Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite
-
摘要:
东昆仑造山带祁漫塔格地区是青海重要的矽卡岩多金属成矿带,牛苦头矽卡岩型矿床位于该地区中西段,为祁漫塔格地区探明的中–大型矽卡岩型铅锌多金属矿床之一。鉴于矿区成岩成矿时代以及金属成矿物质来源存在争议,笔者通过LA–ICP–MS及热表面电离质谱Re–Os同位素测试技术对锆石及黄铁矿年代学进行了研究。结果表明,牛苦头矿区M1矿段10线钻孔底部成矿花岗岩体年龄分别为(362.2±2.7)Ma、(361.8±3.4)Ma,与主成矿阶段闪锌矿密切共生的黄铁矿Re–Os等时线年龄为(359.2±6.3)Ma。牛苦头矿区矽卡岩铅锌多金属矿床成岩与成矿时代耦合于(362.2±2.7)~(359.2±6.3)Ma,表明该矽卡型铅锌多金属矿床形成于华力西期晚泥盆世。黄铁矿初始187OS/188Os值为0.13±0.24,表明牛苦头铅锌矿床金属成矿物质为壳幔混合来源,形成于晚泥盆世早古生代—晚古生代早期构造–岩浆旋回中碰撞–后碰撞的拉伸背景之下。
Abstract:The Qimantagh area of East Kunlun orogeninc belt is an important skarn–type polymetallic mineralization belt in Qinghai, and the Niukutou deposit is located in the central–western part of this area, which is one of the middle–large Pb–Zn skarn deposits in Qimantagh area. In view of the controversy about the diagenetic and metallogenic age and the source of the metal ore–forming materials of Niukutou ore district, the zircon and pyrite chronology has been studied by LA–ICP–MS and thermal surface ionization mass spectrometry Re–Os isotope testing technology in this paper. The results show that the ages of the ore-forming granite bodies at the bottom of the 10 line drill hole in the M1 ore block of Niukutou ore district are (362.2±2.7) Ma and (361.8±3.4) Ma respectively, and the Re–Os isochron age of the pyrite closely associated with the sphalerite in the main mineralization stage is (359.2±6.3) Ma. This shows that the diagenesis and mineralization age of the skarn Pb–Zn polymetallic deposit in Niukutou ore district are coupled at (362.2±2.7)~(359.2±6.3) Ma, which further indicates that the skarn Pb–Zn polymetallic deposit was formed in the late Devonian of Variscan. The initial 187OS/188Os of pyrite is 0.13±0.24, which indicates that the metal ore–forming materials of Niukutou Pb–Zn deposit are of crust mantle mixed source, and formed under the extensional background of collision–post collision in the tectonic magmatic cycle from Early Paleozoic to early Late Paleozoic at Late Devonian.
-
-
图 1 东昆仑造山带地区地质构造简图(a)与祁漫塔格区域地质矿产简图(b)(据丰成友等,2012;钟世华等,2017a,2017b;王新雨等,2021修改)
Figure 1.
