Geochronology and Geodynamic Setting of the Shuangmiaoguan Gold Deposit, Dabie Orogen
-
摘要:
湖北省麻城市双庙关金矿床隶属于秦岭–大别成矿带,近年来找矿进展显著,但成矿时代和成矿背景尚不清楚。矿区广泛发育新元古代片麻状二长花岗岩和变辉长岩,沿NE−NNE向和NW向断裂产出11条金矿(化)体。基于详细野外调查发现,矿区北部钾长花岗岩体、花岗斑岩体均被NE向含矿断裂穿切,为成矿前岩浆活动产物,矿区中部的闪长岩脉则穿切矿体,晚于成矿事件。钾长花岗岩体、花岗斑岩体和闪长岩脉的锆石U−Pb加权平均年龄分别为(133.6±1.1) Ma、(127.9±1.6) Ma和(126.6±1.3) Ma。因此,双庙关金矿床应形成于128~126 Ma,与小秦岭、熊耳山、桐柏等矿集区金爆发式成矿的时间一致,与中国东部岩石圈破坏导致的构造−岩浆事件密切相关。
Abstract:The Shuangmiaoguan gold deposit from the Macheng City, Hubei Province is in the Dabie orogenic belt. Significant prospecting progress for this gold deposit has been achieved in recent years. However, the ore−forming age and geodynamic setting of this deposit remain unclear. The Neoproterozoic gneissic monzogranite and meta−gabbro are pervasive in the mining area. Eleven gold orebodies have been discovered in the NE, NNE and NNW−trending faults. The field investigations show that the intrusions of K−feldspar granite and granite porphyry in the north of Shuangmiaoguan gold deposit were cut by NE−trending ore−bearing faults, and the diorite dikes from the middle section of gold deposit interpenetrate across the ore bodies.suggests. Zircon U−Pb ages of the K−feldspar granite, granitic porphyry and diorite dikes are (133.6±1.1) Ma, (127.9±1.6) Ma and (126.6±1.3) Ma, respectively. Additionallly, field investigations show that the intrusions of K−feldspar granite and granite porphyry in the north of Shuangmiaoguan gold deposit were cut by ore−bearing faults, and the diorite dikes from the middle section of gold deposit interpenetrate across the ore bodies. This suggests that the Shuangmiaoguan gold deposit should be formed between 128 and 126 Ma. This time is broadly similar to that time of gold mineralization of the Xiaoqinling, Xiong’ershan and Tongbai gold districts. These deposits were coeval with the early Cretaceous widespread gold mineralization. They should be the result of tectonism and Magmatism arised from lithosphere destruction in the eastern China.
-
Key words:
- Shuangmiaoguan /
- gold deposit /
- Dabie orogenic belt /
- metallogenic epoch /
- lithospheric destruction
-
-
图 1 桐柏−大别造山带地质简图(据吴皓然等,2020修)
Figure 1.
图 2 双庙关金矿床地质图(据杜文洋等,2022)
Figure 2.
图 3 双庙关矿区PM11勘查线剖面图及野外露头特征图(据杜文洋等,2022)
Figure 3.
图 8 秦岭-大别造山带金矿床成矿作用、混合岩化、构造伸展、岩浆活动时代(据Keay et al.,2001;LI et al.,2012;唐克非,2014;Ji et al.,2017;王勇生等,2018;张哲坤,2020)
Figure 8.
