Geological Characteristics and Related Mineralization of “Qinghai Gold Belt” Formed by Orogeny
-
摘要:
青海省境内环绕柴达木盆地周边的金矿床十分发育,是中国金矿的重要产地,素有“金腰带”之称。通过对“青海金腰带”的区域地质、地球物理和地球化学特征分析,认为青海“金腰带”的形成主要受两期造山作用控制。加里东期—华力西期,柴达木陆块向北与欧龙布鲁克陆块碰撞,导致原特提斯洋发生闭合,形成柴北缘滩间山金矿田和赛坝沟金矿床;印支期,巴颜喀拉陆块向北与东昆仑陆块碰撞,导致古特提斯洋发生闭合,形成五龙沟、大场、沟里金矿田和满丈岗金矿床。综合前人研究成果,笔者提出该地区金矿床的形成与壳幔相互作用密切相关,幔源物质对金矿床的成矿流体及成矿物质均具有重要贡献,主要金矿床的时空分布也与基性–超基性岩相关。因此,基性–超基性岩发育的位置是在该地区寻找造山型金矿的有利地段。
Abstract:The area surrounding the Qaidam basin, Qinghai Province, is characterized by occurrences of a large number of gold deposits, which is an importance source of gold deposits in China. This area is thus called the “Qinghai Gold Belt”. Based on regional geology, geophysical and geochemical features, this study reveals that the “Qinghai Gold Belt” was formed by two stages of orogenies. During the Caledonian– Hercynian, the collision between the Qaidam and Oulongbuluke blocks resulted in the closure of Proto–Tethys ocean, forming the Tanjianshan gold district and Saibagou gold deposit; during the Indosinian, the collision between the East Kunlun and Bayakara Block resulted in the closure of Proto–Tethys ocean, forming the Wulonggou, Dachang and Gouli gold districts and the Manzhanggang gold deposit. Combined with previously published data, it is deduced that the formation of gold deposits in this area is closely related to crustal–mantle interaction, with mantle materials contributing a lot for the ore–forming fluids and materials. This is further demonstrated by the spatial and temporal correlation between gold deposits and mafic–ultramafic rocks. Therefore, the locations where mafic–ultramafic rocks occur are potential for the orogenic gold exploration.
-
Key words:
- orogeny /
- crustal–mantle interaction /
- orogenic gold deposits /
- gold belt /
- Qinghai Province
-
图 1 “青海金腰带”大地构造位置图(马昌前等,2013)
Figure 1.
图 2 “青海金腰带”构造单元图(构造单元编号对应的名称见表1)
Figure 2.
图 4 “青海金腰带”成矿带划分图(成矿单元编号对应的名称见表2)
Figure 4.
图 5 “青海金腰带”布格重力异常图(据潘彤等,2022)
Figure 5.
图 6 “青海金腰带”航磁异常图(据潘彤等,2022)
Figure 6.
图 7 “青海金腰带”莫霍面等深图(据潘彤等,2022)
Figure 7.
图 9 “青海金腰带”中晚三叠世成矿示意图(据井国正等,2023修改)
Figure 9.
表 1 研究区构造单元划分表
Table 1. Division Table of tectonic units in the studying area
