Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water
-
摘要:
酸性矿山排水(AMD)是硫化矿床矿山环境污染防治的难点,因而持续受到国内外学者的关注。众多的学者对矿区AMD中次生矿物进行了研究。为深入了解AMD中次生矿物的形成和演化,为AMD污染防治提供科学依据,笔者对前人不同环境下AMD中的次生矿物类型、次生矿物形成顺序,以及铝相次生矿物的形成、特征、环境危害及意义进行了简要综述。目前与AMD有关的主要次生矿物存在3种类型,即铁相次生矿物、铝相次生矿物和其他相次生矿物,AMD中的pH、Eh和温度对于次生矿物的形成具有控制性的作用。铁、铝相次生矿物具有吸附金属能力,这一性质有助于在一定程度上实现河流的自净化作用。由于AMD形成条件高,矿物相不稳定,目前有关AMD中铝相次生矿物及“酸性白水”的研究成果有限。因此,加强铝相次生矿物以及“酸性白水”的研究,可以更好地解析蒿坪河流域石煤矿区河流酸性磺水–酸性白水的形成演化机制,以及铝相次生矿物吸附重金属的地球化学过程。
Abstract:Acid mine drainage (AMD) is a difficult point in the prevention and control of environmental pollution in sulfide ore deposits, has attracted the attention of scholars at home and abroad. Numerous scholars have studied secondary minerals in AMD in different mining areas. In order to understand the formation and evolution of secondary minerals in AMD, it provides scientific basis for AMD pollution prevention and control. This paper briefly reviews the types of secondary minerals, the formation order of secondary minerals, and the formation, characteristics, environmental hazards and significance of secondary minerals in aluminum phase in AMD under different environments. There are currently three main types of secondary minerals associated with AMD, including: iron−phase secondary minerals, aluminum−phase secondary minerals and other−phase secondary minerals. The pH, Eh and temperature in AMD have a controlling effect on the formation of secondary minerals. Fe− and Al−phase secondary minerals have strong adsorption capacity for several metals in AMD, which can achieve a certain degree of water self−purification. At present, due to the high formation conditions of AMD and unstable mineral phases, there are limited research results on aluminum−phase secondary minerals and “acidic white water” in AMD. Therefore, the study of aluminum−phase secondary minerals and “acidic white water” can better analyze the formation and evolution mechanism of acidic sulfonated water and acidic white water in rivers in the stone coal mines area of Haoping river basin from the perspective of prevention and control, as well as the geochemical process of heavy metal adsorption by aluminum−phase secondary minerals.
-
-
表 1 AMD中次生矿物种类(据Alpers et al.,1994修改)
Table 1. Species of secondary minerals in AMD
