南非奥特尼夸盆地构造沉积演化与油气成藏

肖坤叶, 秦雁群, 刘计国, 胡瑛, 张新顺. 2024. 南非奥特尼夸盆地构造沉积演化与油气成藏. 西北地质, 57(2): 174-183. doi: 10.12401/j.nwg.2023143
引用本文: 肖坤叶, 秦雁群, 刘计国, 胡瑛, 张新顺. 2024. 南非奥特尼夸盆地构造沉积演化与油气成藏. 西北地质, 57(2): 174-183. doi: 10.12401/j.nwg.2023143
XIAO Kunye, QIN Yanqun, LIU Jiguo, HU Ying, ZHANG Xinshun. 2024. Tectonic and Sedimentary Evolution and Hydrocarbon Accumulation in the Outeniqua Basin, South Africa. Northwestern Geology, 57(2): 174-183. doi: 10.12401/j.nwg.2023143
Citation: XIAO Kunye, QIN Yanqun, LIU Jiguo, HU Ying, ZHANG Xinshun. 2024. Tectonic and Sedimentary Evolution and Hydrocarbon Accumulation in the Outeniqua Basin, South Africa. Northwestern Geology, 57(2): 174-183. doi: 10.12401/j.nwg.2023143

南非奥特尼夸盆地构造沉积演化与油气成藏

  • 基金项目: 中国石油天然气股份有限公司科学研究与技术开发项目(2021DJ3103),中油国际技术研发项目(2023-YFJJ-01),中国石油天然气股份有限公司重大科技专项课题“非常规油气技术可采资源差异化评价技术研究”(2023ZZ0703),中国石油天然气股份有限公司基础性前瞻性重大科技专项课题“基于大数据的常规油气可采资源智能化评价技术研发”(2023ZZ0702)
详细信息
    作者简介: 肖坤叶(1969−),男,博士,教授级高级工程师,主要从事海外油气勘探、资源评价与油气地质综合研究。E-mail:xiaokunye@petrochina.com.cn
    通讯作者: 秦雁群(1982−),男,博士,高级工程师,主要从事非洲地区石油地质综合研究。E-mail:yqqin@petrochina.com.cn
  • 中图分类号: P618.13;TE122.2

Tectonic and Sedimentary Evolution and Hydrocarbon Accumulation in the Outeniqua Basin, South Africa

More Information
  • 南非奥特尼夸盆地油气勘探程度非常低,2019年与2020年连续的天然气大发现吸引了国内外油气公司广泛关注。基于IHS数据库、新项目评价及文献等资料,综合分析表明:奥特尼夸盆地经历了二叠纪以来的前裂谷、同裂谷、过渡期和裂谷后4个演化阶段;主要沉积了裂谷期陆相碎屑岩及过渡期–裂谷后的海相碎屑岩。盆地主力烃源岩为豪特里维阶和巴雷姆–阿普特阶海相页岩;发育了同裂谷期凡兰吟阶顶部浅海相砂岩和漂移早期阿尔比阶海相深水碎屑岩两套重要的储集层,储盖组合条件优越;共形成了巴雷姆–阿尔比阶砂岩、凡兰吟−豪特里维阶砂岩、上侏罗统−下白垩统砂岩和基底4套成藏组合。油气分布呈“西多东少”格局,目前应以Bredasdorp次盆大陆边缘深水区白垩系透镜状浊积砂岩为勘探重点。

  • 加载中
  • 图 1  奥特尼夸盆地区域位置及油气发现图

    Figure 1. 

    图 2  奥特尼夸盆地构造单元划分与主要断裂分布图

    Figure 2. 

    图 3  奥特尼夸盆地不同构造位置剖面图(据IHS Energy,2021修)

    Figure 3. 

    图 4  奥特尼夸盆地综合柱状图(据IHS Energy,2021修)

    Figure 4. 

    图 5  奥特尼夸盆地重点时期岩相古地理图(据IHS Energy,2021修)

    Figure 5. 