一级 二级 三级 秦祁昆造山系(Ⅰ) 阿尔金造山带(Ⅰ-1) 阿帕–茫崖蛇绿混杂岩带(Ⅰ-1-1)(∈–O) 北祁连造山带(Ⅰ-2) 冷龙岭岛弧(Ⅰ-2-3)(O) 达坂山–玉石沟蛇绿混杂岩带(Ⅰ-2-4)(∈–O) 中–南祁连造山带(Ⅰ-3) 中祁连岩浆弧(Ⅰ-3-1)(O–S) 党河南山–拉脊山蛇绿混杂岩带(Ⅰ-3-2)(∈–O) 南祁连岩浆弧(Ⅰ-3-3)(O–S) 宗务隆山陆缘裂谷带(Ⅰ-3-4)(C–P2) 全吉地块(Ⅰ-4) 欧龙布鲁克被动陆缘(Ⅰ-4-1)(∈–O) 柴北缘造山带(Ⅰ-5) 滩间山岩浆弧(Ⅰ-5-1)(O) 柴北缘蛇绿混杂岩带(Ⅰ-5-2)(∈–O) 柴达木地块(Ⅰ-6) 柴达木新生代断陷盆地(Ⅰ-6-1) 东昆仑造山带(Ⅰ-7) 祁漫塔格–夏日哈岩浆弧(Ⅰ-7-1)(O–S) 十字沟蛇绿混杂岩带(Ⅰ-7-2)(∈–O) 昆北复合岩浆弧(Ⅰ-7-3)(Pt3、O–S、P–T) 鄂拉山岩浆弧(Ⅰ-7-4)(T) 苦海–赛什塘蛇绿混杂岩带(Ⅰ-7-5)(C–P2) 西秦岭造山带(Ⅰ-8) 泽库复合型前陆盆地(Ⅰ-8-1)(T) 康西瓦–修沟–
磨子潭地壳对接带(Ⅱ)昆南俯冲增生杂岩带(Ⅱ-1) 纳赤台蛇绿混杂岩带(Ⅱ-1-1)(Pt2、∈–O) 阿尼玛卿–布青山俯冲增生杂岩带(Ⅱ-2) 马尔争蛇绿混杂岩带(Ⅱ-2-1)(C–P2) 北羌塘–三江造山系(Ⅲ) 巴颜喀拉地块(Ⅲ-1) 玛多–玛沁前陆隆起(Ⅲ-1-1)(P–T1–2) 可可西里前陆盆地(Ⅲ-1-2)(T3) 三江造山带(Ⅲ-2) 歇武(甘孜–里塘)蛇绿混杂岩带(Ⅲ-2-1)(T2–3) 结古–义敦岛弧带(Ⅲ-2-2)(T3) 通天河(西金乌兰–玉树)
蛇绿混杂岩带(Ⅲ-2-3)(C–P2)巴塘陆缘弧带(Ⅲ-2-4)(T3) 沱沱河–昌都弧后前陆盆地(Ⅲ-2-5)(Mz) 开心岭–杂多陆缘弧带(Ⅲ-2-6)(P1–2–T) 乌兰乌拉湖蛇绿混杂岩带(Ⅲ-2-7)(T2–3) 表 2 研究区成矿单元划分表
Table 2. Division of metallogenic units in the studying area
I级成矿域 II级成矿省 Ⅲ级成矿带 Ⅳ级成矿亚带 编号 名称 编号 名称 Ⅰ-2秦祁昆成矿域 Ⅱ-5阿尔金–祁连
(造山带)成矿省Ⅲ-19 阿尔金成矿带(青海段) — — Ⅲ-20 河西走廊Cu-U-煤成矿带(青海段) — — Ⅲ-21 北祁连Au-Cu-Pb-Zn-Fe-Cr-煤-石棉-硫铁矿成矿带(青海段) Ⅳ-21-1 走廊南山北坡Cu-Cr-Fe-煤成矿亚带 Ⅳ-21-2 走廊南山南坡Au-Fe-Cu-Pb-Zn-板岩成矿亚带 Ⅳ-21-3 托来山-大坂山Au-Cu- Pb-Zn-Fe-Cr-石棉-煤-玉石成矿亚带 Ⅲ-22 中祁连Au-Cu-煤-石英岩-大理岩-石灰岩-石膏-黏土成矿带(青海段) Ⅳ-22-1 南尕日岛–花石峡W-Fe-煤炭-玄武岩-石英岩-石灰岩-白云岩成矿亚带 Ⅳ-22-2 木里–海晏Au-Ag-Ti-煤-石灰岩-白云岩成矿亚带 Ⅲ-23 南祁连Au-Ni-Pb-Zn-磷-石灰岩-花岗岩-石英岩成矿带(青海段) Ⅳ-23-1 哈拉湖–龙门Au-Pb-Zn-Fe-Cu-W-煤-石灰岩成矿亚带 Ⅳ-23-2 居洪图–石乃亥Au-Cu-硼-脉石英成矿亚带 Ⅱ-6东昆仑
(造山带)成矿省Ⅲ-24 柴达木盆地北缘Au-Pb-Zn-Ti-Mn-Fe-Cr-Cu-W-稀有-煤-石棉-滑石-硫铁矿-石灰岩-大理岩成矿带 Ⅳ-24-1 俄博梁石棉-Au-Cu-石油-煤-石墨-石墨-白云母成矿亚带 Ⅳ-24-2 赛什腾山–布果特山Au-Cu-Pb-Zn-Fe-Mn-稀有-煤-盐类-重晶石-绿松石-红蓝宝石-石灰岩-大理岩-蛇纹岩成矿亚带 Ⅳ-24-3 欧龙布鲁克煤-磷-石灰岩-白云岩-(Fe-粘土)成矿亚带 Ⅳ-24-4 绿梁山–阿尔茨托山Cu-Pb-Zn-Au-Mn-Fe-Cr-Ti-稀有-U-煤-石油-蛇纹岩-石灰岩成矿亚带 Ⅲ-25 柴达木盆地Li-B-K-Na-Mg-盐类-石油-天然气-芒硝-天然碱成矿带 Ⅳ-25-1 柴西北石油-天然气-钾盐-钠盐-镁盐-硼成矿亚带 Ⅳ-25-2 柴中钾盐-钠盐-镁盐-锂盐-石油-天青石-芒硝成矿亚带 Ⅳ-25-3 昆北石油、天然气-硼-盐矿-芒硝成矿亚带 Ⅳ-25-4 达布逊湖钾镁盐-盐矿-天然气-天然碱成矿亚带 Ⅲ-26 东昆仑Ni-Au- Fe-Pb-Zn-Cu-Ag- -W-Sn-Co-Bi-Hg-Mn-玉石-萤石-硅灰石-页岩气-重晶石-大理岩--石灰岩-石墨-硫铁矿成矿带(青海段) Ⅳ-26-1 祁漫塔格-都兰Ni-Fe-Cu-Pb-Zn-W-Sn-Co-Bi-Au-Ag-Mo-硅灰石-白云岩-石灰岩-石墨成矿亚带 Ⅳ-26-2 伯喀里克-香日德Au-Cu-Pb-Zn-Fe-Ni-Ag-W-Mo-石墨-萤石-玉石–煤-花岗岩成矿亚带 Ⅲ-26 东昆仑Ni-Au- Fe-Pb-Zn-Cu-Ag- -W-Sn-Co-Bi-Hg-Mn-玉石-萤石-硅灰石-页岩气-重晶石-大理岩--石灰岩-石墨-硫铁矿成矿带(青海段) Ⅳ-26-3 东昆仑南部Cu-Au-Co-Ni-W-Fe-Mn-V-Mo-石墨-大理岩-玉石-石灰岩-煤成矿亚带 Ⅳ-26-4 向前沟–满丈岗Au-Ag-Fe-Cu-Pb-Zn-花岗岩成矿亚带 Ⅳ-26-5 智益-铜峪沟Cu-Pb-Zn-Ag-Sn-Hg-重晶石-萤石-白云母-煤成矿亚带 I-3特提斯成矿域 II-8巴颜喀拉-