表 1 双庙关金矿床岩浆岩LA–ICP–MS锆石U–Pb 同位素数据表
Table 1. LA–ICP–MS zircon U–Pb isotopic of the Shuangmiaoguan gold deposit
测试点 元素含量(10−6)及比值 同位素比值 年龄(Ma) 谐和度 Pb U Th 232Th/238U 206Pb/238U 207Pb/235U 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ 测值 1σ DQD.1 51 1834 2914 1.63 0.02090 0.000214 0.14563 0.002406 0.05055 0.000806 133 1 138 2 220 37 96% DQD.2 23 869 1336 1.58 0.02029 0.000207 0.13799 0.002924 0.04922 0.001005 130 1 131 3 158 48 98% DQD.3 35 1266 1 888 1.53 0.02101 0.000227 0.14333 0.002836 0.04944 0.000912 134 1 136 3 169 43 98% DQD.4 12 413 796 1.98 0.02104 0.000230 0.14265 0.005918 0.04915 0.001936 134 1 135 6 155 92 99% DQD.5 20 795 864 1.12 0.02102 0.000218 0.14513 0.003156 0.05002 0.001061 134 1 138 3 196 49 97% DQD.6 37 1420 1808 1.31 0.02082 0.000211 0.14194 0.002597 0.04946 0.000879 133 1 135 2 170 42 98% DQD.7 10 390 400 1.05 0.02109 0.000229 0.15605 0.006170 0.05346 0.002033 135 1 147 6 349 86 90% DQD.8 28 971 1423 1.50 0.02131 0.000219 0.15439 0.003059 0.05249 0.001007 136 1 146 3 307 44 93% DQD.9 9 357 509 1.46 0.02040 0.000210 0.13477 0.005367 0.04781 0.001888 130 1 128 5 90 94 98% DQD.10 27 1053 1092 1.06 0.02109 0.000214 0.14512 0.002947 0.04988 0.000985 135 1 138 3 190 46 97% DQD.11 14 583 524 0.92 0.02087 0.000218 0.14280 0.003967 0.04973 0.001365 133 1 136 4 182 64 98% DQD.12 15 606 642 1.09 0.02109 0.000224 0.14260 0.003867 0.04878 0.001256 135 1 135 4 137 60 99% DQD.13 24 923 977 1.09 0.02167 0.000229 0.14831 0.002985 0.04958 0.000948 138 1 140 3 175 45 98% DQD.14 58 2066 3693 1.83 0.02033 0.000204 0.13688 0.002191 0.04883 0.000752 130 1 130 2 140 36 99% DQD.15 11 431 445 1.06 0.02070 0.000213 0.13362 0.005517 0.04682 0.002011 132 1 127 5 40 103 96% DQD.16 28 1104 1262 1.17 0.02097 0.000215 0.13391 0.002752 0.04634 0.000924 134 1 128 3 16 48 95% DQD.17 34 1269 1 852 1.50 0.02047 0.000207 0.13270 0.002497 0.04702 0.000859 131 1 127 2 50 44 96% DQD.18 17 679 613 0.93 0.02123 0.000224 0.14425 0.003441 0.04925 0.001131 135 1 137 3 160 54 98% DQD.19 57 1940 3589 1.90 0.02094 0.000217 0.14868 0.002479 0.05148 0.000810 134 1 141 2 262 36 94% DQD.20 14 563 578 1.05 0.02148 0.000216 0.15441 0.004297 0.05208 0.001416 137 1 146 4 289 62 93% DQD.21 27 945 1532 1.66 0.02154 0.000233 0.14171 0.003082 0.04766 0.000979 137 1 135 3 83 49 97% DQD.22 23 955 959 1.03 0.02072 0.000215 0.14278 0.003080 0.04988 0.001020 132 1 136 3 189 48 97% SMHG.1 11 494 393 0.82 0.01994 0.000203 0.13208 0.004193 0.04808 0.001519 127 1 126 4 103 75 98% SMHG.2 25 791 1 963 2.55 0.01977 0.000218 0.14156 0.003072 0.05200 0.001091 126 1 134 3 286 48 93% SMHG.3 26 852 1714 2.06 0.02085 0.000226 0.13842 0.002923 0.04813 0.000968 133 1 132 3 106 48 98% SMHG.4 12 504 532 1.08 0.01993 0.000205 0.12367 0.003795 0.04511 0.001384 127 1 118 4 – – 92% SMHG.5 8 330 248 0.77 0.02049 0.000219 0.14524 0.005920 0.05152 0.002078 131 1 138 6 264 93 94% SMHG.6 10 448 350 0.80 0.02003 0.000210 0.13900 0.004480 0.05036 0.001613 128 1 132 4 212 74 96% SMHG.7 13 