The Augaro Arc-type Granite in the Nubia Shield, Western Eritrea: Petrogenesis and Implications for Neoproterozoic Geodynamic Evolution of the East African Orogen
-
摘要:
东非造山带是东西冈瓦纳大陆的拼合带,详细解剖其形成演化过程对深入理解超大陆旋回具有重要意义。笔者报道了厄立特里亚西部Augaro地区Meraf花岗岩的锆石U-Pb年龄、全岩地球化学和Sr-Nd-Hf同位素组成,以研究其成因及其对东非造山带新元古代构造演化的指示意义。LA-ICPMS锆石U-Pb定年结果为(875±6) Ma,形成于新元古代拉伸纪。Meraf花岗岩具有高硅、钙碱性、过铝质特征,稀土元素配分曲线总体右倾,LREE富集,HREE相对亏损,弱Eu负异常(δEu=0.70~0.91),富集Ba、Rb、K等大离子亲石元素,相对亏损Ta、Nb、Ti等高场强元素,属于岛弧性质I型花岗岩。εHf(t)值为正(7.7~9.9),ISr值较低(0.70200~0.70273),εNd(t)值为4.85~6.06。结合微量元素特征,说明Meraf花岗岩为俯冲洋壳板片脱水交代上覆地幔楔并使其部分熔融的产物,指示区内大陆裂解和莫桑比克洋形成早于875 Ma。
Abstract:The East African orogen is a collisional collage belt of East Gondwana and West Gondwana. A deep study of the evolution of the orogenic belt is of great significance for understanding the supercontinent cycles. Zircon LA-ICP MS U–Pb ages and Hf isotopic compositions, whole rock major and trace elements and Sr-Nd isotopic compositions of the Meraf granite within the Augaro, west Eritrea, are reported in this paper to study the petrogenesis and implications for the Neoproterozoic tectonic evolution of the East African orogenic belt. LA-ICPMS zircon U-Pb dating of the Meraf granite yields magmatic crystallization age of (875±6) Ma. The Meraf granite has geochemistry patterns resembling those of Arc-type granite, with high-SiO2, calc-alkaline and peraluminous, and enriched in LREE and LILE such as Ba, Rb, K, relatively depleted in HREE and HFSE such as Ta, Nb, Ti, with weak Eu negative anomalies (δEu= 0.70-0.91). Combined with the positive εHf (t) (7.7~9.9), low initial 87Sr/86Sr (0.70200~0.70273), and remarkable εNd(t) values (4.85~6.06), the Meraf granite is supposed to be the product of partial melting of the mantle wedge triggered by dehydration of the subducting oceanic plate. Together with widespread Neoproterozoic arc-type granites in the East African orogen, the break-up of Supercontinent and formation of Mozambique oceanic are believed to predate the 875Ma.
-
Key words:
- geochemistry /
- arc-type granite /
- zircon U-Pb dating /
- Neoproterozoic /
- east african orogen
-
-
图 4 Meraf花岗岩锆石年龄谐和图(a)和REE配分模式图(b)标准化值(据Sun et al., 1989)
Figure 4.
图 6 Meraf花岗岩稀土元素球粒陨石标准化分布图(a)和微量元素原始地幔标准化蛛网图(b)(标准化值据Sun et al.,1989)
Figure 6.