松潘成矿省Ⅲ-29 阿尼玛卿Cu-Co-Zn-Au -煤-砂金-石膏成矿带(青海段) Ⅳ-29-1 布喀大阪Au-石膏成矿亚带 Ⅳ-29-2 布青山–积石山Cu-Co-Zn-Au-煤成矿亚带 Ⅲ-30 北巴颜喀拉-马尔康Au-Sb-砂金-泥炭成矿带(青海段) Ⅳ-30-1 东大滩-年保玉则Au-Sb-泥炭成矿亚带 Ⅳ-30-2 雅拉达泽–班玛Au-泥炭成矿亚带 Ⅲ-31 南巴颜喀拉–雅江砂金-Sb-石膏-水晶-粘土成矿带(青海段) Ⅱ-9喀剌昆仑-
三江成矿省Ⅲ-33 金沙江Fe-Ag-Cu-砂金石灰岩-粘土成矿带(青海段) Ⅳ-33-1 西金乌兰–玉树Cu-Ag-Fe-砂金成矿亚带 Ⅲ-36 昌都–普洱Pb-Zn-Mo-Cu-Ag-Fe-砂金-煤-硫铁矿-盐类-石膏成矿带(青海段) 表 3 研究区主要金矿床特征表
Table 3. Summary of the characteristics of the main gold deposits in the study area
序号 矿床名称 东经(E) 北纬(N) 类型 成矿时代 规模 含矿建造 1 祁连县陇孔沟金矿床 983318 385430 岩浆热液型 O 小型 阴沟群;加里东期侵入岩 2 祁连县红川金矿床 992139 383005 岩浆热液型 O 小型 阴沟群;加里东期侵入岩 3 天峻县深沟金矿床 970340 390540 岩浆热液型 O 小型 阴沟群;加里东期侵入岩 4 天峻县夏格曲金矿床 981726 373515 岩浆热液型 S 小型 托赖岩群;加里东期侵入岩 5 刚察县采特金矿床 994700 374300 岩浆热液型 T 小型 盐池湾群;印支期侵入岩 6 刚察县静龙沟金矿床 1000330 373330 岩浆热液型 T 小型 托赖岩群;加里东期侵入岩 7 茫崖行委采石沟金矿床 903231 382420 岩浆热液型 S 小型 达肯大坂群;加里东期侵入岩 8 冷湖行委野骆驼泉西金钴矿床 935434 383900 岩浆热液型 T 小型 达肯大坂群;印支期侵入岩 9 大柴旦行委青龙沟金矿床 942924 381926 岩浆热液型 409.4 Ma
(张德全等,2005)大型 万洞沟群;华力西期侵入岩 10 大柴旦行委金龙沟金矿床 943710 381302 岩浆热液型 D 大型 万洞沟群;华力西期侵入岩 11 大柴旦行委细晶沟金矿床 943722 381235 岩浆热液型 D 中型 万洞沟群;华力西期侵入岩 12 乌兰县赛坝沟金矿床 982550 364555 岩浆热液型 425.5 Ma
(张德全等,2005)小型 加里东期侵入岩 13 格尔木市黑刺沟金矿床 934356 360400 岩浆热液型 T 小型 中下三叠统洪水川组 14 都兰县打柴沟金矿床 954819 361323 岩浆热液型 S 小型 白沙河岩组;加里东期侵入岩 15 都兰县五龙沟金矿床 955556 361230 岩浆热液型 236.5 Ma
(丰成友等,2002)大型 白沙河岩组;印支期侵入岩 16 都兰县岩金沟金矿床 955616 361544 岩浆热液型 T 大型 白沙河岩组;印支期侵入岩 17 都兰县百吨沟金矿床 960035 360905 岩浆热液型 T 中型 丘吉东沟组;印支期侵入岩 18 都兰县哈西哇金矿床 960056 360500 岩浆热液型 T 小型 印支期侵入岩 19 都兰县开荒北金矿床 960122 354629 岩浆热液型 T 小型 闹仓坚沟组;印支期侵入岩 20 都兰县洪水河口金矿床 965649 360156 岩浆热液型 T 小型 白沙河岩组;印支期侵入岩 21 都兰县阿斯哈金矿床 981548 355021 岩浆热液型 T 中型 白沙河岩组;印支期侵入岩 22 都兰县果洛龙洼金矿床 982053 354259 岩浆热液型 202.7 Ma
(肖晔等,2014)中型 白沙河岩组;印支期侵入岩 23 兴海县满丈岗金矿床 993530 355854 岩浆热液型 T 大型 鄂拉山组;侵入岩 24 都兰县亚日何师金矿床 965356 353400 岩浆热液型 T 小型 马尔争组 25 曲麻莱县加给陇洼金矿床 960711 352306 浅成中–低温热液型 T 大型 昌马河组 26 曲麻莱县大场金矿床 961526 351734 浅成中–低温热液型 218.6 Ma
(张德全等,2005)超大型 昌马河组 27 格尔木市东大滩锑金矿床 942353 353948 浅成中–低温热液型 T 小型 马尔争组 28 玛多县抗得弄舍金多金属矿床 985001 353200 浅成中–低温热液型 215~248 Ma
(秦燕等,2023)大型 红水川组;印支期侵入岩 29 曲麻莱县扎加同哪金矿床 962043 351445 浅成中–低温热液型 T 大型 昌马河组 30 曲麻莱县直达曲砂金矿床 935453 350640 砂矿型 Q 小型 31 德令哈市雅沙图砂金矿床 963429 373803 砂矿型 Q 小型 32 祁连县黑河主沟砂金矿床 993543 382429 砂矿型 Q 小型 33 玛多县柯尔咱程砂金矿床 973826 351500 砂矿型 Q 中型 34 曲麻莱县索哇日鄂曲砂金矿床 961521 351050 砂矿型 Q 小型 35 祁连县洪水梁砂金矿床 984057 385812 砂矿型 Q 小型 36 祁连县酸刺沟砂金矿床 992340 383303 砂矿型 Q 小型 表 4 研究区金地球化学参数特征表