铁相次生矿物 化学式 铝相次生矿物 化学式 其他相次生矿物 化学式 水绿矾 FeSO4·7H2O 铝叶绿矾 Al2/3Fe4(SO4)6(OH)2·20H2O 胆矾 CuSO4·5H2O 铁矾 FeSO4·5H2O 铁明矾 FeAl2(SO4)4·22H2O 三水胆矾 CuSO4·3H2O 水铁矾 FeSO4·H2O 镁明矾 MgAl2(SO4)4·22H2O 水胆矾 Cu4(SO4)·(OH)6 叶绿矾 FeFe4(SO4)6(OH)2·20H2O 锰明矾 MnAl2(SO4)4·22H2O 柱钠铜矾 Na2Cu(SO4)·22H2O 粒铁矾 FeFe2(SO4)4·14H2O 毛矾石 Al2(SO4)3·17H2O 斜蓝铜矾 Cu4(SO4)(OH)6·2H2O 针绿矾 Fe2(SO4)3·9H2O 斜铝矾 Al(SO4)(OH)·5H2O 水铜铝矾 Cu4Al2(SO4)(OH)12·24H2O 板铁矾 (H3O)Fe(SO4)2·3H2O 明矾石 KAl3(SO4)2(OH)6 水氯铜矿 CuCl2·2H2O 纤铁矾 Fe(SO4)(OH)·5H2O 钠明矾石 NaAl3(SO4)2(OH)6 砷铁矾 Fe6(AsO3)4(SO4)(OH)4·4H2O 红铁矾 Fe(SO4)(OH)·3H2O 羟铝矾 Al4(SO4)(OH)10·4H2O 石膏 CaSO4·2H2O 基铁矾 Fe(SO4)(OH)·2H2O 矾石 Al4(SO4)(OH)4·7H2O 泻利盐 MgSO4·7H2O 黄钾铁矾 KFe3(SO4)2(OH)6 斜钠明矾 NaAl(SO4)2·6H2O 水镍钴矾 Co6Ni3Mn(SO4)·6H2O 黄铵铁矾 NH4Fe3(SO4)2(OH)6 三水铝石 Al(OH)3 钴铝矾 (Co,Mg)Al2(SO4)4·22H2O 黄钠铁矾 NaFe3(SO4)2(OH)6 赤矾 CoSO4·7H2O 柱钾铁矾 K2O·Fe2O3·4SO3·8H2O 白钠镁矾 Na6Mg(SO4)2·4H2O 施威特曼石 Fe8O8(SO4)(OH)6 李时珍石 ZnFe2(SO4)4·14H2O 锡铁山石 Fe8(Cl)(SO4)·6H2O 针铁矿 α-FeOOH 纤铁矿 γ-FeOOH 褐铁矿 Fe2O3·nH2O 赤铁矿 Fe2O3 表 2 铝相次生矿物的性质(据Bigham et al.,2000修改)
Table 2. Properties of aluminum phase secondary minerals
矿物名称 水羟铝矾石
Al4(OH)10SO4·15H2O羟铝矾
Al4(OH)10SO4·4H2O水羟铝矾
Al12(OH)26(SO4)5·20H2O矾石
Al2(OH)4SO4·7H2O变矾石
Al2(OH)4SO4·5H2O晶系 单斜晶系 单斜晶系 三斜晶系 单斜晶系 单斜晶系 空间群 P21 P1 P21/c P21/m 晶胞尺寸 a=14.911
b=9.993
c=13.640
β=112.24°a=12.954
b=10.004
c=11.064
β=104.1°a=18.475
b=19.454
c=3.771
α=95.24°
β=91.48°
γ=80.24°a=7.440
b=15.583
c=11.700
β=110.18°a=7.930
b=16.879
c=7.353
β=106.73°颜色 白色至浅黄棕色 白色 白垩色/
含铜时为浅蓝绿色白色 丝白色 结构及结晶度 粘土状,
通常潮湿和可塑粘土状,
贝壳状断口密堆积的微-
隐晶质聚集体泥状、易碎、
结节状细小纤维结节状微晶线状
聚集体和凝结物最强XRD间距(Å) 12.6, 6.18, 5.29, 4.70 9.39, 4.73, 3.69, 1.438 18.1 8.98, 7.79, 4.70 8.46, 4.52, 4.39, 3.54 稳定性 易脱水为羟铝矾 由水羟铝矾石脱水而成 在环境条件下脱水 在55 ℃下脱水为矾石 表 3 铝羟基硫酸盐矿物中铝沉淀物的组成(%)(据Bigham et al.,2000修改)
Table 3. Composition (%) of Al hydroxysulfate minerals
水合
明矾石羟铝矾 水羟
铝矾石A B C D E F C1 C2 C3 理论值 分析值 Al2O3 38.80 45.80 31.70 46.40 44.75 36.20 42.80 47.00 39.00 40.10 44.10 CaO 0.30 0.40 0.77 1.50 Na2O 0.00 0.05 0.18 1.20 0.10 K2O 0.00 0.04 0.00 0.50 0.00 0.00 H2O 20.57 36.30 55.90 33.40 35.60 46.9 40.80 39.50 46.00 45.60 35.00 SO3 40.63 17.90 12.40 17.40 18.10 10.70 12.40 8.70 17.40 11.60 22.30 总计 100.00 100.00 100.00 97.20 98.75 94.20 96.90 96.90 104.20 97.40 101.40 X射线衍射 羟铝矾 羟铝矾 无定形 无定形 无定形 明矾石 无定形 无定形 电子衍射 羟铝矾 无定形 无定形 无定形 结晶 无定形 羟铝矾 注:样品A来自Bannister等(1948a);样品B来自Clayton(1980);样品C来自Nordstrom(1984);样品D来自Headden(1905)、Cunningham等(1996);样品E来自Ball(1989);样品F来自Charles等(1967)合成沉淀。 -
[1] 栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987(01): 46-56
LUAN Zhaokun. The speciation and speciation study of aluminum in water[J]. Environmental Chemistry, 1987(01): 46-56.