    图 6  奥特尼夸盆地不同时期Ro分布图(据IHS Energy,2021修)

    Figure 6. 

    图 7  奥特尼夸盆地成藏组合分布图

    Figure 7. 

    图 8  奥特尼夸盆地主要次盆成藏模式图(据文献Tellus, 2022修)

    Figure 8. 

    表 1  奥特尼夸盆地烃源岩特征统计表

    Table 1.  Statistical table of source rock characteristics in Outeniqua basin

    烃源岩地层岩性沉积相干酪根TOC(%)HI(mg /g)
    上侏罗统泥岩湖相I/II1~4.3,平均2.5平均300
    豪特里维阶页岩深海II/III最大超4,平均2.8400~500
    巴雷姆-阿普特阶页岩深海I/II2.5~3.5,平均3160~350,平均250
    土仑阶页岩深海I/II
    下载: 导出CSV
  • [1]

    何拓平, 李元昊, 陈朝兵, 等. 深水重力流储层宏观非均质性控制因素-以华庆地区长63为例[J]. 西北地质, 2020, 53(1): 178-188

    HE Tuoping, LI Yuanhao, CHEN Zhaobing et al. Macroscopic heterogeneity controlling factors of deepwater gravity flow reservoirs: a case study of Chang 63 in Huaqing area [J]. Northwestern Geology, 2020, 53(1): 178-188.

    [2]

    逄林安, 康洪全, 郝立华, 等. 南非奥坦尼瓜盆地构造演化与油气差异分布[J]. 海洋地质前沿, 2017, 33(3): 27-32

    Pang Lin’an, Kang Hongquan, Hao Lihua, et al. Tectonic evolution and its bearing on Hydrocarbon different distribution in Outenique basin, South Africa [J]. Marine Geology Frontiers, 2017, 33(3): 27-32.

    [3]

    秦雁群, 张光亚, 梁英波, 等. 低勘探程度被动陆缘深水油气聚集研究方法: 以赤道大西洋波蒂瓜尔盆地深水油气远景勘探为例[J]. 地学前缘, 2014, 21(3): 187-194

    Qin Yanqun, Zhang Guangya, Liang Yingbo, et al. Research methods of low-degree exploration in the deep water hydrocarbon accumulation of passive margin: case study on deep water oil and gas prospecting exploration of Potiguar Basin in the Equatorial Atlantic [J]. Earth Science Frontiers, 2014, 21(3): 187-194.

    [4]

    童晓光. 论成藏组合在勘探评价中的意义[J]. 西南石油大学学报(自然科学版), 2009, 31(6): 1-8

    TONG Xiaoguang. A discussion on the role of accumulation association in the exploration evaluation [J]. Journal of Southwest petroleum university (Science & Technology Edition), 2009, 31(6): 1-8.

    [5]

    张光亚, 刘小兵, 温志新, 等. 东非被动大陆边缘构造-沉积特征及其对大气田富集的控制作用[J]. 中国石油勘探, 2015, 20(4): 71-80

    Zhang Guangya, Liu Xiaobin, Wen Zhixin, et al. Structural and sedimentary characteristics of passive continental margin basins in East Africa and their effect on the formation of giant gas fields [J]. China Petroleum Exploration, 2015, 20(4): 71-80.

    [6]

    赵红岩, 梁建设, 孔令武, 等. 毛塞几比盆地油气成藏条件特征分析[J]. 西北地质, 2021, 54(1): 179-184

    ZHAO Hongyan, LIANG Jianshe, KONG Lingwu, et al. Hydrocarbon accumulation characteristics in Maosai Kibi basin [J]. Northwestern Geology, 2021, 54(1): 179-184.

    [7]

    中国石油勘探开发研究院. 全球油气勘探开发形势及油公司动态(2020年)[M]. 北京: 石油工业出版社, 2020

    RIPED. Global petroleum E&D trends and company dynamics (2021) [M]. Beijing: Petroleum Industry Press, 2020.