表 1 厄立特里亚西部花岗岩锆石U-Pb同位素测试结果表
Table 1. Zircon U-Pb isotope results of granites from western Eritrea
点号 232Th(×10−6) 238U(×10−6) Th/U 同位素比值 年龄(Ma) 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ D0804-b02 - 1 124 155 0.80 0.0724 0.0008 1.4477 0.0341 0.1451 0.0030 909 14 874 17 D0804-b02 - 3 89.5 108 0.83 0.0704 0.0011 1.4180 0.0358 0.1454 0.0026 897 15 875 14 D0804-b02 - 5 142 160 0.88 0.0680 0.0008 1.3551 0.0218 0.1447 0.0022 870 9 871 12 D0804-b02 - 6 119 139 0.85 0.0693 0.0009 1.3954 0.0267 0.1460 0.0026 887 11 879 15 D0804-b02 - 7 33.1 73.4 0.45 0.0689 0.0011 1.3837 0.0299 0.1458 0.0026 882 13 877 15 D0804-b02 - 8 120 190 0.63 0.0676 0.0010 1.3548 0.0260 0.1459 0.0028 870 11 878 16 D0804-b02 - 9 77.3 139 0.56 0.0672 0.0011 1.3579 0.0297 0.1467 0.0028 871 13 882 16 D0804-b02 - 10 74.1 106 0.70 0.0680 0.0010 1.3728 0.0273 0.1462 0.0024 877 12 880 13 D0804-b02 - 11 118 123 0.96 0.0682 0.0010 1.3624 0.0255 0.1446 0.0020 873 11 870 11 D0804-b02 - 12 52.2 94.9 0.55 0.0693 0.0009 1.3841 0.0272 0.1446 0.0025 882 12 871 14 D0804-b02 - 13 56.6 112 0.50 0.0689 0.0010 1.3845 0.0296 0.1457 0.0027 882 13 877 15 D0804-b02 - 16 71.3 104 0.69 0.0684 0.0009 1.3755 0.0250 0.1457 0.0023 879 11 877 13 D0804-b02 - 18 53.8 77.3 0.70 0.0687 0.0009 1.3802 0.0242 0.1458 0.0023 881 10 877 13 D0804-b02 - 19 79.1 120 0.66 0.0674 0.0008 1.3573 0.0251 0.1459 0.0024 871 11 878 13 D0804-b02 - 21 74.4 141 0.53 0.0681 0.0008 1.3656 0.0221 0.1451 0.0017 874 10 873 9 D0804-b02 - 23 224 301 0.74 0.0720 0.0008 1.4419 0.0263 0.1446 0.0019 906 11 871 11 D0804-b02 - 24 105 125 0.84 0.0677 0.0010 1.3498 0.0226 0.1448 0.0019 867 10 872 11 D0804-b02 - 25 110 194 0.57 0.0678 0.0007 1.3707 0.0218 0.1464 0.0022 876 9 881 12 表 2 厄立特里亚西部花岗岩主量(%)、微量和稀土(10–6)元素测试结果表
Table 2. Major (%), trace and rare earth (10–6) elements results of granites from western Eritrea
样号 D0408-b02(Y) D0408-b04 D0408-b05 D0408-b06 SiO2 74.92 71.13 75.26 74.17 Al2O3 13.38 14.03 13.52 14.42 TiO2 0.26 0.32 0.27 0.33 Fe2O3 1.18 1.3 1.46 1.58 FeO 0.61 0.97 0.37 0.61 FeOT 1.67 2.14 1.68 2.03 MnO 0.02 0.05 0.04 0.03 MgO 0.54 0.84 0.56 0.62 CaO 0.96 1.97 0.29 0.24 Na2O 4.05 3.8 3.28 4.16 K2O 2.39 2.76 3.77 2.55 P2O5 0.06 0.10 0.08 0.07 烧失量 1.55 2.63 1.02 1.2 总量 99.91 99.90 99.92 99.97 Na2O+K2O 6.44 6.56 7.05 6.71 Na2O/K2O 1.69 1.38 0.87 1.63 FeOT/MgO 3.10 2.56 3.01 3.29 A/NK 1.45 1.52 1.43 1.50 A/CNK 1.22 1.09 1.35 1.44 Li 2.87 5.06 4.73 4.73 Be 1.18 1.25 1.34 1.28 Sc 1.94 3.45 7.11 3.15 V 17.1 26.6 17.8 25.6 Cr 5.96 8.64 7.68 7.16 Co 2.79 4.92 3.60 3.64 Ni 6.36 8.67 7.66 9.46 Ga 21.4 19.5 25.1 21.8 Rb 47.2 54.8 67.7 48.5 Sr 186 266 188 212 Y 12.7 11.1 10.7 14.2 Zr 165 205 188 222 Nb 3.97 3.90 4.56 4.54 Cs 0.39 0.60 0.50 0.56 Ba 766 634 1010 764 La 21.6 12.7 11.1 16.6 Ce 51.7 26.3 25.1 39.3 Pr 5.62 3.44 3.17 4.18 Nd 21.0 13.8 12.4 