表 1 牛苦头成矿花岗岩锆石U–Pb数据统计表
Table 1. U–Pb isotopic compositions of Niukutou granitoids
测点号 U Th Th/U 同位素比值 年龄(Ma) (10−6) 206Pb/238U 1σ 207Pb/235U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ NZC01.1 1085 393 0.36 0.05738 0.0006 0.42570 0.0063 0.05385 0.0007 360 2 365 3 NZC01.2 225 74 0.33 0.05758 0.0006 0.41379 0.0106 0.05215 0.0013 361 2 292 5 NZC01.3 266 81 0.30 0.05725 0.0006 0.43111 0.0086 0.05461 0.0010 359 2 396 4 NZC01.4 240 91 0.38 0.06005 0.0006 0.44513 0.0114 0.05378 0.0013 376 2 362 5 NZC01.5 201 71 0.35 0.05615 0.0006 0.41780 0.0102 0.05403 0.0013 352 2 372 5 NZC01.6 358 173 0.48 0.05931 0.0006 0.44755 0.0094 0.05470 0.0010 371 2 400 4 NZC01.7 195 70 0.36 0.05930 0.0006 0.44163 0.0107 0.05402 0.0012 371 2 372 5 NZC01.8 270 114 0.42 0.05856 0.0006 0.42962 0.0087 0.05327 0.0011 367 2 340 4 NZC01.9 183 63 0.34 0.05754 0.0006 0.42627 0.0110 0.05371 0.0013 361 2 359 5 NZC01.10 271 82 0.30 0.05786 0.0006 0.43239 0.0090 0.05411 0.0010 363 2 376 4 NZC01.11 198 102 0.52 0.05783 0.0006 0.42305 0.0107 0.05312 0.0013 362 2 334 5 NZC01.12 259 119 0.46 0.05650 0.0006 0.41202 0.0088 0.05296 0.0011 354 2 327 4 NZC01.13 308 136 0.44 0.05815 0.0008 0.42186 0.0112 0.05264 0.0013 364 3 313 5 NZC01.14 284 115 0.41 0.05696 0.0007 0.41795 0.0097 0.05337 0.0012 357 2 344 5 NZC01.15 241 102 0.42 0.05745 0.0006 0.42972 0.0091 0.05423 0.0011 360 2 381 4 NZC01.16 190 91 0.48 0.05779 0.0007 0.42768 0.0137 0.05392 0.0017 362 3 368 6 NZC01.17 317 177 0.56 0.05796 0.0007 0.43976 0.0098 0.05501 0.0011 363 2 413 4 NZC01.18 387 195 0.50 0.05840 0.0006 0.43639 0.0080 0.05421 0.0009 366 2 380 3 NZC01.19 300 124 0.41 0.05734 0.0006 0.41698 0.0080 0.05282 0.0009 359 2 321 4 NZC01.20 332 162 0.49 0.05755 0.0006 0.41550 0.0079 0.05234 0.0009 361 2 300 3 NZC13.1 201 80 0.40 0.05828 0.0006 0.42108 0.0105 0.05242 0.0012 365 4 357 9 NZC13.2 280 103 0.37 0.05685 0.0006 0.41206 0.0091 0.05264 0.0010 356 4 350 8 NZC13.3 185 68 0.37 0.05879 0.0007 0.44450 0.0129 0.05476 0.0014 368 4 373 11 NZC13.4 208 119 0.57 0.05796 0.0006 0.43336 0.0114 0.05419 0.0013 363 4 366 10 NZC13.5 228 88 0.39 0.05721 0.0006 0.42424 0.0117 0.05394 0.0014 359 4 359 10 NZC13.6 565 178 0.32 0.06000 0.0007 0.44218 0.0084 0.05355 0.0008 376 5 372 7 NZC13.7 193 66 0.34 0.05623 0.0006 0.41640 0.0119 0.05383 0.0015 353 4 353 10 NZC13.8 182 85 0.47 0.05767 0.0006 0.41970 0.0119 0.05307 0.0014 361 4 356 10 NZC13.9 244 120 0.49 0.05763 0.0006 0.42948 0.0095 0.05409 0.0011 361 4 363 8 NZC13.10 185 66 0.36 0.05949 0.0007 0.43490 0.0117 0.05297 0.0013 373 4 367 10 NZC13.11 131 48 0.37 0.05665 0.0006 0.41935 0.0135 0.05376 0.0016 355 4 356 11 NZC13.12 247 91 0.37 0.05775 0.0006 0.41730 0.0090 0.05248 0.0010 362 4 354 8 NZC13.13 251 106 0.42 0.05773 0.0006 0.42749 0.0090 0.05371 0.0010 362 4 361 8 NZC13.14 284 107 0.38 0.05662 0.0006 0.41479 0.0081 0.05314 0.0009 355 4 352 7 NZC13.15 167 56 0.34 0.05839 0.0006 0.43116 0.0113 0.05354 0.0013 366 4 364 10 表 2 牛苦头铅锌矿床黄铁矿Re–Os同位素数据统计表
Table 2. Re–Os data of pyrite from Niukutou Pb–Zn skarn deposit
样品号 Re (10−9) 普Os (10−9) 187Re (10−9) 187Os(10−9) 187Re/188Os 187Os/188Os 模式年龄(Ma) 测定值 不确
定度测定值 不确
定度测定值 不确
定度测定值 不确
定度测定值 不确
定度测定值 不确
定度测定值 不确
定度NKC073 7.887 0.058 0.0012 0.0000 4.957 0.037 0.02996 0.00023 32860 381 198.0 1.3 361.7 3.7 NKC072 0.363 0.003 0.0009 0.0000 0.228 0.002 0.00136 0.00001 1963 20 11.69 0.02 356.0 3.7 NZC-115 0.887 0.007 0.0066 0.0001 0.557 0.004 0.00335 0.00003 648.9 6.7 3.880 0.010 NKC074 0.214 0.002 0.0028 0.0000 0.135 0.001 0.00079 0.00001 376.2 4.5 2.222 0.014 NKC075 0.254 0.002 0.0014 0.0000 0.160 0.001 0.00098 0.00001 852.6 16.9 5.191 0.078 NKC076 0.031 0.000 0.0024 0.0000 0.019 0.000 0.00020 0.00001 61.7 1.4 0.611 0.021 -
[1] 杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展征[J]. 岩矿测试, 2009, 28(3): 288−304.