    [8]

    中国石油勘探开发研究院. 全球油气勘探开发形势及油公司动态(2021年)[M]. 北京: 石油工业出版社, 2021

    RIPED. Global petroleum E&D trends and company dynamics (2021) [M]. Beijing: Petroleum Industry Press, 2021.

    [9]

    Akinlua A, Sigedle A, Buthelezi T, et al. Trace element geochemistry of crude oils and condensates from South African Basins [J]. Marine and Petroleum Geology, 2015, 59: 286-293. doi: 10.1016/j.marpetgeo.2014.07.023

    [10]

    Ayodele O, Donker J, Opuwari M. Pore pressure prediction of some selected wells from the Southern Pletmos Basin, offshore South Africa [J]. South African Journal of Geology, 2016, 119 (1): 203-214. doi: 10.2113/gssajg.119.1.203

    [11]

    Davies C. Hydrocarbon evolution of the bredasdorp basin, offshore South Africa: from source to reservoir [D]. Western Cape: University of Stellenbosch, 1997.

    [12]

    Harris P, Whiteway T. Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins [J]. Marine Geology, 2011, 285(1-4): 69-86. doi: 10.1016/j.margeo.2011.05.008

    [13]

    Hiller K, Shoko U. Hydrocarbon source rock potential of the Karoo in Zimbabwe [J]. Journal of African Earth Sciences, 1996, 23(1): 31-43. doi: 10.1016/S0899-5362(96)00050-4

    [14]

    IHS Energy. EDIN [EB/OL]. http://www.ihsenergy.com. (2020-12-20) [2021-02-15].

    [15]

    Lawrence A. A review of producing fields inferred to have upslope stratigraphically trapped turbidite reservoirs: Trapping styles (pure and combined), pinch-out formation, and depositional setting [J]. AAPG Bulletin, 2019, 103 (12): 2861–2889. doi: 10.1306/02251917408

    [16]

    Ojongokpoko H. Porosity and permeability distribution in the deep marine play of the central bredasdorp basin, block 9, offshore South Africa [D]. Western Cape: University of the Western Cape, 2006.

    [17]

    Opuwari M, Dominick N. Sandstone reservoir zonation of the north-western Bredasdorp Basin South Africa using core data [J]. Journal of Applied Geophysics, 2021, 193: 104425-104430. doi: 10.1016/j.jappgeo.2021.104425

    [18]

    Roux J. The structural development of the Southern Outeniqua Basin (SOB) and Dias Marginal Fracture Ridge (DMFR) [J]. Africa Geoscience Review, 2001, 8 (1-2): 209.

    [19]

    Singh V, Brink G, Winter H, et al. New interpretation reveals potential in onshore Algoa basin, South Africa [J]. Oil and Gas Journal, 2005, 103(1): 34-39.

    [20]

    Tellus. Tellus data [EB/OL]. http://www.fugro-robertson.com/products/tellusFRL. (2021-6-30) [2022-04-15].

    [21]

    Van D. Source rocks and modelled maturity levels in the southern Outeniqua Basin, offshore South Africa [J]. Africa Geoscience Review, 2001, 8 (1-2): 141-147.

    [22]

    Van Der S. Aptian source rocks in some South African, Cretaceous basins[C]//Arthur T, Macgregor D, Cameron N. Petroleum geology of Africa: New themes and developing technologies. London: The Geological Society of London, 2003, 207: 185-202.

    [23]

    Winters S, Brink G, Kuhlmann S. Integration of reservoir and source rock distribution with seismic-sequence stratigraphy and geophysical modelling in the discovery of hydrocarbons within a Cretaceous sequence, Bredasdorp Basin, South Africa [J]. AAPG Bulletin, 1992, 76(13): 143.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  701
  • PDF下载数:  120
  • 施引文献:  0
出版历程
收稿日期:  2022-11-30
修回日期:  2023-07-24
录用日期:  2023-09-24
刊出日期:  2024-04-20

目录