Table 4. Characteristic table of gold geochemical parameters in the study area
元素 阿尔金–祁连地球化学省 东昆仑地球化学省 巴颜喀拉–松潘地球化学省 变化系数 相对丰度 变化系数 相对丰度 变化系数 相对丰度 Au 1.7 1.07×10−9 3.4 1.05×10−9 1.63 0.99×10−9 表 5 研究区金矿与造山型金矿的地质特征对比表
Table 5. Comparison table of geological characteristics between the gold deposits in the studying area and orogenic gold deposits
矿床特征 造山型金矿 滩间山金矿田
(青龙沟、金龙沟和细晶沟矿床)五龙沟金矿田
(五龙沟、百吨沟和岩金沟矿床)大场金矿田
(大场、加给龙洼和
扎加同哪矿床)沟里金矿田
(果洛龙洼、抗得弄舍和
阿斯哈矿床)构造位置 造山带 造山带 (柴北缘) 造山带 (东昆中) 造山带 (北巴颜喀拉) 造山带 (东昆中) 规模 (金资源量) 小–超大型 超大型 (106 t) 大型 (76.3 t) 超大型 (176.22 t) 超大型 (103.9 t) 金平均品位 (10−6) 不限 3.66~6.13 5.0~12.6 0.53~24.9 1.03~15.56 构造背景 活动大陆边缘带 (转换挤压或伸展构造环境) 陆陆碰撞后伸展转换 陆陆碰撞后伸展转换 陆陆碰撞后伸展转换 陆陆碰撞后伸展转换 控矿构造 深大断裂及次级断裂 柴北缘断裂次级断裂NNW–NNW向断裂 昆中断裂北侧NW–NNW向断裂。 甘德–玛多断裂次级断裂NNW–NNW向断裂 昆中断裂北侧NNW–NNW向断裂 围岩 不限 万洞沟群含碳千枚岩,破碎蚀变带 金水口岩群变质岩 (片麻岩、石英片岩和大理岩) 三叠系巴颜喀拉山群变质碎屑岩 金水口岩群、纳赤台群变质碎屑岩 岩浆岩 中酸性侵入岩为主 394 Ma中泥盆世花岗闪长斑岩 (李世金等,2011),后期闪长玢岩、花岗闪长斑岩脉、细晶岩脉、花岗岩脉等 以加里东期花岗闪长岩为主,243~268 Ma基性脉岩群与深部的壳幔混合作用密切相关 (张宇婷,2018) 晚三叠世似斑状黑云母花岗闪长岩、扎日加花岗岩体和早侏罗世龙然加日苟辉绿岩 华力西期花岗闪长岩、侏罗纪花岗岩 矿体 长度一般不超过2 Km 长为40~750 m,最长为1 200 m;平均厚度为2.0~19.5 m,Au品位为1.02~7.84 g/t,见矿最大深度为560~970 m 长为40~960 m,平均厚度 为1.0~9.49 m,Au平均品位为1.09~24.39 g/t,呈透镜状斜列式成群成带分布在NNW–NNW向剪切带和断裂系统中见矿最大深度为500~942 m 长为80~1826 m,呈似层状、似板状、大透镜体状等,平均厚为1.31~12.4 m。Au品位为1.02~13.59 g/t,见矿最大深度为600~1062 m 长为100~460 m,最长为1000 m;平均厚度为4.0~20.5 m,Au品位为1.03~4.84 g/t,见矿最大深度为760~920 m 矿石类型 多种类型 石英脉型、蚀变岩型和方解石型 蚀变岩型为主,部分石英脉型 石英脉型为主,少量蚀变岩型 石英脉型、蚀变岩型 成矿时代 一般晚于区域变质峰期 矿石绢云母Ar–Ar 年龄:409.4 Ma (张德全等,2005) 矿石绢云母Ar–Ar年龄:236 Ma (丰成友等,2002) 矿石绢云母Ar–Ar年龄为218 Ma (张德全等,2005) 矿石绢云母Ar–Ar年龄为215~248 Ma
(秦燕等,2023)δ34S (‰) −5~10 5.31~10 1.1~5.9 −3.3~−4.7 −4~9 Pb同位素 (206Pb/204Pb)t=18.476~19.293,
(207Pb/204Pb)t=15.547~15.596,
(208Pb/204Pb)t=37.918~38.159(206Pb/204Pb)t=18.363~18.376,
(207Pb/204Pb)t=15.606~15.590,
(208Pb/204Pb)t=38.297~38.539(206Pb/204Pb)t=18.338~18.379,
(207Pb/204Pb)t=15.556~15.592,
(208Pb/ 204Pb)t=38.190~38.318(206Pb/204Pb)t=18.093~18.106,
(207Pb/204Pb)t=15.542~15.563,
(208Pb/204Pb)t=37.901~37.919δD (‰) −40~−100 −48.6~−72 −85~−101 −64~−106 −61~−80 δ18OH2O (‰) −1.14~9.0 3.45~10.31 9.6~13.6 10.0~19.7 14.8~17.2 均一温度 (℃) 200~500 120~380
(集中162.1~232.3)141.2~450.9
(集中146.1~320.3)159~349.2
