS in-situ U-Pb Geochronology of Low-Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies[J]. Journal of Earth Science, 2021, 32, 872–879. doi: 10.1007/s12583-020-1084-5

    [22]

    Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples. Chinese Science Bulletin, 2013, 58, 3863-3878.

    [23]

    Merriman R J. Lead[A]. In Linnen R L, Samson I M (Eds. ). Rare element geochemistry and mineral deposits[R]. Geological Association of Canada Short Course Notes, 2007, 17: 201-230.

    [24]

    Patterson C. Age of meteorites and the Earth[J]. Geochimica et Cosmochimica Acta, 1956a, 10, 230-237. doi: 10.1016/0016-7037(56)90036-9

    [25]

    Patterson C. Isotopic ages of the Earth and Moon[J]. Proceedings of the National Academy of Sciences, 1956b, 42(4), 194-199. doi: 10.1073/pnas.42.4.194

    [26]

    Rutherford E. A Radioactive Substance emitted from Thorium Compounds[J]. Philosophical Magazine, 1900, 49(293), 1-14.

    [27]

    Richard A C, Derek H C W. U–Pb dating of perovskite by LA-ICP-MS: An example from the Oka carbonatite, Quebec, Canada[J]. Chemical Geology, 2006, 235, 21–3. doi: 10.1016/j.chemgeo.2006.06.002

    [28]

    Schaltegger U, Schmitt A K, Horstwood M S A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS and laser ablation ICP-MS: Recipes, interpretations and opportunities[J]. Chemical Geology, 2015, 402, 89-110. doi: 10.1016/j.chemgeo.2015.02.028

    [29]

    Spencer C J, Kirkland C L, Taylor R J M. Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology[J]. Geoscience Frontiers, 2016, 7(4): 581-589. doi: 10.1016/j.gsf.2015.11.006

    [30]

    Spencer C J, Prave A R, Cawood P A, et al. Detrital zircon geochronology of the Grenville/Llano foreland and basal Sauk Sequence in west Texas, USA[J]. Geological Society of America Bulletin, 2014, 126(7-8), 1117-1128. doi: 10.1130/B30884.1

    [31]

    Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 1975, 26(2), 207-221. doi: 10.1016/0012-821X(75)90088-6

    [32]

    Tang Y, Cui K, Zheng Z, et al. LA-ICP-MS UPb geochronology of wolframite by combining NIST series and common lead-bearing MTM as the primary reference material: Implications for metallogenesis of South China[J]. Gondwana Research, 2020, 83, 217-231. doi: 10.1016/j.gr.2020.02.006

    [33]

    Vermeesch P. Maximum depositional age estimation revisited[J]. Geoscience Frontiers, 2021, 12(2), 843-850. doi: 10.1016/j.gsf.2020.08.008

    [34]

    Vermeesch P. Multi-sample comparison of detrital age distributions[J]. Chemical Geology, 2013, 341, 140-146. doi: 10.1016/j.chemgeo.2013.01.010

    [35]

    Voice P J, Kowalewski M, Eriksson K A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains[J]. The Journal of Geology, 2011, 119: 109-126. doi: 10.1086/658295

    [36]

    Wendt I, Carl C. The statistical distribution of the mean squared weighted deviation. Chemical Geology: Isotope Geoscience section, 1991, 86(4), 275-285.

  • 加载中

(2)

计量
  • 文章访问数:  1097
  • PDF下载数:  60
  • 施引文献:  0
出版历程
收稿日期:  2023-04-24
修回日期:  2023-05-10
录用日期:  2023-05-31
刊出日期:  2023-08-20

目录