DU Andao, QU Wenjun, LI Chao, et al. A review on the development of Re-Os isotopic dating methods and techniques [J]. Rock and Mineral Analysis, 2009, 28(3): 288−304.
[2] 丰成友, 王雪萍, 舒晓峰, 等. 青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义[J]. 吉林大学学报(地球科学版) , 2011, 41(6), 1806-1817.
FENG Chengyou, WANG Xueping, SHU Xiaofeng, et al. Isotopic chronology of the Hutouya skarn lead-zinc polymetailic ore district in Qimantage area of Qinghai Province and its geological significance[J]. Journal of Jilin University (Earth Science Edition), 2011, 41 (6): 1806-1817.
[3] 丰成友, 丰耀东, 许建祥, 等. 赣南张天堂地区岩体型钨矿晚侏罗世成岩成矿的同位素年代学证据[J]. 中国地质, 2007, 34(4): 642−650.
FENG Chengyou, FENG Yaodong, XU Jianxiang, et al. Isotope chronological evidence for Upper Jurassic petrogenesis and mineralization of altered granite-type tungsten deposits in the Zhangtiantang area, southern Jiangxi [J]. Geology in China, 2007, 34(4): 642-650.
[4] 丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678
FENG Chengyou, WANG Song, LI Guochen, et al. Middle to Late Triassic granitoids in the Qimantage area, Qinghai Province, China: Chronology, geochemistry and metallogenic significances[J]. Acta Petrologica Sinica, 2012, 28 (2): 665-678.
[5] 高永宝, 李文渊, 钱兵, 等. 东昆仑野马泉铁矿相关花岗质岩体年代学、地球化学及Hf同位素特征[J]. 岩石学报, 2014, 30(06): 1647-1665
GAO Yongbao, LI Wenyuan, QIAN Bing, et al. Geochronology, geochemistry and Hf isotopic compositions of the granitic rocks related with iron mineralization in Yemaquan deposit, East Kunlun, NW China[J]. Acta Petrologica Sinica, 2014, 30(06): 1647-1665.
[6] 贾建团. 青海祁漫塔格地区牛苦头铁多金属矿床地质特征研究[J]. 北京: 中国地质大学(北京), 2013, 1−39
JIAN Jiantuan. The study on characteristics of iron polymetallic deposit in Niukutou Qimantage distict Qinghai[D]. Beiijng: China University of Geosciences (Beiijng), 2013, 1−39.
[7] 蒋成伍. 青海格尔木市四角羊-牛苦头地区矽卡岩型铁多金属矿矿化特征及成矿模式研究[J]. 北京: 中国地质大学(北京), 2013: 1−35
JIANG Chengwu. Mineralization Characteristics of Skarn type iron polymetallic&metallogenic model research in Sijiaoyang-Niukutou district in Qinghai province[D]. Beiijng: China University of Geosciences (Beiijng), 2013, 1–35.
