矿山酸性水中铝相次生矿物及环境学意义的研究进展

陈华清, 张天亮, 龚慧山, 徐友宁, 周建伟. 2023. 矿山酸性水中铝相次生矿物及环境学意义的研究进展. 西北地质, 56(4): 141-151. doi: 10.12401/j.nwg.2023129
引用本文: 陈华清, 张天亮, 龚慧山, 徐友宁, 周建伟. 2023. 矿山酸性水中铝相次生矿物及环境学意义的研究进展. 西北地质, 56(4): 141-151. doi: 10.12401/j.nwg.2023129
CHEN Huaqing, ZHANG Tianliang, GONG Huishan, XU Youning, ZHOU Jianwei. 2023. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water. Northwestern Geology, 56(4): 141-151. doi: 10.12401/j.nwg.2023129
Citation: CHEN Huaqing, ZHANG Tianliang, GONG Huishan, XU Youning, ZHOU Jianwei. 2023. Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water. Northwestern Geology, 56(4): 141-151. doi: 10.12401/j.nwg.2023129

矿山酸性水中铝相次生矿物及环境学意义的研究进展

  • 基金项目: 陕西省重点研发计划“秦巴山区金属矿产开发引发生态环境污染综合治理关键技术与示范”(2023-ZDLSF-63),中国地质调查局项目“安康蒿坪河流域石煤矿区生态修复支撑调查与监测”(DD20230457)联合资助。
详细信息
    作者简介: 陈华清(1984−)男,硕士,从事矿山地质环境问题调查与防治工作,E−mail:116549321@qq.com
    通讯作者: 徐友宁(1963−)男,博士,研究员,从事矿山地质环境研究工作,E−mail:948477575@qq.com
  • 中图分类号: P592

Research Progress of Aluminum−Phase Secondary Minerals and Their Environmental Significance in Acid Mine Water

More Information
  • 酸性矿山排水(AMD)是硫化矿床矿山环境污染防治的难点,因而持续受到国内外学者的关注。众多的学者对矿区AMD中次生矿物进行了研究。为深入了解AMD中次生矿物的形成和演化,为AMD污染防治提供科学依据,笔者对前人不同环境下AMD中的次生矿物类型、次生矿物形成顺序,以及铝相次生矿物的形成、特征、环境危害及意义进行了简要综述。目前与AMD有关的主要次生矿物存在3种类型,即铁相次生矿物、铝相次生矿物和其他相次生矿物,AMD中的pH、Eh和温度对于次生矿物的形成具有控制性的作用。铁、铝相次生矿物具有吸附金属能力,这一性质有助于在一定程度上实现河流的自净化作用。由于AMD形成条件高,矿物相不稳定,目前有关AMD中铝相次生矿物及“酸性白水”的研究成果有限。因此,加强铝相次生矿物以及“酸性白水”的研究,可以更好地解析蒿坪河流域石煤矿区河流酸性磺水–酸性白水的形成演化机制,以及铝相次生矿物吸附重金属的地球化学过程。

  • 加载中
  • 图 1  蒿坪河流域某支沟河流中酸性磺水及白水照片

    Figure 1. 

    图 2  蒿坪河流域某支沟矿硐口磺水及白水照片

    Figure 2. 

    表 1  AMD中次生矿物种类(据Alpers et al.,1994修改)