(集中180~220.48)160~340 盐度 (%NaCleqv) ≤10 6~8 2.87~12.6 2~5 1.9~13.99 密度 (g/cm3) 0.92~1.04 0.5~1.01 0.72~0.94 0.62~1.03 压力 (MPa) 50~400 127.66~239.14 39.12~100.9 39.98~96.69 70~100 深度 (Km) 2~20 1.23~2.46 7.6 6.21 4.77~7.65 资料来源 Groves et al.,1998;卢焕章等,2018 李世金,2011;戴荔果,2019 赵俊伟,2008;李金超,2017 赵俊伟,2008;夏锐等,2013 陈广俊,2014 -
[1] 白阳, 张连昌, 朱明田等. 华北克拉通北缘早白垩世金成矿与地幔物质的贡献[J]. 岩石学报, 2023, 39(01): 217-235. doi: 10.18654/1000-0569/2023.01.15
BAI Y, ZHANG LC, ZHU MT, HUANG K, GAO BY, LI WJ and WANG CL. 2023. Contribution of mantle materials to Early Cretaceous gold mineralization in the northern margin of the North China Craton. Acta Petrologica Sinica, 39(1): 217- 235,doi:10.18654/1000-0569/2023.01.15
[2] 蔡光耀, 安芳. 造山型金矿床地质背景、地球化学特征和成矿模型研究综述[J]. 地质科技情报, 2018, 37(06): 163-172 doi: 10.19509/j.cnki.dzkq.2018.0620
CAI Guangyao and AN Fang. Review of Geological Background Geochemical Characteristics and Qre-Forming Model of Orogenic Gold Deposits [J]. Geological Scienice and Technology Information, 2018, 37(06): 163-172. DOI:10.19509/j.cnki.dzkq.2018.0620.
[3] 曹泊, 闫臻, 付长垒等. 柴北缘赛坝沟增生杂岩组成与变形特征[J]. 岩石学报, 2019, 35(04): 1015-1032 doi: 10.18654/1000-0569/2019.04.03
CAO B, YAN Z, FU CL and NIU ML. 2019. Component and deformation of the Saibagou accretionary complex in the northern margin of the Qaidam block. Acta Petrologica Sinica, 35(4): 1015-1032,doi:10.18654/1000-0569/2019.04.03.
[4] 程裕淇, 沈永和, 张良臣, 等. 中国大陆的地质构造演化[J]. 中国区域地质, 1995, (04): 289-294.
CHENG Yuqi, SHEN Yonghe, ZHANG Liangchen, et al. Tectonic constitution and evolution of the Chinese continent[J]. Regional Geology of China, 1995, (04): 289−294.
[5] 楚志强, 曾小慧, 马昌前, 等.东昆仑造山带三叠纪富Nb基性岩墙的岩石成因及其对古特提斯洋俯冲过程的启示[J/OL].矿物岩石地球化学通报, 2023: 1−18. DOI:10.19658/j.issn. 1007-2802.2023.42.060.
CHU Zhiqiang,ZENG Xiaohui,MA Changqian et al. Petrogenesis of triassic Nb-rich mafic dykes in the east Kunlun Orogen: implications for the subduction of paleo-Tethyan Ocean [J/OL]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023: 1−18. DOI:10.19658/j.issn. 1007-2802.2023.42.060
[6] 陈广俊. 青海东昆仑沟里地区及外围金矿成矿作用研究[D]. 长春: 吉林大学, 2014
CHEN Guangjun. Metallogenesis of gold deposits in Gouli regional and peripheral area of East Kunlun, Qinghai province[D]. Changchun: Jilin University, 2014.
[7] 戴荔果. 青海省滩间山-锡铁山地区金铅锌成矿系统[D]. 武汉: 中国地质大学, 2019.
DAI Li Guo. Metallogenic System of Au-Pb-Zn Deposit in Tanjianshan-Xitieshan Area in Qinghai Province[D]. Wuhan: China University of Geosciences, 2019.