[2] 刘奇缘, 陈炳辉, 周永章等. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 2017, 45(03): 259-266
LIU Qiyuan, CHEN Binghui, ZHOU Yongzhang, et al. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan mine, North Guangdong province, China[J]. Earth and Environment, 2017, 45(03): 259-266.
[3] 王武名, 鲁安怀, 王长秋等. 尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成与转变[J]. 岩石矿物学杂志, 2009, 28(06): 581-586
WANG Wuming, LU Anhuai, WANG Changqiu, et al. The formation and transformation of schwertmannite during the preparation of ferric hydroxide with acid leaching filtrate of tailings[J]. Acta Petrologica Et Mineralogica, 2009, 28(06): 581-586.
[4] 吴亚坤, 谢臣臣, 孙魁等. 神府矿区不同含水层水力联系的水化学证据[J/OL]. 西北地质, 2023: 1−12. doi: 10.12401/j. nwg. 2023010
WU Yakun, XIE Chenchen, SUN Kui, et al. Hydrochemical evidence for hydraulic connection of different aquifers in Shenfu mining area[J/OL]. Northwestern Geology,2023: 1-12. doi: 10.12401/j.nwg.2023010
[5] 徐友宁, 张江华, 何芳等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139
XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.
[6] 徐友宁, 陈华清, 柯海玲, 等. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质, 2023, 56(4): 128–140.
XU Youning, CHEN Huaqing, KE Hailing, et al. Analysis of White Pollution of River Aluminum in Stone CoalMining Area in Haoping River Basin and Its Causes. Northwestern Geology, 2023, 56(4): 128–140.
[7] 周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82
ZHOU Lixiang. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 2008, 15(6): 74-82.
[8] 邹琦, 陈莹, 刘奇缘等. 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(03): 442-451
ZOU Qi, CHEN Ying, LIU Qiyuan, et al. Study on iron-bearing secondary minerals of ochre precipitates in the Tielong acid mine drainage, Dabaoshan mine, Guangdong province[J]. Geological Journal of China Universities, 2017, 23(03): 442-451.
[9] Adams F, Hajek B F. Effects of Solution Sulfate, Hydroxide, and Potassium Concentrations on the Crystallization of Alunite, Basaluminite, and Gibbsite from Dilute Aluminum Solutions[J]. Soil Science Society of America Journal, 1978, 126(3): 169-173.
[10] Alpers C N, Blowes D W, Nordstrom D K , et al. Secondary Minerals and Acid Mine-Water Chemistry. [M]. 1994.
[11] Alpers C N, Rye R O, Nordstrom D K , et al. Chemical, Crystallographic, and Isotopic Properties of Alunite and Jarosite from Acid Hypersaline Australian Lakes [J], Chemical Geology, 1992, 96(1-2): 203-226. doi: 10.1016/0009-2541(92)90129-S
[12] Anthony J W, McLean W J. Jurbanite, A New Post-Mine Aluminum Sulfate Mineral from San Manuel, Arizona [J], American Mineralogist, 1976, 61: 1-4.