16.2 Sm 3.70 2.73 2.45 3.12 Eu 0.78 0.76 0.68 0.73 Gd 3.10 2.37 2.14 2.80 Tb 0.47 0.39 0.36 0.46 Dy 2.60 2.31 2.23 2.84 Ho 0.53 0.48 0.47 0.58 Er 1.52 1.35 1.38 1.69 Tm 0.25 0.22 0.24 0.28 Yb 1.78 1.55 1.66 1.96 Lu 0.27 0.23 0.25 0.28 Hf 4.20 4.82 4.75 5.43 Ta 0.38 0.35 0.47 0.46 Pb 8.98 7.81 8.87 8.96 Th 5.99 4.79 7.18 5.73 U 1.37 1.19 1.57 1.54 LREE 104.40 59.73 54.90 80.13 HREE 23.22 20.00 19.43 25.09 REE 127.62 79.73 74.33 105.22 LREE/HREE 4.50 2.99 2.83 3.19 La/Sm 5.84 4.65 4.53 5.32 Gd/Yb 1.74 1.53 1.29 1.43 (La/Yb)N 8.70 5.88 4.80 6.08 δEu 0.70 0.91 0.91 0.76 δCe 1.15 0.98 1.04 1.16 表 3 厄立特里亚西部花岗岩锆石Hf同位素测试结果表
Table 3. Zircon Hf isotope results of granites from western Eritrea
点号 176Hf/177Hf 1σ 176Lu/177Hf 1σ 176Yb/177Hf 1σ 年龄 (Ma) εHf(0) εHf(t) TDM1 TDM2 fLu/Hf D0408-b02 - 1 0.282511 0.000015 0.001569 0.000021 0.049342 0.000577 874 −9.2 9.2 1063 1134 −0.95 D0408-b02 - 3 0.282473 0.000017 0.001392 0.000022 0.040320 0.000820 875 −10.6 8.0 1113 1203 −0.96 D0408-b02 - 4 0.282509 0.000014 0.001960 0.000017 0.056534 0.000479 871 −9.3 8.8 1078 1152 −0.94 D0408-b02 - 5 0.282477 0.000014 0.001786 0.000013 0.050718 0.000462 879 −10.4 8.0 1119 1207 −0.95 D0408-b02 - 6 0.282455 0.000013 0.000699 0.000004 0.020135 0.000087 877 −11.2 7.8 1118 1215 −0.98 D0408-b02 - 7 0.282491 0.000014 0.001554 0.000007 0.045299 0.000297 878 −10.0 8.6 1093 1173 −0.95 D0408-b02 - 8 0.282487 0.000016 0.001637 0.000005 0.046273 0.000141 880 −10.1 8.4 1101 1183 −0.95 D0408-b02 - 9 0.282506 0.000012 0.001285 0.000005 0.036654 0.000233 882 −9.4 9.4 1063 1132 −0.96 D0408-b02 - 10 0.282479 0.000014 0.001221 0.000015 0.037185 0.000438 870 −10.4 8.2 1099 1188 −0.96 D0408-b02 - 11 0.282468 0.000013 0.001402 0.000006 0.039755 0.000083 871 −10.8 7.7 1121 1215 −0.96 D0408-b02 - 12 0.282521 0.000015 0.002271 0.000033 0.065457 0.000898 877 −8.9 9.2 1070 1137 −0.93 D0408-b02 - 15 0.282485 0.000017 0.001789 0.000003 0.050721 0.000205 877 −10.1 8.2 1108 1192 −0.95 D0408-b02 - 17 0.282483 0.000013 0.001226 0.000010 0.035902 0.000355 877 −10.2 8.4 1095 1179 −0.96 D0408-b02 - 18 0.282485 0.000015 0.001925 0.000014 0.055076 0.000422 878 −10.2 8.1 1112 1197 −0.94 D0408-b02 - 21 0.282476 0.000016 0.001765 0.000007 0.050625 0.000366 871 −10.5 7.8 1120 1212 −0.95 D0408-b02 - 22 0.282537 0.000013 0.001803 0.000016 0.057800 0.000587 872 −8.3 9.9 1034 1093 −0.95 D0408-b02 - 23 0.282475 0.000014 0.001569 0.000004 0.047910 0.000194 881 −10.5 8.1 1115 1203 −0.95 表 4 厄立特里亚西部花岗岩全岩Sr-Nd同位素测试结果表
Table 4. Whole rock Sr-Nd isotope results of granites from western Eritrea