    Table 1.  Species of secondary minerals in AMD

    铁相次生矿物化学式铝相次生矿物化学式其他相次生矿物化学式
    水绿矾FeSO4·7H2O铝叶绿矾Al2/3Fe4(SO46(OH)2·20H2O胆矾CuSO4·5H2O
    铁矾FeSO4·5H2O铁明矾FeAl2(SO44·22H2O三水胆矾CuSO4·3H2O
    水铁矾FeSO4·H2O镁明矾MgAl2(SO44·22H2O水胆矾Cu4(SO4)·(OH)6
    叶绿矾FeFe4(SO46(OH)2·20H2O锰明矾MnAl2(SO44·22H2O柱钠铜矾Na2Cu(SO4)·22H2O
    粒铁矾FeFe2(SO44·14H2O毛矾石Al2(SO43·17H2O斜蓝铜矾Cu4(SO4)(OH)6·2H2O
    针绿矾Fe2(SO43·9H2O斜铝矾Al(SO4)(OH)·5H2O水铜铝矾Cu4Al2(SO4)(OH)12·24H2O
    板铁矾(H3O)Fe(SO42·3H2O明矾石KAl3(SO42(OH)6水氯铜矿CuCl2·2H2O
    纤铁矾Fe(SO4)(OH)·5H2O钠明矾石NaAl3(SO42(OH)6砷铁矾Fe6(AsO34(SO4)(OH)4·4H2O
    红铁矾Fe(SO4)(OH)·3H2O羟铝矾Al4(SO4)(OH)10·4H2O石膏CaSO4·2H2O
    基铁矾Fe(SO4)(OH)·2H2O矾石Al4(SO4)(OH)4·7H2O泻利盐MgSO4·7H2O
    黄钾铁矾KFe3(SO42(OH)6斜钠明矾NaAl(SO42·6H2O水镍钴矾Co6Ni3Mn(SO4)·6H2O
    黄铵铁矾NH4Fe3(SO42(OH)6三水铝石Al(OH)3钴铝矾(Co,Mg)Al2(SO44·22H2O
    黄钠铁矾NaFe3(SO42(OH)6赤矾CoSO4·7H2O
    柱钾铁矾K2O·Fe2O3·4SO3·8H2O白钠镁矾Na6Mg(SO42·4H2O
    施威特曼石Fe8O8(SO4)(OH)6李时珍石ZnFe2(SO44·14H2O
    锡铁山石Fe8(Cl)(SO4)·6H2O
    针铁矿α-FeOOH
    纤铁矿γ-FeOOH
    褐铁矿Fe2O3·nH2O
    赤铁矿Fe2O3
    下载: 导出CSV

    表 2  铝相次生矿物的性质(据Bigham et al.,2000修改

    Table 2.  Properties of aluminum phase secondary minerals

    矿物名称水羟铝矾石
    Al4(OH)10SO4·15H2O
    羟铝矾
    Al4(OH)10SO4·4H2O
    水羟铝矾
    Al12(OH)26(SO45·20H2O
    矾石
    Al2(OH)4SO4·7H2O
    变矾石
    Al2(OH)4SO4·5H2O
    晶系单斜晶系单斜晶系三斜晶系单斜晶系单斜晶系
    空间群P21P1P21/cP21/m
    晶胞尺寸a=14.911
    b=9.993
    c=13.640
    β=112.24°
    a=12.954
    b=10.004
    c=11.064
    β=104.1°
    a=18.475
    b=19.454
    c=3.771
    α=95.24°
    β=91.48°
    γ=80.24°
    a=7.440
    b=15.583
    c=11.700
    β=110.18°
    a=7.930
    b=16.879
    c=7.353
    β=106.73°
    颜色白色至浅黄棕色白色白垩色/
    含铜时为浅蓝绿色
    白色丝白色
    结构及结晶度粘土状,
    通常潮湿和可塑
    粘土状,
    贝壳状断口
    密堆积的微-
    隐晶质聚集体
    泥状、易碎、
    结节状细小纤维
    结节状微晶线状
    聚集体和凝结物
    最强XRD间距(Å)12.6, 6.18, 5.29, 4.709.39, 4.73, 3.69, 1.43818.18.98, 7.79, 4.708.46, 4.52, 4.39, 3.54
    稳定性易脱水为羟铝矾由水羟铝矾石脱水而成在环境条件下脱水在55 ℃下脱水为矾石
    下载: 导出CSV

    表 3  铝羟基硫酸盐矿物中铝沉淀物的组成(%)(据Bigham et al.,2000修改)

    Table 3.  Composition (%) of Al hydroxysulfate minerals

    水合
    明矾石
    羟铝矾水羟
    铝矾石
    ABCDEF
    C1C2C3
    理论值分析值
    Al2O338.8045.8031.7046.4044.7536.2042.8047.0039.0040.1044.10
    CaO0.300.400.771.50
    Na2O0.000.050.181.200.10
    K2O0.000.040.000.500.000.00
    H2O20.5736.3055.9033.4035.6046.940.8039.5046.0045.6035.00
    SO340.6317.9012.4017.4018.1010.7012.408.7017.4011.6022.30
    总计100.00100.00100.0097.2098.7594.2096.9096.90104.2097.40101.40
    X射线衍射羟铝矾羟铝矾无定形无定形无定形明矾石无定形无定形
    电子衍射羟铝矾无定形无定形无定形结晶无定形羟铝矾
      注:样品A来自Bannister等(1948a);样品B来自Clayton(1980);样品C来自Nordstrom(1984);样品D来自Headden(1905)Cunningham等(1996);样品E来自Ball(1989);样品F来自Charles等(1967)合成沉淀。
    下载: 导出CSV
  • [1]