525 650 1.27 0.01991 0.000209 0.13825 0.003915 0.05029 0.001383 127 1 131 4 209 64 96% SMHG.8 9 331 621 1.93 0.01963 0.000205 0.13415 0.005827 0.04965 0.002127 125 1 128 6 178 100 98% SMHG.9 14 584 698 1.23 0.01953 0.000197 0.13106 0.003544 0.04859 0.001294 125 1 125 3 128 63 99% SMHG.10 15 594 790 1.36 0.01979 0.000212 0.14083 0.003701 0.05144 0.001305 126 1 134 4 260 58 94% SMHG.11 10 435 386 0.91 0.01991 0.000209 0.14070 0.004586 0.05106 0.001630 127 1 134 4 244 74 94% SMHG.12 20 709 1393 2.01 0.01979 0.000210 0.13245 0.003027 0.04857 0.001080 126 1 126 3 127 52 99% SMHG.13 9 391 320 0.84 0.02109 0.000240 0.14117 0.005497 0.04842 0.001815 135 2 134 5 120 88 99% SMHG.14 10 434 399 0.94 0.02035 0.000205 0.13649 0.004670 0.04860 0.001658 130 1 130 4 129 80 99% D2002-B1.1 15 642 530 0.85 0.01981 0.000208 0.13769 0.003671 0.05051 0.001346 126 1 131 3 218 62 96% D2002-B1.2 9 372 289 0.80 0.02032 0.000228 0.13047 0.006265 0.04640 0.002120 130 1 125 6 19 110 95% D2002-B1.3 16 502 1297 2.65 0.01987 0.000209 0.13940 0.004045 0.05084 0.001448 127 1 133 4 234 66 95% D2002-B1.4 10 422 379 0.92 0.01956 0.000207 0.11916 0.005076 0.04435 0.001856 125 1 114 5 -91 103 91% D2002-B1.5 7 321 200 0.64 0.01963 0.000213 0.14484 0.006047 0.05344 0.002191 125 1 137 6 347 93 90% D2002-B1.6 5 195 315 1.66 0.01908 0.000199 0.11703 0.010597 0.04381 0.004059 122 1 112 10 – – 91% D2002-B1.7 11 477 451 0.97 0.01977 0.000209 0.13473 0.004159 0.04937 0.001497 126 1 128 4 166 71 98% D2002-B1.8 6 256 252 1.01 0.02056 0.000237 0.14370 0.008356 0.05065 0.002827 131 2 136 8 225 129 96% D2002-B1.9 9 390 324 0.85 0.02066 0.000234 0.14941 0.005934 0.05231 0.001991 132 1 141 6 299 87 92% D2002-B1.10 13 549 466 0.87 0.02040 0.000217 0.13500 0.004125 0.04800 0.001420 130 1 129 4 99 70 98% D2002-B1.11 11 481 353 0.75 0.01982 0.000212 0.13625 0.004554 0.04993 0.001624 127 1 130 4 192 76 97% D2002-B1.12 17 758 688 0.93 0.01956 0.000214 0.13953 0.003941 0.05154 0.001350 125 1 133 4 265 60 93% D2002-B1.13 9 420 329 0.80 0.01954 0.000201 0.14158 0.004753 0.05252 0.001729 125 1 134 5 308 75 92% D2002-B1.14 10 415 404 1.00 0.02006 0.000210 0.14861 0.005042 0.05369 0.001770 128 1 141 5 358 74 90% D2002-B1.15 17 766 628 0.84 0.01926 0.000202 0.12670 0.002916 0.04763 0.001053 123 1 121 3 81 52 98% D2002-B1.16 6 269 185 0.70 0.02046 0.000233 0.13383 0.007355 0.04739 0.002536 131 1 128 7 69 127 97% D2002-B1.17 9 368 340 0.95 0.01985 0.000212 0.12990 0.004988 0.04759 0.001814 127 1 124 5 79 90 97% D2002-B1.18 12 531 430 0.83 0.01974 0.000204 0.13454 0.004091 0.04941 0.001468 126 1 128 4 167 69 98% D2002-B1.19 13 565 536 0.97 0.01937 0.000198 0.13136 0.003851 0.04904 0.001400 124 1 125 4 150 67 98% D2002-B1.20 5 208 195 0.96 0.02004 0.000219 0.13937 0.008753 0.05048 0.003103 128 1 132 8 217 142 96% -
[1] 柴明春. 桐柏地区古-中生代多金属矿床成矿作用研究[D]. 武汉: 中国地质大学, 2021
CHAI Mingchun. The Paleozoic-Mesozoic metallogenesis in the Tongbai area, Central China[D]. Wuhan: China University of Geosciences, 2021.