样品编号 Rb(10−6) Sr(10−6) 87Rb/86Sr 87Sr/86Sr 2σ ISr εSr(0) εSr(t) fRb/Sr D0408-b02(Y) 47.2 186 0.7348 0.71158 0.000007 0.70239 100.5 −15.3 7.89 D0408-b04 54.8 266 0.5966 0.710074 0.000008 0.70261 79.1 −12.2 6.21 D0408-b05 67.7 188 1.0427 0.71504 0.000005 0.70200 149.6 −20.8 11.61 D0408-b06 48.5 212 0.6625 0.711018 0.000011 0.70273 92.5 −10.5 7.01 样品编号 Sm(10−6) Nd(10−6) 147Sm/144Nd 143Nd/144Nd 2σ INd εNd(t) T2DM fSm/Nd D0408-b02(Y) 3.7 21 0.1065 0.512387 0.000007 0.511776 5.22 1111 −0.46 D0408-b04 2.73 13.8 0.1196 0.512505 0.000005 0.511819 6.06 1043 −0.39 D0408-b05 2.45 12.4 0.1195 0.512443 0.000004 0.511757 4.85 1141 −0.39 D0408-b06 3.12 16.2 0.1164 0.512449 0.000007 0.511781 5.32 1103 −0.41 -
[1] 曹强, 杨增海, 秦秀峰, 等. 东部非洲厄立特里亚Augaro金矿区特征及找矿预测[J]. 矿产勘查, 2020, 11(10): 2239-2253
CAO Qiang, YANG Zenghai, QIN Xiufeng, et al. Characteristics and prospecting prediction of Augaro gold deposit in Eritrea, East Africa[J]. Mineral Exploration, 2020, 11(10): 2239-2253.
[2] 过磊, 李建星, 郭琳, 等. 南阿尔金茫崖碱长花岗岩锆石U-Pb定年及岩石成因研究[J]. 西北地质, 2019, 52(01): 1-13
GUO Lei, LI Jianxing, GUO Lin, et al. Zircon U-Pb Dating and Petrogenesis of Alkali-feldspar Granite in Mangnai Area, South Altun, NW China[J]. Northwestern Geology, 2019, 52(1): 1-13.
[3] 姜军胜, 胡鹏, 向文帅, 等. 埃塞俄比亚西部布雷地区类埃达克岩年代学、地球化学及对区域构造演化的指示[J]. 地质学报, 2021, 95(4): 1260-1272 doi: 10.3969/j.issn.0001-5717.2021.04.021
JIANG Junsheng, HU Peng, XIANG Wenshuai, et al. Geochronology, geochemistry and its implication for regional tectonic evolution of adakite- like rockinthe Bure area, western Ethiopia[J]. Acta Geologica Sinica, 2021, 95(4): 1260-1272. doi: 10.3969/j.issn.0001-5717.2021.04.021
[4] 柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.
LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
[5] 王强, 赵振华, 熊小林. 桐柏--大别造山带燕山晚期A型花岗岩的厘定[J]. 岩石矿物学杂志, 2000, (4): 297-306
WANG Qiang, ZHAO Zhenhua, XIONG Xiaolin. The ascertainment of late-yanshanian A-type granite in Tongbai-Dabie Orogenic Belt[J]. Acta Petrologica et Mineralogica, 2000, (4): 297-306.
[6] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007a, 23(2): 185-220
WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007a, 23(2): 185-220.
[7] 吴福元, 李献华, 杨进辉, 等. 花岗岩成因研究的若干问题[J]. 岩石学报, 2007b, 23(6): 1217-1238
WU Fuyuan, LI Xianhua, YANG Jinhui, et al. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.
[8] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(02): 92-108
WU Shukuan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108.
[9] 向文帅, 赵凯, 张紫程. 厄立特里亚Augaro金矿床碳氢氧硫同位素特征及其成因意义[J]. 地质学报, 2021, 95(04): 1284-1291
XIANG Wenshuai, ZHAO Kai, ZHANG Zicheng. 2021. Studies on C- H- O- S isotopes of Eritrea Augaro gold deposit and its implications for gold genesis[J]. Acta Geologica Sinica, 95(4): 1284-1291.
[10] 熊小林, J. Adam, T. H. Green, 等. 变质玄武岩部分熔体微量元素特征及埃达克熔体产生条件[J]. 中国科学(D辑: 地球科学), 2005, (09): 41-50
XIONG Xiaolin, Adam J, Green T H, et al. Characteristics of trace elements in partial melt of metabasalt and the conditions for the generation of Adak melt[J]. Science in China Ser. D Earth Sciences, 2005, (09): 41-50.