    栾兆坤. 水中铝的形态及其形态研究方法[J]. 环境化学, 1987(01): 46-56

    LUAN Zhaokun. The speciation and speciation study of aluminum in water[J]. Environmental Chemistry, 1987(01): 46-56.

    [2]

    刘奇缘, 陈炳辉, 周永章等. 粤北大宝山槽对坑酸性矿山废水中不同沉积层次生矿物研究[J]. 地球与环境, 2017, 45(03): 259-266

    LIU Qiyuan, CHEN Binghui, ZHOU Yongzhang, et al. A study on secondary minerals in different sediments of Caoduikeng acid mine drainage, Dabaoshan mine, North Guangdong province, China[J]. Earth and Environment, 2017, 45(03): 259-266.

    [3]

    王武名, 鲁安怀, 王长秋等. 尾矿酸浸液制备氢氧化铁过程中施威特曼石的形成与转变[J]. 岩石矿物学杂志, 2009, 28(06): 581-586

    WANG Wuming, LU Anhuai, WANG Changqiu, et al. The formation and transformation of schwertmannite during the preparation of ferric hydroxide with acid leaching filtrate of tailings[J]. Acta Petrologica Et Mineralogica, 2009, 28(06): 581-586.

    [4]

    吴亚坤, 谢臣臣, 孙魁等. 神府矿区不同含水层水力联系的水化学证据[J/OL]. 西北地质, 2023: 1−12. doi: 10.12401/j. nwg. 2023010

    WU Yakun, XIE Chenchen, SUN Kui, et al. Hydrochemical evidence for hydraulic connection of different aquifers in Shenfu mining area[J/OL]. Northwestern Geology,2023: 1-12. doi: 10.12401/j.nwg.2023010

    [5]

    徐友宁, 张江华, 何芳等. 西北地区矿山地质环境调查与防治研究[J]. 西北地质, 2022, 55(3): 129-139

    XU Youning, ZHANG Jianghua, HE Fang, et al. Investigation and Preventive Research of Mine Geological Environment in Northwest China[J]. Northwestern Geology, 2022, 55(3): 129-139.

    [6]

    徐友宁, 陈华清, 柯海玲, 等. 蒿坪河流域石煤矿区河流铝的白色污染及其成因分析. 西北地质, 2023, 56(4): 128–140.

    XU Youning, CHEN Huaqing, KE Hailing, et al. Analysis of White Pollution of River Aluminum in Stone CoalMining Area in Haoping River Basin and Its Causes. Northwestern Geology, 2023, 56(4): 128–140.

    [7]

    周立祥. 酸性矿山废水中生物成因次生高铁矿物的形成及环境工程意义[J]. 地学前缘, 2008, 15(6): 74-82

    ZHOU Lixiang. Biogenic iron oxyhydrosulfate and iron oxyhydroxide occurring in acid mine drainage and their environmental engineering implications[J]. Earth Science Frontiers, 2008, 15(6): 74-82.

    [8]

    邹琦, 陈莹, 刘奇缘等. 广东大宝山铁龙AMD中赭色沉积物的含铁次生矿物研究[J]. 高校地质学报, 2017, 23(03): 442-451

    ZOU Qi, CHEN Ying, LIU Qiyuan, et al. Study on iron-bearing secondary minerals of ochre precipitates in the Tielong acid mine drainage, Dabaoshan mine, Guangdong province[J]. Geological Journal of China Universities, 2017, 23(03): 442-451.

    [9]

    Adams F, Hajek B F. Effects of Solution Sulfate, Hydroxide, and Potassium Concentrations on the Crystallization of Alunite, Basaluminite, and Gibbsite from Dilute Aluminum Solutions[J]. Soil Science Society of America Journal, 1978, 126(3): 169-173.

    [10]

    Alpers C N, Blowes D W, Nordstrom D K , et al. Secondary Minerals and Acid Mine-Water Chemistry. [M]. 1994.

