雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析

刘勇, 张文, 魏良帅. 2024. 雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析. 西北地质, 57(1): 44-54. doi: 10.12401/j.nwg.2023136
引用本文: 刘勇, 张文, 魏良帅. 2024. 雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析. 西北地质, 57(1): 44-54. doi: 10.12401/j.nwg.2023136
LIU Yong, ZHANG Wen, WEI Liangshuai. 2024. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River. Northwestern Geology, 57(1): 44-54. doi: 10.12401/j.nwg.2023136
Citation: LIU Yong, ZHANG Wen, WEI Liangshuai. 2024. Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River. Northwestern Geology, 57(1): 44-54. doi: 10.12401/j.nwg.2023136

雅鲁藏布江中游石冰川发育特征及潜在成灾机制分析

  • 基金项目: 中国地质调查局项目“长江上游水文地质与水资源调查监测”(DD20221757)、四川省自然资源厅项目“四川省黄河流域地下水资源调查(2023-2025)”(N5100012023000974)、西藏自治区自然资源厅项目“西藏自治区地质灾害防治技术研究与示范”(藏财采[2020]0890-1)联合资助。
详细信息
    作者简介: 刘勇(1989− ),男,博士,工程师,主要从事水文地质和环境地质研究工作。E−mail:1039786137@qq.com
    通讯作者: 张文(1985−),男,博士,高级工程师,主要从事工程地质和环境地质研究工作。E−mail:3463287@qq.com
  • 中图分类号: P66

Developmental Characteristics and Potential Disaster Mechanism of Rock Glaciers in the Middle Reaches of the Yarlung Zangbo River

More Information
  • 石冰川是以冰岩混合物为基础在重力和冻融作用下形成的一类具有蠕滑特征的冰缘地貌,大量分布于中国青藏高原和天山地区,了解其发育特征对于研究高寒山区环境演化和致灾机理具有重要的理论和现实意义。近年来的监测研究发现,受气候变暖影响,石冰川表面蠕滑出现了显著的加速过程,形成泥石流或滑坡的风险增大。青藏高原是全球气候变暖的敏感区,由气候变暖引起的地质灾害受到广泛关注。鉴于此,笔者采用现场测量、遥感解译和理论分析的方法,分析并探讨了雅鲁藏布江中游桑−加峡谷两岸石冰川的发育特征和潜在成灾机制。结果表明,石冰川的形成和发育与孕育基床的地形、气候和太阳辐射有关,在气温升高、短历时强降雨或强烈地震作用下,石冰川易形成泥石流或滑坡灾害威胁下游,主要表现为石冰川下游段组成物质的不稳定性。

  • 加载中
  • 图 1  研究区地理位置图

    Figure 1. 

    图 2  典型石冰川遥感影像分布图

    Figure 2. 

    图 3  典型石冰川分布示意图

    Figure 3. 

    图 4  典型冰碛型石冰川

    Figure 4. 

    图 5  典型倒石堆型石冰川

    Figure 5. 

    图 6  研究区石冰川分布图

    Figure 6. 

    图 7  石冰川属性参数统计图

    Figure 7. 

    图 8  研究区石冰川坡度和流向分布图

    Figure 8. 

    图 9  巴龙贡巴倒石堆型石冰川表层照片

    Figure 9. 

    图 10  噶琼绒冰碛型石冰川照片

    Figure 10. 

    图 11  岩屑尺寸统计图

    Figure 11. 

    图 12  岩屑磨圆度统计

    Figure 12. 

    图 13  沃德贡杰石冰川分布全貌图

    Figure 13. 

    图 14  沃德贡杰石冰川轮廓线分布图(底图为1965年锁眼卫星影像)

    Figure 14. 

    图 15  沃卡盆地东侧冰蚀槽谷前缘淤堵照片

    Figure 15. 