[11] 熊万宇康, 赵梦琪, 于淼, 等. 造山带洋陆转换过程与岩浆作用: 以东昆仑都兰地区古生代花岗岩为例[J]. 西北地质, 2023, 56(6): 113−139.
XIONG Wanyukang, ZHAO Mengqi, YU Miao, et al. Ocean−Continent Transition Process and Magmatism in Orogenic Belts: A Case Study of Paleozoic Granites in the Dulan Area of East Kunlun[J]. Northwestern Geology, 2023, 56(6): 113−139.
[12] 许保良, 阎国翰, 张臣, 等. A型花岗岩的岩石学亚类及其物质来源[J]. 地学前缘, 1998, (03): 113-124
XU Baoliang, YAN Guohan, ZHANG Chen. Petrological Subdivision and Source Material of A-type Granites[J]. Earth Science Frontiers, 1998, (03): 113-124.
[13] 曾国平, 王建雄, 向文帅, 等. 厄立特里亚中部Adi Keyh A型流纹岩成因及地质意义[J]. 华南地质, 2022, (01): 157-173 doi: 10.3969/j.issn.2097-0013.2022.01.012
ZENG Guoping, WANG Jianxiong, XIANG Wenshuai, et al. Petrogenesis and Geological Significance of the Adi Keyh A-type Rhyolite in Central Eritrea[J]. South China Geology, 2022.38(1): 157-173. doi: 10.3969/j.issn.2097-0013.2022.01.012
[14] 查显锋, 计文化, 辜平阳, 等. 阿拉伯地盾地质构造演化与关键地质矿产问题浅析[J]. 西北地质, 2023, 56(5): 204-213.
ZHA Xianfeng, JI Wenhua, GU Pingyang, et al. Tectonic Evolution and Key Geological Mineral Issues of Arabian Shield[J]. Northwestern Geology, 2023, 56(5): 204−213.
[15] 赵凯, 姚华舟, 王建雄, 等. 厄立特里亚Koka花岗岩锆石U-Pb年代学、地球化学特征及其地质意义[J]. 地球科学, 2020, 45(01): 156-167
ZHAO Kai, YAO Huazhou, WANG Jianxiong, et al. Zircon U-Pb Geochronology and Geochemistry of Koka Granite and Its Geological Significance, Eritrea[J]. Earth Science, 2020, 45(1): 156-167.
[16] 郑永飞. 新元古代岩浆活动与全球变化[J]. 科学通报, 2003, (16): 1705-1720
ZHENG Yongfei. Neoproterozoic magmatic activity and global change[J]. Chinese Science Bulletin, 2003, (16): 1705-1720.
[17] Alpha-exploration. Aburna (Hill 52 Central Areas) Drill Results May 2023. 2023https://alpha-exploration.com/project/kerkasha-eritrea/
[18] Andersson U B, Ghebreab W, Teklay M. Crustal evolution and metamorphism in east-central Eritrea, south-east Arabian-Nubian Shield[J]. Journal of African Earth Sciences, 2006, 44(1): 45-65. doi: 10.1016/j.jafrearsci.2005.11.006
[19] Blades M L, Collins A S, Foden J, et al. Age and hafnium isotopic evolution of the Didesa and Kemashi domains, western Ethiopia[J]. Precambrian Research, 2015, 270267-284.
[20] Chappell B W, Bryant C J, Wyborn D. Peraluminous I-type granites[J]. Lithos, 2012, 153142−153.
[21] Chappell B W, White A J R, Allen C M. Two contrasting granite types; 25 years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x
[22] Chappell B W, White A J R. I- and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 1-26.
[23] Chappell B W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites[J]. Lithos, 1999, 46(3): 535-551. doi: 10.1016/S0024-4937(98)00086-3
[24] Chung S, Liu D, Ji J, et al. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 2003, 311021-1024.
[25] Clemens J D. S-type granitic magmas; petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1-2): 1-18. doi: 10.1016/S0012-8252(02)00107-1
[26] Collins W J, Huang H, Jiang X. Water-fluxed crustal melting produces Cordilleran batholiths[J]. Geology, 2016, 44(2): 143-146. doi: 10.1130/G37398.1
[27] Gamaleldien H, Li Z, Abu Anbar M, et al. Geochronological and isotopic constraints on Neoproterozoic crustal growth in the Egyptian Nubian Shield: Review and synthesis[J]. Earth-Science Reviews, 2022, 235: 104244. doi: 10.1016/j.earscirev.2022.104244
[28] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. Lithos, 2002, 61(3): 237-269.