    [11]

    Alpers C N, Rye R O, Nordstrom D K , et al. Chemical, Crystallographic, and Isotopic Properties of Alunite and Jarosite from Acid Hypersaline Australian Lakes [J], Chemical Geology, 1992, 96(1-2): 203-226. doi: 10.1016/0009-2541(92)90129-S

    [12]

    Anthony J W, McLean W J. Jurbanite, A New Post-Mine Aluminum Sulfate Mineral from San Manuel, Arizona [J], American Mineralogist, 1976, 61: 1-4.

    [13]

    Ash S H, Felegy E W, Kennedy D O, et al. Acid Mine Drainage Problems: Anthracite Region of Pennsylvania [M]. Technical Report Archive & Image Library, 1951.

    [14]

    Ball, P. The crystal structure of sodium sulfate decahydrate, Na2SO4·10H2O.[J]. Acta Crystallographica Section C: Crystal Structure Communications, 1989,45(3), 363-365.

    [15]

    Bannister F A, Hollingworth S E. Two Bew British Minerals[J]. Nature, 1948a, 162(4119): 565-565.

    [16]

    Bao Y, Guo C, Lu G, et al. Role of Microbial Activity in Fe(III) Hydroxysulfate Mineral Transformations in An Acid Mine Drainage-Impacted Site from the Dabaoshan Mine[J]. Science of the Total Environment, 2018, 616: 647-657.

    [17]

    Barton P. The acid mine drainage. In Sulfur in the Environment[M]. 1978.

    [18]

    Basallote M D, Canovas C R, Olias M, et al. Mineralogically-Induced Metal Partitioning during the Evaporative Precipitation of Efflorescent Sulfate Salts from Acid Mine Drainage[J]. Chemical Geology, 2019, 530: 119-339.

    [19]

    Bassett H, Goodwin T H. The basic aluminium sulphates[J]. Quarterly Journal of the Chemical Society of London, 1949, 2239-2279.

    [20]

    Bertsch P, Parker B. Aqueous Polynuclear Aluminum Species[J]. Environmental Chemistry of Aluminum, 1996, 117-168.

    [21]

    Beukes G J, Schoch A E, De Bruiyn H, et al. A New Occurrence of the Hydrated Aluminium Sulphate Zaherite, from Pofadder, South Africa[J]. Mineralogical Magazine, 1984, 48(346): 131-135. doi: 10.1180/minmag.1984.048.346.18

    [22]

    Bigham J M, Nordstrom D K. Iron and Aluminum Hydroxysulfates from Acid Sulfate Waters[J]. Reviews in Mineralogy and Geochemistry, 2000, 40: 351–403. doi: 10.2138/rmg.2000.40.7

    [23]

    Brown Jr G E, Calas G. Environmental Mineralogy–Understanding Element Behavior in Ecosystems[J]. Comptes Rendus Geoscience, 2011, 343(2-3): 90-112. doi: 10.1016/j.crte.2010.12.005

    [24]

    Cala-Rivero V, Arranz-González J C, Rodríguez-Gómez V, et al. A Preliminary Study of the Formation of Efflorescent Sulfate Salts in Abandoned Mining Areas with a View to Their Harvesting and Subsequent Recovery of Copper[J]. Minerals Engineering, 2018, 129: 37-40. doi: 10.1016/j.mineng.2018.09.014

    [25]

    Candeias C, Ávila P F, EF da Silva, et al. Acid Mine Drainage from the Panasqueira Mine and its Influence on Zêzere River(Central Portugal)[J]. Journal of African Earth Sciences, 2014, 99: 705-712. doi: 10.1016/j.jafrearsci.2013.10.006

    [26]

    Caraballo M A, Wanty R B, Verplanck P L, et al. Aluminum mobility in mildly acidic mine drainage: Interactions between hydrobasaluminite, silica and trace metals from the nano to the meso-scale[J]. Chemical Geology, 2019, 519: 1–10. doi: 10.1016/j.chemgeo.2019.04.013

    [27]

    Carbone C, Dinelli E, Marescotti P, et al. The role of AMD secondary minerals in controlling environmental pollution: Indications from bulk leaching tests[J]. Journal of Geochemical Exploration, 2013, 132: 188-200. doi: 10.1016/j.gexplo.2013.07.001