[8] 李加多, 王新雨, 祝新友, 等. 青海祁漫塔格海西期成矿初探——以牛苦头M1铅锌矿床为例[J]. 矿产勘查, 2019, 10(08): 1775-1783 doi: 10.3969/j.issn.1674-7801.2019.08.003
LI Jiaduo, WANG Xinyu, ZHU Xinyou, et al. The preliminary discussion of the Hercynian metallogenic period in Qimantag area–with the example of Niukutou lead and zinc deposit[J]. Mineral Exploration, 2019, 10(8): 1775-1783. doi: 10.3969/j.issn.1674-7801.2019.08.003
[9] 李超, 屈文俊, 杜安道, 等. 铼-锇同位素定年法中丙酮萃取铼的系统研究[J]. 岩矿测试, 2009, 28(3): 233-238 doi: 10.3969/j.issn.0254-5357.2009.03.008
LI Chao, QU Wenjun, DU Andao, et al. Comprehensive study on extraction of Rhenium with acetone in Re-Os isotopic dating[J]. Rock and Mineral Analysis, 2009, 28(3): 233-238. doi: 10.3969/j.issn.0254-5357.2009.03.008
[10] 李超, 裴浩翔, 王登红, 等. 山东孔辛头铜钼矿成矿时代及物质来源: 来自黄铜矿、辉钼矿Re-Os同位素证据[J]. 地质学报, 2016, 90(2): 240-249 doi: 10.3969/j.issn.0001-5717.2016.02.004
LI Chao, PEI Haoxiang, WANG Denghong, et al. Age and source constraints for Kongxintou copper-molybdenum deposit Shandong from Re-Os isotope in molybdenite and chalcopyrite[J]. Acta Geologica Sinica, 2016, 90(2): 240-249. doi: 10.3969/j.issn.0001-5717.2016.02.004
[11] 李艳广, 靳梦琪, 汪双双, 等. LA–ICP–MS U–Pb定年技术相关问题探讨[J]. 西北地质, 2023, 56(4): 274−282.
LI Yanguang, JIN Mengqi, WANG Shuangshuang, et al. Exploration of Issues Related to the LA–ICP–MS U–Pb Dating Technique[J]. Northwestern Geology, 2023, 56(4): 274−282.
[12] 刘渭, 杨兴科, 江万, 等. 东昆仑祁漫塔格虎头崖铜多金属矿田构造应力场分析[J]. 西北地质, 2021, 54(4): 100-112 doi: 10.19751/j.cnki.61-1149/p.2021.04.008
LIU Wei, YANG Xingke, JIANG Wan, et al. Analysis of the Tectonic Stress Field in Hutouya Copper Polymetallic Ore Field, Qimantage of East Kunlun[J]. Northwestern Geology, 2021, 54(4): 100-112. doi: 10.19751/j.cnki.61-1149/p.2021.04.008
[13] 毛景文, 周振华, 丰成友, 等. 初论中国三叠纪大规模成矿作用及其动力学背景[J]. 中国地质, 2012, 39(6): 1437-1471 doi: 10.3969/j.issn.1000-3657.2012.06.001
Mao Jingwen, Zhou Zhenhua, Feng Chengyou, et al. A preliminary study of the Triassic large-scale mineralization in China and its geodynamic setting[J]. Geology in China, 2012, 39(6): 1437-1471. doi: 10.3969/j.issn.1000-3657.2012.06.001
[14] 莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13 (3): 403-414 doi: 10.3969/j.issn.1006-7493.2007.03.010
Mo Xuanxue, Luo Zhaohua, Deng Jinfu, et al. Granitoids and crustal growth in the East-Kunlun orogenic belt[J]. Geological Journal of China Universities, 2007, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010
[15] 宋忠宝, 张雨莲, 贾群子, 等. 2014. 东昆仑祁漫塔格地区野马泉地区深部的华力西期花岗闪长岩U-Pb年龄及意义[J]. 现代地质, 2014, 28(6), 1161-1169.
SONG Zhongbao, ZHANG Yulian, JIA Qunzi, et al. U-Pb Age of Yemaquan Deep Variscan Granodiorite in Qimantage Area, Eastern Kunlun and Its Significance[J]. Geoscience, 2014, 28(6): 1161-1169 (in Chinese with English abstract).
[16] 田龙, 康磊, 刘良, 等. 东昆仑巴什尔希晚奥陶世二长花岗岩成因及其地质意义[J]. 西北地质, 2023, 56(2): 28−45.