    表 1  遥感影像信息表

    Table 1.  Remote Sensing Image Information

    采集时间景号传感器分辨率(m)产品级别轨道号
    2020-10-278369717PMS1L1A33461
    2020-11-018317957PMS1L1A33533
    2020-11-018317956PMS1L1A33533
    2020-11-018317955PMS1L1A33533
    2020-10-278329966PMS1L1A33459
    2020-11-018318233PMS1L1A33533
    2020-11-018318232PMS1L1A33533
    2020-11-018318231PMS1L1A33533
    1965-12-31\KH-90.6~1.2\\
    1981-02-18\KH-90.6~1.2\\
    下载: 导出CSV
  • [1]

    丛凯, 李瑞冬, 毕远宏. 基于FLO-2D模型的泥石流治理工程效益评价[J]. 西北地质, 2019, 52(03): 209-216.

    CONG Kai, LI Ruidong, BI Yuanhong. Benefit evaluation of debris flow control engineering based on FLO-2D Model [J]. Northwestern Geology, 2019, 52 (03): 209-2016.

    [2]

    郭志明. 雅鲁藏布江流域石冰川编目及空间分布特征研究[D]. 昆明: 云南大学, 2019

    GUO Zhiming. Study on the cataloguing and spatial distribution characteristics of rock glaciers in the Yarlung Tsangpo River basin [D]. Kunming: Yunnan University, 2019.

    [3]

    刘耕年, 熊黑钢, 崔之久, 等. 天山石冰川的形态与发育条件[J]. 地理科学, 1995(3): 226-233+297 doi: 10.13249/j.cnki.sgs.1995.03.004

    LIU Gengnian, XIONG Heigang, CIU Zhijiu, et al. Morphology and development conditions of rock glaciers in the Tianshan Mountains[J]. Geoscience, 1995(3): 226-233+297. doi: 10.13249/j.cnki.sgs.1995.03.004

    [4]

    刘勇. 内外动力耦合下雅鲁藏布江贡嘎-加查河段的成灾机制研究[D]. 成都: 成都理工大学, 2021

    LIU Yong. Study on the disaster mechanism of the Yarlung Tsangpo River Gongga-Jiacha section under the coupling of internal and external dynamics [D]. Chengdu: Chengdu University of Technology, 2021.

    [5]

    马腾霄, 杨文光, 朱利东, 等. 雅鲁藏布江中游地貌参数特征及其构造地貌意义[J]. 成都理工大学学报(自然科学版), 2022, 49(4): 502−512.

    MA Tengxiao, YANG Wenguang, ZHU Lidong, et al. Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2022, 49(4): 502−512.

    [6]

    王运生, 刘勇, 罗永红, 等. 深切峡谷斜坡地震动响应研究[M]. 北京: 科学出版社, 2019

    WANG Yunsheng, LIU Yong, LUO Yonghong, et al. Study on ground vibration response of deep-cut canyon slopes [M]. Beijing: Science Press, 2019.

    [7]

    吴中海, 张永双, 胡道功, 等. 西藏桑日县沃卡地堑的第四纪正断层活动及其机制探讨[J]. 地质学报, 2007(10): 1328-1337+1449-1450.

    WU Zhonghai, ZHANG Yongshuang, HU Daogong, et al. Exploration of Quaternary normal fault activity and its mechanism in the Woka graben, Sangri County, Tibet[J]. Journal of Geology, 2007(10): 1328-1337+1449-1450.

    [8]

    徐瑾昊. 基于深度学习的石冰川遥感识别研究[D]. 西安: 西北大学, 2020

    XU Jinhao. Research on remote sensing identification of rock glaciers based on deep learning[D]. Xi’an: Northwestern University, 2020.

    [9]

    杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(01): 1-10

    YANG Yaoxian, HU Zeyong, LU Fuquan, et al. Progress of climate change and its environmental impact on Qinghai-Tibet Plateau in the past 60 years[J]. Highland Meteorology, 2022, 41(01): 1-10.

    [10]

    张升林, 江在雄. 1915年西藏桑日7.0级地震[J]. 东北地震研究, 1991(01): 131-132

    ZHANG Shenglin, JIANG Zaixiong. The magnitude 7.0 earthquake in Sangri, Tibet, 1915[J]. Northeast Earthquake Research, 1991(01): 131-132.