    [28]

    Carrero S, Pérez-López R, Fernandez-Martinez A, et al. The potential role of aluminum hydroxysulphates in the removal of contaminants in acid mine drainage[J]. Chemical Geology, 2015, 417: 414–423. doi: 10.1016/j.chemgeo.2015.10.020

    [29]

    Casey W H, Rustad J R, Spiccia L. Minerals as molecules—Use of aqueous oxide and hydroxide clusters to understand geochemical reactions[J]. Chemistry–A European Journal, 2009, 15(18): 4496-4515. doi: 10.1002/chem.200802636

    [30]

    Chen Z W, Zhong X, Zheng M Y, et al. Indicator species drive the key ecological functions of microbiota in a river impacted by acid mine drainage generated by rare earth elements mining in South China[J]. Environmental Microbiology, 2022, 24(2): 919-937. doi: 10.1111/1462-2920.15501

    [31]

    Charles Roberson, John Hem. Form and Stability of Aluminum Hydroxide Complexes in Dilute Solution[D]. USGS,1967.

    [32]

    Clayton T. Hydrobasaluminite and basaluminite from Chickerell, Dorset[J]. Mineralogical Magazine, 1980, 43(331): 931-937. doi: 10.1180/minmag.1980.043.331.18

    [33]

    Cory N, Buffam I, Laudon H, et al. Landscape control of stream water aluminum in a boreal catchment during spring flood[J]. Environmental Science & Technology, 2006, 40(11): 3494-3500.

    [34]

    Cravotta III C A, Brady K B C, Rose A W, et al. Frequency distribution of the pH of coal-mine drainage in Pennsylvania[C]US Geological Survey Toxic Substances Hydrology Program–Proceedings of the Technical Meeting: US Geological Survey Water-Resources Investigations Report. 1999, 99: 313-324.

    [35]

    Cunningham K M. Water-quality data for Doughty Springs, Delta County, Colorado, 1903-1994, with emphasis on sulfur redox species[R]. US Geological Survey Water-Resources Investigations Report. 1996.

    [36]

    Du J Y, Sabatini D A, Butler E C. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere, 2014, 101: 21–27. doi: 10.1016/j.chemosphere.2013.12.027

    [37]

    De Bruiyn H, Schoch A E, Beukes G J, et al. Note on cell parameters of zaherite[J]. Mineralogical Magazine, 1985, 49(350): 145− 146.

    [38]

    Ehlmann B L, Swayze G A, Milliken R E, et al. Discovery of alunite in Cross crater, Terra Sirenum, Mars: Evidence for acidic, sulfurous waters[J]. American Mineralogist, 2016, 101(7): 1527− 1542.

    [39]

    España J S, Pamo E L, Pastor E S, et al. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt[J]. Aquatic Geochemistry, 2006, 12: 269-298. doi: 10.1007/s10498-005-6246-7

    [40]

    España J S, Wang K, Falagán C, et al. Microbially mediated aluminosilicate formation in acidic anaerobic environments: A cell-scale chemical perspective[J]. Geobiology, 2018, 16(1): 88-103. doi: 10.1111/gbi.12269

    [41]

    Farkas L, Pertlik F. Crystal structure determinations of felsöbányaite and basaluminite, Al4 (SO4)(OH)10·4H2O[J]. Acta Mineralogica-Petrographica, Szeged. 1997, 38: 5-15.

    [42]

    Farrand W H, Glotch T D, Rice Jr J W, et al. Discovery of jarosite within the Mawrth Vallis region of Mars: Implications for the geologic history of the region[J]. Icarus, 2009, 204(2): 478-488. doi: 10.1016/j.icarus.2009.07.014

    [43]

    Frondel C. Meta-aluminite, a new mineral from Temple Mountain, Utah[J]. American Mineralogist: Journal of Earth and Planetary Materials, 1968, 53(5-6): 717-721.