[13] Ash S H, Felegy E W, Kennedy D O, et al. Acid Mine Drainage Problems: Anthracite Region of Pennsylvania [M]. Technical Report Archive & Image Library, 1951.
[14] Ball, P. The crystal structure of sodium sulfate decahydrate, Na2SO4·10H2O.[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1989,45(3), 363-365.
[15] Bannister F A, Hollingworth S E. Two Bew British Minerals[J]. Nature, 1948a, 162(4119): 565-565.
[16] Bao Y, Guo C, Lu G, et al. Role of Microbial Activity in Fe(III) Hydroxysulfate Mineral Transformations in An Acid Mine Drainage-Impacted Site from the Dabaoshan Mine[J]. Science of the Total Environment, 2018, 616: 647-657.
[17] Barton P. The acid mine drainage. In Sulfur in the Environment[M]. 1978.
[18] Basallote M D, Canovas C R, Olias M, et al. Mineralogically-Induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119-339.
[19] Bassett H, Goodwin T H. The basic aluminium sulphates[J]. Quarterly Journal of the Chemical Society of London, 1949, 2239-2279.
[20] Bertsch P, Parker B. Aqueous Polynuclear Aluminum Species[J]. Environmental Chemistry of Aluminum, 1996, 117-168.
[21] Beukes G J, Schoch A E, De Bruiyn H, et al. A New Occurrence of the Hydrated Aluminium Sulphate Zaherite, from Pofadder, South Africa[J]. Mineralogical Magazine, 1984, 48(346): 131-135. doi: 10.1180/minmag.1984.048.346.18
[22] Bigham J M, Nordstrom D K. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351–403. doi: 10.2138/rmg.2000.40.7
[23] Brown Jr G E, Calas G. Environmental Mineralogy–Understanding Element Behavior in Ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2-3): 90-112. doi: 10.1016/j.crte.2010.12.005
[24] Cala-Rivero V, Arranz-González J C, Rodríguez-Gómez V, et al. A Preliminary Study of the Formation of Efflorescent Sulfate Salts in Abandoned Mining Areas with a View to Their Harvesting and Subsequent Recovery of Copper[J]. Minerals Engineering, 2018, 129: 37-40. doi: 10.1016/j.mineng.2018.09.014
[25] Candeias C, Ávila P F, EF da Silva, et al. Acid Mine Drainage from the Panasqueira Mine and its Influence on Zêzere River(Central Portugal)[J]. Journal of African Earth Sciences, 2014, 99: 705-712. doi: 10.1016/j.jafrearsci.2013.10.006
[26] Caraballo M A, Wanty R B, Verplanck P L, et al. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 2019, 519: 1–10. doi: 10.1016/j.chemgeo.2019.04.013
[27] Carbone C, Dinelli E, Marescotti P, et al. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 2013, 132: 188-200. doi: 10.1016/j.gexplo.2013.07.001
[28] Carrero S, Pérez-López R, Fernandez-Martinez A, et al. The potential role of aluminum hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417: 414–423. doi: 10.1016/j.chemgeo.2015.10.020
[29] Casey W H, Rustad J R, Spiccia L. Minerals as molecules—Use of aqueous oxide and hydroxide clusters to understand geochemical reactions[J]. Chemistry–A European Journal, 2009, 15(18): 4496-4515. doi: 10.1002/chem.200802636
[30] Chen Z W, Zhong X, Zheng M Y, et al. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China[J]. Environmental Microbiology, 2022, 24(2): 919-937. doi: 10.1111/1462-2920.15501
[31] Charles Roberson, John Hem. Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution[D]. USGS,1967.
[32] Clayton T. Hydrobasaluminite and basaluminite from Chickerell, Dorset[J]. Mineralogical Magazine, 1980, 43(331): 931-937. doi: 10.1180/minmag.1980.043.331.18
[33] Cory N, Buffam I, Laudon H, et al. Landscape control of stream water aluminum in a boreal catchment during spring flood[J]. Environmental Science & Technology, 2006, 40(11): 3494-3500.