[8] 范宏瑞, 蓝廷广, 李兴辉等. 胶东金成矿系统的末端效应[J]. 中国科学: 地球科学, 2021, 51(09): 1504-1523 doi: 10.1007/s11430-020-9789-2
FAN H, LAN T, LI X, Santosh M, Yang K, Hu F, Feng K, Hu H, Peng H, Zhang Y. 2021. Conditions and processes leading to large-scale gold deposition in the Jiaodong province, eastern China. Science China Earth Sciences, 64(9): 1504–1523,https://doi.org/10.1007/s11430-020-9789-2 doi: 10.1007/s11430-020-9789-2
[9] 丰成友, 张德全, 李大新等. 青海赛坝沟金矿地质特征及成矿时代[J]. 矿床地质, 2002(01): 45-52 doi: 10.3969/j.issn.0258-7106.2002.01.006
FENG Chengyou, ZHANG Dequan, LI Daxin et al. Geological Characteristics and Ore-forming Age of Saibagou Gold Deposit‚Qinghai Province[J]. Mineral Deposits, 2002(01): 45-52. doi: 10.3969/j.issn.0258-7106.2002.01.006
[10] 姜春发. 中央造山带几个重要地质问题及其研究进展(代序)[J]. 地质通报, 2002(Z2): 453-455
JIANG Chunfa. Several important geological problems of the Central Orogenic Belt and the progress of their research (with preface)[J]. Geological Bulletin of China, 2002(Z2): 453-455.
[11] 井国正, 王晓云, 张志强, 等. 东昆仑东段中-晚三叠世区域岩浆-热液成矿系统[J]. 地质科技通报, 2023, 42(1): 89-111
JING Guozheng, WANG Xiaoyun, ZHNG Zhiqiang, etal. Middle-Late Triassic regional-scale magmatic- system in the eastern segment of the East Kunlun[J]. Bulletinof Goloe gical Sience and Technolocgy, 2023, 42(1): 89-111.
[12] 李金超. 青海东昆仑地区金矿成矿规律及成矿预测[D]. 西安: 长安大学, 2017
LI Jinchao. Metallogenic regularity and metallogenic prognosis of Gold Deposit in the East Kunlun Orogen, Qinghai Province[D]. Xi’an: Chang’an University, 2017.
[13] 李世金. 祁连造山带地球动力学演化与内生金属矿产成矿作用研究[D]. 长春: 吉林大学, 2011
LI Shijin. Geodynamic Evolution of Qilian Oroginic Belt and Metallogenesis of Endgenous Metal Minerals [D]. Changchun: Jilin University, 2011.
[14] 刘战庆, 裴先治, 李瑞保等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(02): 185-194 doi: 10.19762/j.cnki.dizhixuebao.2011.02.004
LIU Zhanqing, PEI Xianzhi, LI Ruibao et al. LA-ICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A′nyemaqen Orogenic Belt in theSouthern Margin of East Kunlun and Its Tectonic Implication[J]. Acta Geologica Sinica, 2011, 85(02): 185-194. DOI:10.19762/j.cnki.dizhixuebao.2011.02.004.
[15] 卢焕章, 池国祥, 朱笑青, 等. 造山型金矿的地质特征和成矿流体[J]. 大地构造与成矿学, 2018, 42(2): 244−265.
LU Huanzhang, CHI Guoxiang, ZHU Xiaoqing, et al. Geological Characteristics and Ore Forming Fluids of Orogenic Gold Deposits[J]. Geotectonica et Metallogenia, 2018, 42(2): 244-265.
[16] 马昌前, 熊富浩, 张金阳等. 从板块俯冲到造山后阶段俯冲板片对岩浆作用的影响: 东昆仑早二叠世——晚三叠世镁铁质岩墙群的证据[J]. 地质学报, 2013, 87(S1): 79-81.
MA Changqian, XIONG Fuhao, ZHANG Jinyang et al. Influence of subducted slabs on magmatism from plate subduction to post-tectonic stage: evidence from the Early Permian--Late Triassic Mg-Fe wall complex in East Kunlun[J]. Acta Geologica Sinica , 2013, 87(S1): 79-81.
[17] 毛景文. 西秦岭地区造山型与卡林型金矿床[J]. 矿物岩石地球化学通报, 2001, 20(1): 11-13 doi: 10.3969/j.issn.1007-2802.2001.01.003
MAO JW. Geology‚Distributionand Classificationof Gold Deposits in the WesternQinling Belt‚Central China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2001, 20(1): 11-13. doi: 10.3969/j.issn.1007-2802.2001.01.003
[18] 莫宣学, 董国臣, 赵志丹等. 西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息[J]. 高校地质学报, 2005(03): 281-290
MO Xuanxue, DONG Guochen, ZHAO Zhidan et al. Spatial and temporal istribution and characteristics of Granitoids in the Gangdisê, Tibet and implication for crustal grow and evolution[J]. Geological Journal of China Universities, 2005(03): 281-290.
[19] 牛警徽, 田福泉, 邱敦方, 等. 山东旧店金矿床花岗岩类锆石 U-Pb 年龄及对招平断裂带南段岩浆活动规律的约束[J]. 地质通报, 2023, 42(5): 813-827
NIU JH, TIAN FQ, Qiu DF, XU DX, Fan DJ ZHANG YL, CUI QQ, ZHANG P, Song ZC, WANG HH, WU MG, ZHONG SH. Zircon U-Pb age of granitoids in the Jiuding gold deposit, Shandong Province and its constraints on the magmatic activity patterns in the southern section of the Zhaoping fault[J]. Geological Bulletin of China, 2023, 42(5): 813-827.
[20] 潘彤, 王贵仁, 王福德, 等. 中国矿产地质志·青海卷[R]. 青海: 青海省地质矿产勘查开发局, 2022.