    [44]

    Furrer G, Phillips B L, Ulrich K U, et al. The origin of aluminum flocs in polluted streams[J]. Science, 2002, 297(5590): 2245-2247. doi: 10.1126/science.1076505

    [45]

    Headden, W.P. The Doughty Springs, a group of radium-bearing springs, Delta County, Colorado[J]. American Journal of Science, 1905,19, 297-309

    [46]

    Hemley J J, Hostetler P B, Gude A J, et al. Some stability relations of alunite[J]. Economic Geology, 1969, 64(6): 599-612. doi: 10.2113/gsecongeo.64.6.599

    [47]

    Hicks W S, Bowman G M, Fitzpatrick R W. Effect of season and landscape position on the aluminium geochemistry of tropical acid sulfate soil leachate[J]. Soil Research, 2009, 47(2): 137-153. doi: 10.1071/SR06106

    [48]

    Jambor J L, Puziewicz J. New mineral names[J]. American Mineralogist, 1990, 75(3-4): 431-438.

    [49]

    Johansson G. The crystal structures of [Al2(OH)2(H2O)8](SO4)4·2H2O and [Al2(OH)2(H2O)8](SeO4)2·2H2O[J]. Acta Chemica Scandinavica, 1962, 16: 403-420. doi: 10.3891/acta.chem.scand.16-0403

    [50]

    Johansson G. On the crystal structure of the basic sulfate 13Al2O3·6SO4·xH2O[J]. Ark. Kemi, 1963, 20: 321-342.

    [51]

    Jones A M, Collins R N, Waite T D. Mineral species control of aluminum solubility in sulfate-rich acidic waters[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 965-977. doi: 10.1016/j.gca.2010.12.001

    [52]

    Kefeni K K, Msagati T M, Mamba B B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage[J]. Chemical Engineering Journal, 2015, 276: 222-231. doi: 10.1016/j.cej.2015.04.066

    [53]

    Liu Q, Chen B, Haderlein S, et al. Characteristics and environmental response of secondary minerals in AMD from Dabaoshan Mine, South China[J]. Ecotoxicology and Environmental Safety, 2018, 155: 50-58. doi: 10.1016/j.ecoenv.2018.02.017

    [54]

    Long D T, Fegan N E, McKee J D, et al. Formation of alunite, jarosite and hydrous iron oxides in a hypersaline system: Lake Tyrrell, Victoria, Australia[J]. Chemical Geology, 1992, 96(1-2): 183-202. doi: 10.1016/0009-2541(92)90128-R

    [55]

    Lozano A, Fernández-Martínez A, Ayora C, et al. Local structure and ageing of basaluminite at different pH values and sulphate concentrations[J]. Chemical Geology, 2018, 496: 25-33. doi: 10.1016/j.chemgeo.2018.08.002

    [56]

    Lu C, Yang B, Cui X, et al. Characteristics and Environmental Response of White Secondary Mineral Precipitate in the Acid Mine Drainage From Jinduicheng Mine, Shaanxi, China[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1012-1021. doi: 10.1007/s00128-021-03355-9

    [57]

    Lükewille A, Van Breemen N. Aluminium precipitates from groundwater of an aquifer affected by acid atmospheric deposition in the Senne, Northern Germany[J]. Water, Air, and Soil Pollution, 1992, 63: 411-416. doi: 10.1007/BF00475506

    [58]

    Maza S N, Collo G, Astini R A, et al. Holocene ochreous lacustrine sediments within the Famatina Belt, NW Argentina: A natural case for fossil damming of an acid drainage system[J]. Journal of South American Earth Sciences, 2014, 52: 149-165. doi: 10.1016/j.jsames.2014.02.010

    [59]

    Michael G S, John A W. The role of secondary minerals in remediation of acid mine drainage by Portland cement[J]. Journal of hazardous materials, 2019, 367: 267-276. doi: 10.1016/j.jhazmat.2018.12.035

    [60]

    Munk L A, Faure G, Pride D E, et al. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado[J]. Applied Geochemistry, 2002, 17(4): 421-430. doi: 10.1016/S0883-2927(01)00098-1

    [61]

    Newman C P, Mccrea K W, Zimmerman J, et al. Geochemistry, mineralogy, and acid-generating behaviour of efflorescent sulphate salts in underground mines in Nevada, USA[J]. Geochemistry: Exploration, Environment, Analysis, 2019, 19(4): 317−329.

    [62]

    Nordstrom D K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals[J]. Acid Sulfate Weathering, 1982a, 10: 37-56.