[29] Hoskin P W O. Trace element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica Et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006
[30] Hu Z, Liu Y, Gao S, et al. A "wire" signal smoothing device for laser ablation inductively coupled plasma mass spectrometry analysis[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 7850-57. doi: 10.1016/j.sab.2012.09.007
[31] Hu Z, Liu Y, Gao S, et al. A local aerosol extraction strategy for the determination of the aerosol composition in laser ablation inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192-1203. doi: 10.1039/b803934h
[32] Johnson P R, Andresen A, Collins A S, et al. Late Cryogenian–Ediacaran history of the Arabian–Nubian Shield: A review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen[J]. Journal of African Earth Sciences, 2011, 61(3): 167-232. doi: 10.1016/j.jafrearsci.2011.07.003
[33] Kay S M, Mpodozis C, Ramos V A, et al. Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28 to 33 degrees S)[J]. Special Paper - Geological Society of America, 1991, 265113-137.
[34] Kröner A, Linnebacher P, Stern R J, et al. Evolution of Pan-African island arc assemblages in the southern Red Sea Hills, Sudan, and in southwestern Arabia as exemplified by geochemistry and geochronology[J]. Precambrian Research, 1991, 53(1): 99-118.
[35] Rudnick L R, Gao S. Composition of the continental crust[M]. Elsevier: In: Treatise on Geochemistry, 2003: 1−64.
[36] Lee C A, Bachmann O. How important is the role of crystal fractionation in making intermediate magmas? Insights from Zr and P systematics[J]. Earth and Planetary Science Letters, 2014, 393266-274. doi: 10.1016/j.jpgl.2014.02.044
[37] Li X, El-Rahman Y A, Anbar M A, et al. Old Continental Crust Underlying Juvenile Oceanic Arc: Evidence From Northern Arabian-Nubian Shield, Egypt[J]. Geophysical Research Letters, 2018, 45(7): 1-8.
[38] Lindsay J F, Korsch R J, Wilford J R. Timing the breakup of a Proterozoic supercontinent: Evidence from Australian intracratonic basins[J]. Geology, 1987, 15(11): 1061-1064. doi: 10.1130/0091-7613(1987)15<1061:TTBOAP>2.0.CO;2
[39] Litvinovsky B A, Jahn B, Zanvilevich A N, et al. Petrogenesis of syenite–granite suites from the Bryansky Complex (Transbaikalia, Russia): implications for the origin of A-type granitoid magmas[J]. Chemical Geology, 2002, 189(1): 105-133.
[40] Liu Y, Hu Z, Zong K, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 2010, 55(15): 1535-1546. doi: 10.1007/s11434-010-3052-4
[41] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geological Society of America, 1979, 11(7): 468.
[42] Ludwig K R. Isoplot/Ex, a geochronological toolkit for Microsoft Excel, Version 3.00. Berkeley Geochronology Center, Berkeley, Ca, 2004.
[43] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5): 635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[44] Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution[J]. Lithos, 2005, 79(1): 1-24.
[45] Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224.
[46] Nevsun Resources Ltd. Preliminary Regional Geology Augaro-Tokombia-Maikokah Area Gash-Barka District[J].Southwestern Eritrea, 2004.