[2] 曹正琦, 蔡逸涛, 周向辉, 等. 西大别大悟地区闪长玢岩岩石地球化学特征及其构造意义[J]. 西北地质, 2023, 56(4): 318−328.
CAO Zhengqi, CAI Yitao, ZHOU Xianghui, et al. Geochemical Characteristics of Diorite Porphyrite in Dawu Area, Western Dabie and Its Tectonic Significance[J]. Northwestern Geology, 2023, 56(4): 318−328.
[3] 杜文洋, 刘嘉, 付乐兵, 等. 大别造山带中段双庙关-西张店地区含金构造演化与金矿成矿制约成果报告[R].湖北省地质调查院, 2022.
[4] 高峰, 裴先治, 李瑞保, 等. 东秦岭商丹地区武关岩群斜长角闪片岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 西北地质, 2017, 50(01): 198-211 doi: 10.3969/j.issn.1009-6248.2017.01.017
GAO Feng, PEI Xianzhi, LI Ruibao, et al. LA-ICP-MS Zircon U-Pb Ages of the Plagioclase-Amphibole Schist from the Wuguan Group in Shangdan Area, East Qingling, and Its Geological Significance [J]. Northwestern Geology, 2017, 50(01): 198-211. doi: 10.3969/j.issn.1009-6248.2017.01.017
[5] 金伟衎. 豫西西峡-桐柏金矿床地质与地球化学特征及找矿意义[D]. 武汉: 中国地质大学, 2021
JIN Weikan. Geological-geochemical characteristics and prospecting significance of gold deposits in Xixia-Tongbai district, Western Henan [D]. Wuhan: China University of Geosciences, 2021.
[6] 梁涛, 卢仁, 杨楠, 等. 河南省西峡县高庄金矿Rb-Sr等时线年龄和H、O、S、Pb同位素特征: 北秦岭板内造山成矿作用的识别[J]. 中国地质, 2020, 47(02): 406-425
LIANG Tao, LU Ren, YANG Nan, et al. Rb-Sr isochron age and isotopic compositions of H, O, S and Pb of the Gaozhuang gold deposit, Xixia County, Henan Province: ldentification of intraplate orogenic metallogenesis in northern Qinling Mountain [J]. Geology in China, 2020, 47(02): 406-425.
[7] 刘欢. 桐柏—大别造山带剪切带构造与年代学研究[D]. 合肥: 合肥工业大学, 2016
LIU Huan. The structure and geochronology of the shear zones in the Tongbai-Dabie orogenic belt [D]. Hefei: Hefei University of Technology, 2016.