    [63]

    Nordstrom D K. The effect of sulfate on aluminum concentrations in natural waters: some stability relations in the system Al2O3-SO3-H2O at 298 K[J]. Geochimica et Cosmochimica Acta, 1982b, 46(4): 681-692. doi: 10.1016/0016-7037(82)90168-5

    [64]

    Nordstrom D K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters[J]. Applied Geochemistry. 2011, 26: 1777–1791

    [65]

    Nordstrom D K, Alpers C N. Geochemistry of Acid Mine Waters in The Environmental Geochemistry of mineral deposits Part B[J]. Reviews in Economic geology–Society of economic geologists, Inc, 1999, 6A: 133-160.

    [66]

    Nordstrom D K, Ball J W. The geochemical behavior of aluminum in acidified surface waters[J]. Science, 1986, 232(4746): 54-56. doi: 10.1126/science.232.4746.54

    [67]

    Nordstrom D K, Ball J W, Roberson C E, et al. The effect of sulfate on aluminum concentrations in natural waters: II. Field occurrences and identification of aluminum hydroxysulfate precipitates[C]//Geol. Soc. Am. Program Abstr. 1984, 16(6): 611.

    [68]

    Raymahashay B C. A geochemical study of rock alteration by hot springs in the Paint Pot Hill area, Yellowstone Park[J]. Geochimica et Cosmochimica Acta, 1968, 32(5): 499-522. doi: 10.1016/0016-7037(68)90042-2

    [69]

    Rose A W, Cravotta III C A. Geochemistry of coal mine drainage[J]. Coal Mine Drainage Prediction and Pollution Prevention in Pennsylvania, 1998, 1: 1-22.

    [70]

    Ruotsala A P, Babcock L L. Zaherite, a new hydrated aluminum sulfate[J]. American Mineralogist, 1977, 62(11−12): 1125− 1128.

    [71]

    Sienkiewicz E, Gąsiorowski M. The evolution of a mining lake-From acidity to natural neutralization[J]. Science of the Total Environment, 2016, 557: 343-354.

    [72]

    Singh S S. The formation and coexistence of gibbsite, boehmite, alumina and alunite at room temperature[J]. Canadian Journal of Soil Science, 1982, 62(2): 327-332. doi: 10.4141/cjss82-036

    [73]

    Theobald Jr P K, Lakin H W, Hawkins D B. The precipitation of aluminum, iron and manganese at the junction of Deer Creek with the Snake River in Summit County, Colorado[J]. Geochimica et Cosmochimica Acta, 1963, 27(2): 121-132. doi: 10.1016/0016-7037(63)90053-X

    [74]

    Topal M, Öbek E, Arslan Topal E I. Phycoremediation of precious metals by cladophora fracta from mine gallery waters causing environmental contamination[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 105: 134-138. doi: 10.1007/s00128-020-02879-w

    [75]

    Väänänen M, Kupiainen L, Rämö J, et al. Speciation and coagulation performance of novel coagulant–Aluminium formate[J]. Separation and Purification Technology, 2012, 86: 242-247. doi: 10.1016/j.seppur.2011.11.010

    [76]

    Valente T, Grande J A, De La Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013, 39: 11-25. doi: 10.1016/j.apgeochem.2013.09.014

    [77]

    Verplanck, P.L., Nordstrom, D.K., Taylor, H.E, et al. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation.[J]. Applied Geochemistry, 2004,19, 1339-1354

    [78]

    Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms[J]. Journal of Nanoparticle Research, 2005, 7: 409-433. doi: 10.1007/s11051-005-6931-x

    [79]

    Weiser H B, Milligan W O, Purcell W R. Composition of floc formed at pH values below 5.5[J]. Ind Eng Chem, 1941, 33: 669-672. doi: 10.1021/ie50377a029

    [80]

    Zhang Z, Wang L, Zhou B, et al. Adsorption performance and mechanism of synthetic schwertmannite to remove low-concentration fluorine in water[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(6): 1191-1201. doi: 10.1007/s00128-021-03147-1

    [81]

    Zodrow E L, Mccandlish K. Hydrated sulfates in the Sydney coalfield, Cape Breton, Nova Scotia[J]. The Canadian Mineralogist, 1978, 16(1): 17-22.

  • 加载中

(2)

(3)

计量
  • 文章访问数:  824
  • PDF下载数:  20
  • 施引文献:  0
出版历程
收稿日期:  2023-05-08
修回日期:  2023-07-10
录用日期:  2023-07-12
刊出日期:  2023-08-20

目录