[21] 祁生胜, 李五福, 于文杰, 等. 中国区域地质志·青海卷[R]. 青海: 青海省地质调查院, 2019.
[22] 秦燕, 王成辉, 王登红等. 中国金矿床成矿年代学研究进展[J]. 地球学报, 2023, 44(04): 581-598
QIN Yan, WANG Chenghui, WANG Denghong et al. Metallogenic Chronology of Gold Deposits in China[J]. Acta Geoscientica Sinica, 2023, 44(04): 581-598.
[23] 唐名鹰, 何宗围, 朱德全等. 柴北缘赛坝沟金矿床硫、铅同位素组成: 对成矿物质来源的指示[J]. 矿床地质, 2021, 40(01): 117-127 doi: 10.16111/j.0258-7106.2021.01.008
TANG Mingying, HE Zongwei, ZHU Dequan et al. S and Pb isotopic compositions in Saibagou gold deposit on north margin of Qaidam Basin: An indication to the source of metallogenic materials[J]. Mineral Deposits, 2021, 40(01): 117-127. DOI:10.16111/j.0258-7106.2021.01.008.
[24] 谭文娟, 赵国斌, 魏建设, 等. 黄河流域矿产资源禀赋、分布规律及开发利用潜力[J]. 西北地质, 2023, 56(2): 163−174.
TAN Wenjuan, ZHAO Guobin, WEI Jianshe, et al. Characteristics, Distribution and Utilization Potential of Mineral Resources in the Yellow River Basin[J]. Northwestern Geology, 2023, 56(2): 163−174.
[25] 王秉璋;付长垒;潘彤等. 柴北缘赛什腾地区早古生代岩浆活动与构造演化[J]. 岩石学报, 2022, (09): 2723-2742 doi: 10.18654/1000-0569/2022.09.13
WANG BZ, FU CL, PAN T, Li Q, LU YZ and JIN TT. 2022. Early Paleozoic magmatism in the Saishiteng area, North Qaidam and their constraint on tectonic evolution. Acta Petrologica Sinica, 38(9): 2723-2742,doi:10.18654/1000- 0569/2022.09.13.
[26] 王策, 李社, 李丽等. 青海抗得弄舍金铅锌多金属矿同位素地球化学特征及成因分析浅析[J]. 世界有色金属, 2018(09): 150+152
WANG Ce, LI She, LI Li et al. The isotopic geochemical characteristics of kangdenongshe gold-lead-zinc polymetallic deposit in Qinghai Province and the discussion about the deposite genesis[J]. World Nonferrous Metals, 2018(09): 150+152.
[27] 汪在聪, 王焰, 汪翔, 等, 2021. 交代岩石圈地幔与金成矿作用[J]. 地球科学, 46(12): 4197-4229
WANG ZC, WANG Y, WANG X, et al, 2021. Metasomatized Lithospheric Mantle and Gold Mineralization[J]. . Earth Science, 46(12): 4197-4229.
[28] 吴才来, Jone WOODEN, 杨经绥等. 祁连南缘花岗岩和榴辉岩之间的关系: 嗷唠山花岗岩SHRIMP锆石年龄证据[J]. 地质学报, 2002(01): 106 doi: 10.3321/j.issn:0001-5717.2002.01.026
WU Cailai, JONE Wooden, YANG Jingsui et al. Relationship between granites and garnet from the southern Qilian margin: SHRIMP zircon age evidence from the Ouzhangshan granite[J]. Acta Geologica Sinica, 2002(01): 106. doi: 10.3321/j.issn:0001-5717.2002.01.026
[29] 夏锐, 邓军, 卿敏等. 青海大场金矿田矿床成因: 流体包裹体地球化学及H-O同位素的约束[J]. 岩石学报, 2013, 29(04): 1358-1376
XIA R, DENG J, QING M, WANG CM and LI WL. 2013. The genesis of the Dachang gold ore field in Qinghai Province: Constraints on fluid inclusion geochemistry and H-O isotopes. Acta Petrologica Sinica, 29(4): 1358-1376
[30] 肖晔, 丰成友, 李大新, 等. 青海省果洛龙洼金矿区年代学研究与流体包裹体特征[J]. 地质学报, 2014, 88(5): 895−902.
XIAO Ye, FENG Chengyou, LI Daxin, et al. Chronology and Fluid Inclusions of the Guoluolongwa Gold Deposit in Qinghai Province[J]. Acta Geologica Sinica, 2014, 88(05): 895−902.
[31] 殷鸿福, 张克信. 中央造山带的演化及其特点[J]. 地球科学, 1998(05): 3+5+7-8 doi: 10.3321/j.issn:1000-2383.1998.05.001
YIN Hongfu and ZHANG Kexin. Evolution and characteristics of the central orogenic belt[J]. Earth Science, 1998(05): 3+5+7-8. doi: 10.3321/j.issn:1000-2383.1998.05.001
[32] 于淼, 丰成友, 何书跃等. 祁漫塔格造山带——青藏高原北部地壳演化窥探[J]. 地质学报, 2017, 91(04): 703-723
YU Miao, FENG Chengyou, HE Shuyue et al. The Qiman Tagh Orogen as A Window to the crustal evolution of the northern Tibetan Plateau[J]. Journal of Geology, 2017, 91(04): 703-723
[33] 岳远刚. 东昆仑南缘三叠系沉积特征及其对阿尼玛卿洋闭合时限的约束[D]. 西安: 西北大学, 2014
YUE Yanguang. Sedimentary characteristic of Triassic in sourthern of the East Kunlun and the constraints on the closing time of A'nimaqing Ocean[D]. Xi’an: Northwest University, 2014.