[34] Cravotta III C A, Brady K B C, Rose A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]US Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting: US Geological Survey Water-Resources Investigations Report. 1999, 99: 313-324.
[35] Cunningham K M. Water-quality data for Doughty Springs, Delta County, Colorado, 1903-1994, with emphasis on sulfur redox species[R]. US Geological Survey Water-Resources Investigations Report. 1996.
[36] Du J Y, Sabatini D A, Butler E C. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27. doi: 10.1016/j.chemosphere.2013.12.027
[37] De Bruiyn H, Schoch A E, Beukes G J, et al. Note on cell parameters of zaherite[J]. Mineralogical Magazine, 1985, 49(350): 145− 146.
[38] Ehlmann B L, Swayze G A, Milliken R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527− 1542.
[39] España J S, Pamo E L, Pastor E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt[J]. Aquatic Geochemistry, 2006, 12: 269-298. doi: 10.1007/s10498-005-6246-7
[40] España J S, Wang K, Falagán C, et al. Microbially mediated aluminosilicate formation in acidic anaerobic environments: A cell-scale chemical perspective[J]. Geobiology, 2018, 16(1): 88-103. doi: 10.1111/gbi.12269
[41] Farkas L, Pertlik F. Crystal structure determinations of felsöbányaite and basaluminite, Al4 (SO4)(OH)10·4H2O[J]. Acta Mineralogica-Petrographica, Szeged. 1997, 38: 5-15.
[42] Farrand W H, Glotch T D, Rice Jr J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488. doi: 10.1016/j.icarus.2009.07.014
[43] Frondel C. Meta-aluminite, a new mineral from Temple Mountain, Utah[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(5-6): 717-721.
[44] Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247. doi: 10.1126/science.1076505
[45] Headden, W.P. The Doughty Springs, a group of radium-bearing springs, Delta County, Colorado[J]. American Journal of Science, 1905,19, 297-309
[46] Hemley J J, Hostetler P B, Gude A J, et al. Some stability relations of alunite[J]. Economic Geology, 1969, 64(6): 599-612. doi: 10.2113/gsecongeo.64.6.599
[47] Hicks W S, Bowman G M, Fitzpatrick R W. Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate[J]. Soil Research, 2009, 47(2): 137-153. doi: 10.1071/SR06106
[48] Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1990, 75(3-4): 431-438.
[49] Johansson G. The crystal structures of [Al2(OH)2(H2O)8](SO4)4·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chemica Scandinavica, 1962, 16: 403-420. doi: 10.3891/acta.chem.scand.16-0403
[50] Johansson G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark. Kemi, 1963, 20: 321-342.
[51] Jones A M, Collins R N, Waite T D. Mineral species control of aluminum solubility in sulfate-rich acidic waters[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 965-977. doi: 10.1016/j.gca.2010.12.001
[52] Kefeni K K, Msagati T M, Mamba B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal, 2015, 276: 222-231. doi: 10.1016/j.cej.2015.04.066
[53] Liu Q, Chen B, Haderlein S, et al. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China[J]. Ecotoxicology and Environmental Safety, 2018, 155: 50-58. doi: 10.1016/j.ecoenv.2018.02.017
[54] Long D T, Fegan N E, McKee J D, et al. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia[J]. Chemical Geology, 1992, 96(1-2): 183-202. doi: 10.1016/0009-2541(92)90128-R
[55] Lozano A, Fernández-Martínez A, Ayora C, et al. Local structure and ageing of basaluminite at different pH values and sulphate concentrations[J]. Chemical Geology, 2018, 496: 25-33. doi: 10.1016/j.chemgeo.2018.08.002
[56] Lu C, Yang B, Cui X, et al. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1012-1021. doi: 10.1007/s00128-021-03355-9
[57] Lükewille A, Van Breemen N. Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany[J]. Water, Air, and Soil Pollution, 1992, 63: 411-416. doi: 10.1007/BF00475506
[58] Maza S N, Collo G, Astini R A, et al. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system[J]. Journal of South American Earth Sciences, 2014, 52: 149-165. doi: 10.1016/j.jsames.2014.02.010
[59] Michael G S, John A W. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of hazardous materials, 2019, 367: 267-276. doi: 10.1016/j.jhazmat.2018.12.035
[60] Munk L A, Faure G, Pride D E, et al. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado[J]. Applied Geochemistry, 2002, 17(4): 421-430. doi: 10.1016/S0883-2927(01)00098-1
[61] Newman C P, Mccrea K W, Zimmerman J, et al. Geochemistry, mineralogy, and acid-generating behaviour of efflorescent sulphate salts in underground mines in Nevada, USA[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(4): 317−329.