[47] Nelson B K, DePaolo D J. Rapid production of continental crust 1.7 to 1.9 by ago: Nd isotopic evidence from the basement of the North American midcontinent[J]. Geological Society of America Bulletin, 1985, 96, 746-754. doi: 10.1130/0016-7606(1985)96<746:RPOCCT>2.0.CO;2
[48] Patiño Douce A E. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids[J]. Geology, 1997, 25(8): 743-746. doi: 10.1130/0091-7613(1997)025<0743:GOMATG>2.3.CO;2
[49] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956
[50] Peccerillo A, Taylor S R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745
[51] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust; the Cordillera Blanca Batholith, Peru[J]. Journal of Petrology, 1996, 37(6): 1491-1521. doi: 10.1093/petrology/37.6.1491
[52] Schiano P, Monzier M, Eissen J P, et al. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes[J]. Contributions to Mineralogy and Petrology, 2010, 160(2): 297-312. doi: 10.1007/s00410-009-0478-2
[53] Sisson T W, Ratajeski K, Hankins W B, et al. Voluminous granitic magmas from common basaltic sources[J]. Contributions to Mineralogy and Petrology, 2005, 148(6): 635-661. doi: 10.1007/s00410-004-0632-9
[54] Stern R J, Johnson P. Continental lithosphere of the Arabian Plate: A geologic, petrologic, and geophysical synthesis[J]. Earth-Science Reviews, 2010, 101(1-2): 29-67. doi: 10.1016/j.earscirev.2010.01.002
[55] Stern R J. ARC Assembly and Continental Collision in the Neoproterozoic East African Orogen: Implications for the Consolidation of Gondwanaland[J]. Annual Review of Earth and Planetary Sciences, 1994, 22(1): 319-351. doi: 10.1146/annurev.ea.22.050194.001535
[56] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[57] Taylor S R, Mclennan S M. The composition and evolution of the continental crust; rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London. Series a: Mathematical and Physical Sciences, 1981, 301(1461): 381-399.
[58] Teklay M, Haile T, Kröner A, et al. A Back-arc Palaeotectonic Setting for the Augaro Neoproterozoic Magmatic Rocks of Western Eritrea[J]. Gondwana Research, 2003, 6(4): 629-640. doi: 10.1016/S1342-937X(05)71012-1
[59] Teklay M, Kröner A, Mezger K. Enrichment from plume interaction in the generation of Neoproterozoic arc rocks in northern Eritrea: implications for crustal accretion in the southern Arabian-Nubian Shield[J]. Chemical Geology, 2002, 184(1): 167-184.
[60] Teklay M. Neoproterozoic arc-back-arc system analog to modern arc-back-arc systems; evidence from tholeiite-boninite association, serpentinite mudflows and across-arc geochemical trends in Eritrea, southern Arabian-Nubian Shield[J]. Precambrian Research, 2006, 145(1-2): 81-92. doi: 10.1016/j.precamres.2005.11.015
[61] Teklay M. Petrology, Geochemistry and Geochronology of Neoproterozoic Magmatic Arc Rocks from Eritrea: Implications for Crustal Evolution in the Southern Nubian Shield[R]. Asmara, Eritrea: Department of Mines-Ministry of Energy Mines and Water Resources-State of Eritrea, 1997.
[62] Vervoort J D, Blichert-Toft J. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time[J]. Geochimica Et Cosmochimica Acta, 1999, 63(3-4): 533-556. doi: 10.1016/S0016-7037(98)00274-9
[63] Villaros A, Stevens G, Buick I S. Tracking S-type granite from source to emplacement: Clues from garnet in the Cape Granite Suite[J]. Lithos, 2009, 112(3): 217-235.
[64] Wang Q, Xu J, Jian P, et al. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China; implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47(1): 119-144. doi: 10.1093/petrology/egi070
[65] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discriminatuon and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95407-419. doi: 10.1007/BF00402202
[66] Whalen J B. Geochemistry of an Island-Arc Plutonic Suite: the Uasilau-Yau Yau Intrusive Complex, New Britain, P. N. G[J]. Journal of Petrology, 1985, 26(3): 603-632. doi: 10.1093/petrology/26.3.603
[67] Woldehaimanot B. Tectonic setting and geochemical characterisation of Neoproterozoic volcanics and granitoids from the Adobha Belt, northern Eritrea[J]. Journal of African Earth Sciences, 2000, 30(4): 817-831. doi: 10.1016/S0899-5362(00)00054-3
[68] Woldemichael B W, Kimura J, Dunkley D J, et al. SHRIMP U–Pb zircon geochronology and Sr–Nd isotopic systematic of the Neoproterozoic Ghimbi-Nedjo mafic to intermediate intrusions of Western Ethiopia: a record of passive margin magmatism at 855 Ma?[J]. International Journal of Earth Sciences, 2010, 99(8): 1773-1790. doi: 10.1007/s00531-009-0481-x
[69] Yang J, Wu F, Chung S, et al. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos, 2006, 89(1-2): 89-106. doi: 10.1016/j.lithos.2005.10.002
[70] Zheng Y. Subduction zone geochemistry[J]. Geoscience Frontiers, 2019, 10(4): 1223-1254. doi: 10.1016/j.gsf.2019.02.003
-