TIAN Long, KANG Lei, LIU Liang, et al. Petrogenesis and Geological Implications of Bashenerxi Monzogranite from East Kunlun Orogen Belt[J]. Northwestern Geology, 2023, 56(2): 28−45.
[17] 王新雨, 祝新友, 李加多, 等. 青海牛苦头矿区锰质黑柱石成因及其地质意义[J]. 地质学报, 2020, 94(8): 2279-2290 doi: 10.3969/j.issn.0001-5717.2020.08.008
WANG Xinyu, ZHU Xinyou, LI Jiaduo, et al. Genesis and geological significance of manganilvaite in the Niukutou deposit, Qinghai Province[J]. Acta Geologica Sinica, 2020, 94(8): 2279-2290 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2020.08.008
[18] 王新雨, 祝新友, 李加多, 等. 青海牛苦头矿区两期岩浆岩及其矽卡岩型成矿作用[J]. 岩石学报, 2021, 37(5): 1567-1586 doi: 10.18654/1000-0569/2021.05.14
WANG Xinyu, ZHU Xinyou, LI Jiaduo, et al. Two stage magmatisms and their skarn-type mineralization in the Niukutou ore district, Qinghai Provice[J]. Acta Petrologica Sinica, 2021, 37(5): 1567-1586. doi: 10.18654/1000-0569/2021.05.14
[19] 吴树宽, 陈国超, 李积清, 等. 东昆仑东段沟里地区战红山过铝质流纹斑岩年代学、岩石成因及构造意义[J]. 西北地质, 2023, 56(2): 92-108 doi: 10.12401/j.nwg.2022043
WU Shuguan, CHEN Guochao, LI Jiqing, et al. Geochronology, Petrogenesis and Tectonic Significance of Zhanhongshan Peraluminous Rhyolite Porphyry in Gouli Area, Eastern Section of East Kunlun[J]. Northwestern Geology, 2023, 56(2): 92-108. doi: 10.12401/j.nwg.2022043
[20] 张爱奎. 青海野马泉地区晚古生代-早中生代岩浆岩作用与成矿研究[D]. 北京: 中国地质大学(北京), 2012: 1−144.
ZHANG Aikui. Studies on late Paleozoic-early Mesozoic magmatism and mineralization in Yemaquan area, Qinghai province [D]. Beijing: China University of Geosciences (Beijing), 2012: 1−144.
[21] 钟世华, 丰成友, 李大新, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段矿物学特征[J]. 地质学报, 2017a, 91(05): 1066-1082
ZHONG Shihua, FENG Chengyou, LI Daxin, et al. Mineralogical characterisitcs of the Weixi ore block in the Weibao skarn-type copper-lead-zinc deposit, Xinjiang[J]. Acta Geologica Sinica, 2017a, 91(5): 1066-1082.
[22] 钟世华, 丰成友, 任雅琼, 等. 新疆维宝矽卡岩铜铅锌矿床维西矿段成矿流体性质和来源[J]. 矿床地质, 2017b, 36(02): 483-500.
ZHONG Shihua, FENG Chengyou, REN Yaqiong, et al. Characteristics and sources of ore-forming fluid from Weixi ore block of Weibao skarn Cu-Pb-Zn deposit, Xinjiang[J]. Miner. Deposits, 2017b, 36, 483-500.
[23] ANDERSEN Tom. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1–2): 59-79. doi: 10.1016/S0009-2541(02)00195-X
[24] LIU Yongsheng, GAO Shan, HU Zhaochu, et al. Continentaland oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1-2): 537-57. doi: 10.1093/petrology/egp082
[25] YU Miao, FENG Chengyou, MAO Jingwen, et al. The Qiman Tagh Orogen as a window to the crustal evolution in northern Tibetan Plateau[J]. Earth Science Review, 2017, 167: 103-123. doi: 10.1016/j.earscirev.2017.02.008
[26] Zhong S H, Feng C Y, Seltmann Reimar, et al. Geochemical contrasts between Late Triassic ore-bearing and barren intrusions in the Weibao Cu–Pb–Zn deposit, East Kunlun Mountains, NW China: constraints from accessory minerals (zircon and apatite) [J]. Mineralium Deposita, 2018, 53(6): 855−870.
-