[34] 翟明国, 范宏瑞, 杨进辉等. 非造山带型金矿——胶东型金矿的陆内成矿作用[J]. 地学前缘, 2004(01): 85-98 doi: 10.3321/j.issn:1005-2321.2004.01.005
ZHAI Mingguo, FAN Hongrui, YANG Jinhui et al. Large-Scale Cluster of gold deposits in east Shandong: Anorogenic metallogenesis[J]. Earth Science Frontiers, 2004(01): 85-98. doi: 10.3321/j.issn:1005-2321.2004.01.005
[35] 张德全, 党兴彦, 佘宏全等. 柴北缘—东昆仑地区造山型金矿床的Ar-Ar测年及其地质意义[J]. 矿床地质, 2005(02): 87-98 doi: 10.3969/j.issn.0258-7106.2005.02.001
ZHANG Dequan, DANG Xingyan, SHE Hongquan et al. Ar-Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance[J]. Mineral Deposits, 2005(02): 87-98. doi: 10.3969/j.issn.0258-7106.2005.02.001
[36] 张国伟, 董云鹏, 赖绍聪等. 秦岭-大别造山带南缘勉略构造带与勉略缝合带[J]. 中国科学(D辑: 地球科学), 2003(12): 1121-1135
ZHANG Guowei, DONG Yunpeng, LAI Shaocong et al. Mianliu tectonic belt and Mianliu suture zone at the southern margin of the Qinling-Dabie orogenic belt[J]. Science in China (Series D: Earth Sciences), 2003(12): 1121-1135.
[37] 赵俊伟. 青海东昆仑造山带造山型金矿床成矿系列研究[D]. 长春: 吉林大学, 2008
ZAO Junwei. Study on Orogenic Gold Mettallogenic Series in Eastern Kunlun Orogenic Belt, Qinghai Province [D]. Changchun: Jilin University, 2008.
[38] 张宇婷. 青海东昆仑中段五龙沟矿集区金矿成矿作用研究[D]. 长春: 吉林大学, 2018
ZHAN Yuting. Research on metallogenesis of gold deposits in the Wulongou Ore Concentration Area, central segment of the east Kunlun Mountains, Qinghai Province[D]. Changchun: Jilin University, 2018.
[39] Chen F L, Cui X Z, Lin S F, et al. The earliest Neo proterozoic Nb-enriched mafic magmatism indicates subduction tec tonics in the southwestern Yangtze Block, South China[J]. Precambri an Research, 2023, 384: 106938. doi: 10.1016/j.precamres.2022.106938
[40] Deng, J. , Wang, Q. , Santosh, M. , et al. Remobilization of metasomatized mantle lithosphere: a new model for the Jiaodong gold province, eastern China[J]. Mineralium Deposita, 2020, 55: 257-274. doi: 10.1007/s00126-019-00925-0
[41] Goldfarb R J, Barker T, Dube B, et al. Distribution , character, and Gensis of gold deposits in metamorphic terranes [J]. Economic Geology, 2005, 100: 1-45. doi: 10.2113/100.1.0001
[42] Groves D I, Goldfarb R J, Gebre-Mariam M, et al. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types[J]. Ore Geology Reviews, 1998. 13: 7–272. doi: 10.1016/S0169-1368(97)00012-7
[43] Groves, D. I. and Santosh, M. The giant Jiaodong gold province: the key to a unified model for orogenic gold deposits?[J]. Geoscience Frontiers, 2016, 7(3): 409-417. doi: 10.1016/j.gsf.2015.08.002
[44] Groves, D. I. , Zhang, L, Santosh, M. Subduction, mantle metasomatism, and gold: A dynamic and genetic conjunction[J]. Bulletin, 2020, 132(7-8): 1419-1426.
[45] Xing J, Wang J, Liu J, et al. Geochronology, pyrite trace elements, and sulfur isotope geochemical characteristics of the Saibagou gold deposit in the eastern part of the northern Qaidam Basin[J]. Frontiers in Earth Science, 2023, 11: 1212856.
[46] Zhai W, Zheng S Q, Zhang L Y, et al. In situ pyrite sulfur isotope and trace element analyses of the world-class Dachang gold deposit, northern Qinghai-Tibetan Plateau: Implications for metallogenesis[J]. Ore Geology Reviews, 2021, 138: 104347. doi: 10.1016/j.oregeorev.2021.104347
[47] Zhong, S. , Feng, C. , Seltmann, R. , et al. Sources of fluids and metals and evolution models of skarn deposits in the Qimantagh metallogenic belt: A case study from the Weibao deposit, East Kunlun Mountains, northern Tibetan Plateau[J]. Ore Geology Reviews, 2018, 93: 19-37. doi: 10.1016/j.oregeorev.2017.12.013
[48] Zhong, S. , Li, S. , Feng, C. , et al. Porphyry copper and skarn fertility of the northern Qinghai-Tibet Plateau collisional granitoids[J]. Earth-Science Reviews, 2021, 214: 103524. doi: 10.1016/j.earscirev.2021.103524