[8] 刘巍, 郭震, 陈永顺, 等. 地球物理综合观测揭示秦岭—桐柏—大别复合造山带地壳及上地幔结构[J]. 地球物理学报, 2021, 64(09): 3179-3193 doi: 10.6038/cjg2021O0406
LIU Wei, GUO Zheng, CHEN Yongshun, et al. The crustal and uppermostMantle structure of the Qinling-Tongbai-Dabie orogenic belt from integrated geophysical observations [J]. Chinese Journal of Geophysics, 2021, 64(09): 3179-3193. doi: 10.6038/cjg2021O0406
[9] 柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.
LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
[10] 马昌前, 杨坤光, 明厚利, 等. 大别山中生代地壳从挤压转向伸展的时间: 花岗岩的证据[J]. 中国科学(D辑: 地球科学), 2003(09): 817-827
MA Changqian, YANG Kunguang, MING Houli, et al. The time when the earth’s crust changed from compression to extension in Mesozoic in Dabie Mountain: The proof of granites [J]. Science in China (series D), 2003(09): 817-827.
[11] 马宏卫. 东秦岭大别山段斑岩型钼(钨、铜)矿床地质特征[J]. 地质与勘探, 2008, 44(01): 50-54
MA Hongwei. Geology of Porphyry Molybdenum(Tungsten Copper) Deposits in the Dabieshan, Eastern Qinling [J]. Geology and Exploration, 2008, 44(01): 50-54.
[12] 马骁, 李玮, 杨源祯, 等. 北秦岭东部及华北南缘古生代以来花岗岩时空分布及其构造意义[J]. 地质科技情报, 2016, 35(03): 9-16
MA Xiao, LI Wei, YANG Yuanzhen, et al. Spatial and temporal distribution of granitoids since Paleozoic in southernMargin of the North China and east part of the North Qinling, and its tectonic significance [J]. Geological Science and Technology Information, 2016, 35(03): 9-16.
[13] 毛景文, 李晓峰, 张作衡, 等. 中国东部中生代浅成热液金矿的类型、特征及其地球动力学背景[J]. 高校地质学报, 2003, 9(04): 620-637 doi: 10.3969/j.issn.1006-7493.2003.04.014
MAO Jingwen, LI Xiaofeng, ZHANG Zuoheng, et al. Geology, distribution, types and tectonic settings of Mesozoic epithermal gold deposits in East China [J]. Geological Journal of China Universities, 2003, 9(04): 620-637. doi: 10.3969/j.issn.1006-7493.2003.04.014
[14] 唐克非. 华北克拉通南缘熊耳山地区金矿床时空演化、矿床成因及成矿构造背景[D]. 武汉: 中国地质大学, 2014
TANG Kefei. Characteristics, Genesis, and geodynamic setting of representative gold deposits in the Xiong'ershan District, southernMargin of the North China Craton [D]. China University of Geosciences, 2014.
[15] 王勇生, 白桥, 杨秉飞. 北大别单元混合岩的变形及锆石年代学特征: 对混合岩变形时间的限定[J]. 中国科学: 地球科学, 2018, 48(08): 980-996
WANG Yongsheng, BAI Qiao, YANG Binfei. Structural characteristics and geochronology of migmatites in the North Dabie Complex unit: Timing of postcollisional deformation [J]. Science China Earth Sciences, 2018, 48(08): 980-996.
[16] 王梓桐, 王根厚, 张维杰, 等. 阿拉善地块南缘志留纪花岗闪长岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 成都理工大学学报(自然科学版), 2022, 49(5): 586−600.
WANG Zitong, WANG Genhou, ZHANG Weijie, et al. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of the Silurian granodiorite in the southern margin of Alxa Block, China [J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(5): 586−600.
[17] 吴皓然, 谢玉玲, 王莹. 大别造山带汞洞冲铅锌矿床矿物学特征和铅同位素研究[J]. 地质通报, 2020, 39(Z1): 338-352
WU Haoran, XIE Yuling, WANG Ying. Mineralogical characteristics and Pb isotopes of Gongdongchong lead-zinc polymetallic deposit, Dabie orogenic belt. Geological Bulletin of China, 2020, 39(Z1): 338-352.