[62] Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[J]. Acid Sulfate Weathering, 1982a, 10: 37-56.
[63] Nordstrom D K. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K[J]. Geochimica et Cosmochimica Acta, 1982b, 46(4): 681-692. doi: 10.1016/0016-7037(82)90168-5
[64] Nordstrom D K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry. 2011, 26: 1777–1791
[65] Nordstrom D K, Alpers C N. Geochemistry of Acid Mine Waters in The Environmental Geochemistry of mineral deposits Part B[J]. Reviews in Economic geology–Society of economic geologists, Inc, 1999, 6A: 133-160.
[66] Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters[J]. Science, 1986, 232(4746): 54-56. doi: 10.1126/science.232.4746.54
[67] Nordstrom D K, Ball J W, Roberson C E, et al. The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates[C]//Geol. Soc. Am. Program Abstr. 1984, 16(6): 611.
[68] Raymahashay B C. A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park[J]. Geochimica et Cosmochimica Acta, 1968, 32(5): 499-522. doi: 10.1016/0016-7037(68)90042-2
[69] Rose A W, Cravotta III C A. Geochemistry of coal mine drainage[J]. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, 1998, 1: 1-22.
[70] Ruotsala A P, Babcock L L. Zaherite, a new hydrated aluminum sulfate[J]. American Mineralogist, 1977, 62(11−12): 1125− 1128.
[71] Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557: 343-354.
[72] Singh S S. The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature[J]. Canadian Journal of Soil Science, 1982, 62(2): 327-332. doi: 10.4141/cjss82-036
[73] Theobald Jr P K, Lakin H W, Hawkins D B. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado[J]. Geochimica et Cosmochimica Acta, 1963, 27(2): 121-132. doi: 10.1016/0016-7037(63)90053-X
[74] Topal M, Öbek E, Arslan Topal E I. Phycoremediation of precious metals by cladophora fracta from mine gallery waters causing environmental contamination[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 134-138. doi: 10.1007/s00128-020-02879-w
[75] Väänänen M, Kupiainen L, Rämö J, et al. Speciation and coagulation performance of novel coagulant–Aluminium formate[J]. Separation and Purification Technology, 2012, 86: 242-247. doi: 10.1016/j.seppur.2011.11.010
[76] Valente T, Grande J A, De La Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013, 39: 11-25. doi: 10.1016/j.apgeochem.2013.09.014
[77] Verplanck, P.L., Nordstrom, D.K., Taylor, H.E, et al. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation.[J]. Applied Geochemistry, 2004,19, 1339-1354
[78] Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433. doi: 10.1007/s11051-005-6931-x
[79] Weiser H B, Milligan W O, Purcell W R. Composition of floc formed at pH values below 5.5[J]. Ind Eng Chem, 1941, 33: 669-672. doi: 10.1021/ie50377a029
[80] Zhang Z, Wang L, Zhou B, et al. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1191-1201. doi: 10.1007/s00128-021-03147-1
[81] Zodrow E L, Mccandlish K. Hydrated sulfates in the Sydney coalfield, Cape Breton, Nova Scotia[J]. The Canadian Mineralogist, 1978, 16(1): 17-22.
-