    [11]

    朱诚. 现代冰缘地貌研究[M]. 南京: 江苏科学技术出版社, 1994

    ZHU Cheng. Studies on modern ice margin landforms[M]. Nanjing: Jiangsu Science and Technology Press, 1994.

    [12]

    周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

    ZHOUAORIGELE, WANG Ying, TANG Juxing, et al. Early miocene exhumation history in the eastern porphyry copper belt and its influence on the spatial and temporal distribution of Oligocene- Miocene porphyry deposits[J]. Northwestern Geology, 2022, 55 (03): 286-296 doi: 10.19751/j.cnki.61-1149/p.2022.03.023

    [13]

    Buchli T, Kosa A, Limpach P, et al. Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland [J]. Permafrost and Periglacial Processes, 2018, 29(1): 3-20. doi: 10.1002/ppp.1968

    [14]

    Brencher G, Handwerger A, Munroe J. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA [J]. Cryosphere, 2021, 15(10): 4823-4844. doi: 10.5194/tc-15-4823-2021

    [15]

    Benn D I, Ballantyne C K. Reconstructing the transport history of glacigenic sediments: a new approach based on the co-variance of clast form indices[J]. Sedimentary Geology, 1994, 91(1-4): 215-227. doi: 10.1016/0037-0738(94)90130-9

    [16]

    Barsch D. Rock glaciers- Indicators for the Present and Former Geoecology in High Mountain Environments [J]. Springer-Verlag, Berlin, 1996, 269-271.

    [17]

    Brozovic N, Burbank D W, Meigs A J. Climatic limits on landscape development in the Northwestern Himalaya[J]. Science, 1997, 276(5312): 571-574. doi: 10.1126/science.276.5312.571

    [18]

    Corte A. The hydrological significance of rock glaciers[J]. Journal of Glaciology, 1976, 17(75): 157-158. doi: 10.3189/S0022143000030859

    [19]

    Cicoira A, Marcer M, Gartner-Roer I, et al. A general theory of rock glacier creep based on in-situ and remote sensing observations[J]. Permafrost and Periglacial Processes, 2020, 32(1): 139-153.

    [20]

    Eriksen H, Rouyet L, Lauknes T R, et al. Recent Acceleration of a Rock Glacier Complex, Adept, Norway, Documented by 62 Years of Remote Sensing Observations[J]. Geophysical Research Letters, 2018, 45(16): 8314-8323. doi: 10.1029/2018GL077605

    [21]

    Fey C, Krainer K. Analyses of UAV and GNSS based flow velocity variations of the rock glacier Lazaun (Ötztal Alps, South Tyrol, Italy) [J]. Geomorphology, 2020, 365: 107261. doi: 10.1016/j.geomorph.2020.107261

    [22]

    Haeberli W, Hallet B, Arenson L, et al. Permafrost creep and rock glacier dynamics [J]. Permafrost and Periglacial Processes, 2006, 17(3): 189-214. doi: 10.1002/ppp.561

    [23]

    Jankea J R, Bellisarioa A C, Ferrandobl F A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile [J]. Geomorphology, 2015, 98-121.

    [24]

    Jones D B, Harrison S, Anderson K, et al. Mountain rock glaciers contain globally significant waterstores [J]. Scientific Reports, 2018, 8 (1): 28-34. doi: 10.1038/s41598-017-18341-7

    [25]

    Müller J, Vieli A, Gartner-Roer I. Rock glaciers on the run - understanding rock glacier landform evolution and recent changes from numerical flow modeling[J]. Cryosphere, 2016, 10(6): 2865-2886. doi: 10.5194/tc-10-2865-2016

    [26]

    Onaca A, Ardelean F, Urdea P, et al. Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors [J]. Geomorphology, 2017, 293(B): 391-404.

  • 加载中

(15)

(1)

计量
  • 文章访问数:  1517
  • PDF下载数:  196
  • 施引文献:  0
出版历程
收稿日期:  2023-03-23
修回日期:  2023-07-18
刊出日期:  2024-02-20

目录