[18] 向祥辉, 肖宝珠, 张战. 桐柏山南坡金矿床(点)地质特征、成因及找矿前景[J]. 资源环境与工程, 2021, 35(06): 794-801 doi: 10.16536/j.cnki.issn.1671-1211.2021.06.005
XIANG Yianghui, XIAO Baozhu, ZHANG Zhan. Geological characteristics, genesis and prospecting potential of gold deposit ( point) in southern slope of Tongbai Mountain [J]. Resources Environment & Engineering, 2021, 35(06): 794-801. doi: 10.16536/j.cnki.issn.1671-1211.2021.06.005
[19] 徐江嬿, 曾小华, 刘嘉, 等. 桐柏-大别造山带麻城地区金矿成矿地质背景及空间展布特征[J]. 资源环境与工程, 2020, 34(02): 180-183
XU Jiangyan, ZENG Xiaohua, LIU Jia, et al. Geological background and spatial distribution of gold deposits inMacheng area of Tongbai-Dabie Orogenic Belt [J]. Resources Environment & Engineering, 2020, 34(02): 180-183.
[20] 杨济远, 李杰, 白春东, 等. 冀西北宣化盆地侏罗纪九龙山组凝灰岩形成时代、构造环境及地质意义[J]. 西北地质, 2023, 56(6): 314−328.
YANG Jiyuan, LI Jie, BAI Chundong, et al. Formation Age, Tectonic Setting and Geological Significance of The Jurassic Jiulongshan Formation Tuff in Xuanhua Basin, Northwest Hebei[J]. Northwestern Geology, 2023, 56(6): 314−328.
[21] 曾小华, 刘嘉, 杜文洋, 等. 湖北省麻城市两路口钨矿地质特征、成因及找矿前景探讨[J]. 资源环境与工程, 2021, 35(03): 301-307 doi: 10.16536/j.cnki.issn.1671-1211.2021.03.005
ZENG Xiaohua, LIU Jia, DU Wenyang, et al. Discussion on geological characteristics and genesis of tungsten deposit in Lianglukou, Macheng City, Hubei Province [J]. Resources Environment & Engineering, 2021, 35(03): 301-307. doi: 10.16536/j.cnki.issn.1671-1211.2021.03.005
[22] 曾小华, 刘嘉, 徐江嬿, 等. 湖北麻城双庙关金矿床地质特征及找矿方向[J]. 矿产勘查, 2020, 11(09): 1845-1852 doi: 10.3969/j.issn.1674-7801.2020.09.006
ZENG Xiaohua, LIU Jia, XU Jiangyan, et al. Geological characteristics and prospecting direction of Shuangmiaoguan gold deposit, Macheng city, Hubei Province [J]. Mineral Exploration, 2020, 11(09): 1845-1852. doi: 10.3969/j.issn.1674-7801.2020.09.006
[23] 张国伟, 董云鹏, 姚安平. 造山带与造山作用及其研究的新起点[J]. 西北地质, 2001, (01): 1-9 doi: 10.3969/j.issn.1009-6248.2001.01.001
ZHANG Guowei, DONG Yunpeng, YAO Anping. Review on the development of studies on the tectonic and orogen process of orogenic belt, and discussing on some new key problems [J]. Northwestern Geology, 2001, (01): 1-9. doi: 10.3969/j.issn.1009-6248.2001.01.001
[24] 张国伟, 孟庆任, 赖绍聪. 秦岭造山带的结构构造[J]. 中国科学(B辑), 1995(09): 994-1003
ZHANG Guowei, MENG Qingren, LAI Shaocong. Structural Structure of Qinling Orogenic Belt Science [J]. Science China (B), 1995(09): 994-1003.
[25] 张哲坤. 古太平洋俯冲对华北克拉通陆内变形及岩浆作用的制约[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2020
ZHANG Zhekun. Intracontinental deformation andMagmatism of the North China Craton induced by subduction of the paleo-Pacific plate [D]. Guangzhou: University of Chinese Academy of Sciences (Guangzhou Institute of Geochemistry, CAS), 2020.
[26] 赵新福, 李占轲, 赵少瑞, 等. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统[J]. 地球科学, 2019, 44(02): 550
ZHAO Xinfu, LI Zhanke, ZHAO Shaorui, et al. Early Cretaceous Regional-ScaleMagmatic-Hydrothermal Metallogenic System at the SouthernMargin of the North China Carton [J]. Earth Science, 2019, 44(02): 550.
[27] 赵宇洁. 桐柏-大别混合岩的成因及其地质意义[D]. 武汉: 中国地质大学, 2021
ZHAO Yujie. Migmatites in the Tongbai-Dabie orogen: pertogenesis and implications[D]. Wuhan: China University of Geosciences, 2021.
[28] 朱雪丽, 董王仓, 李维成等. 陕南秦岭造山带侵入岩的控矿作用及其找矿意义[J]. 西北地质, 2021, 54(03): 163-173 doi: 10.19751/j.cnki.61-1149/p.2021.03.013
ZHU Xueli, DONG Wangcang, LI Weicheng, et al. Ore-controlling Factors and Prospecting Significance of Intrusive Rocks in South Shaanxi Qinling Orogenic Belt [J]. Northwestern Geology, 2021, 54(03): 163-173. doi: 10.19751/j.cnki.61-1149/p.2021.03.013
[29] GrantMatthew L, Wilde Simon A, Wu Fuyuan, et al. The application of zircon cathodoluminescence imaging, Th–U–Pb chemistry and U–Pb ages in interpreting discreteMagmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology, 2009, 261(1-2): 155-171. doi: 10.1016/j.chemgeo.2008.11.002
[30] JI Wenbin, LIN Wei, Faure Michel, et al. The early Cretaceous orogen-scale Dabieshan metamorphic core complex: implications for extensional collapse of the Triassic HP–UHP orogenic belt in east-central China[J]. International Journal of Earth Sciences, 2017, 106(4): 1311-1340. doi: 10.1007/s00531-016-1311-6
[31] Keay Sue, Lister Gordon, Buick Ian, et al. The timing of partial melting, Barrovian metamorphism and granite intrusion in the Naxos metamorphic core complex, Cyclades, Aegean Sea, Greece[J]. Tectonophysics, 2001, 342(3-4): 275-312. doi: 10.1016/S0040-1951(01)00168-8
[32] LI Jianwei, BI Shijian, Selby David, et al. Giant Mesozoic gold provinces related to the destruction of the North China craton[J]. Earth and Planetary Science Letters, 2012, 349-350: 26-37. doi: 10.1016/j.jpgl.2012.06.058
[33] LIU Yongsheng, GAO Shan, HU Zhaochu, et al. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons fromMantle Xenoliths[J]. Journal of Petrology, 2010, 51(1-2): 537-571. doi: 10.1093/petrology/egp082
[34] LIU Yongsheng, HU Zhaochu, GAO Shan, et al. In situ analysis ofMajor and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[35] Rubatto D. Zircon trace element geochemistry;partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical geology, 2002, 184(1-2): 123-138. doi: 10.1016/S0009-2541(01)00355-2
[36] WANG Peng, JIAN Wei, MaO Jingwen, et al. Geochronology and fluid source constraints of the Songligou gold‐telluride deposit, western Henan Province, China: Analysis of genetic implications[J]. Resource Geology, 2019, 70(2): 169-187.
[37] ZONG Keqing, Klemd Reiner, YUAN Yu, et al. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 2017, 290: 32-48. doi: 10.1016/j.precamres.2016.12.010
-