Geochemical Characteristics of Ore-forming Intrusions and their Diagenetic and Metallogenic Revelation from the Xiataolegai Iron and Copper Deposit, Inner Mongolia
-
摘要:
下陶勒盖铁铜矿床是位于内蒙古阿拉善盟额济纳旗西部的一处矽卡岩铁铜矿床,同时也是北山成矿带旱山地块古生代活动陆缘矽卡岩成矿系统的典型代表。其成矿与花岗闪长岩和二长花岗岩有密切的时空联系,为查明二者的形成时代、岩浆源区特征及其与矿化之间的关系,笔者开展了对花岗闪长岩和二长花岗岩进行了岩相学、岩石地球化学及锆石U-Pb年代学研究。结果表明,花岗闪长岩与二长花岗岩均具高SiO2、Al2O3含量和高碱含量,低MgO含量,轻稀土元素富集,重稀土元素亏损。花岗闪长岩具Eu负异常和弱Ce正异常,亏损Ta、Nb、Ti和P等高场强元素,富集Rb和La等大离子亲石元素;二长花岗岩具弱Eu负异常和Ce正异常,亏损Nb、Ti和P等高场强元素,富集Rb和U等大离子亲石元素,这些特征表明二者均属钙碱性I型花岗岩。获得花岗闪长与二长花岗岩锆石U-Pb年龄分别为(451.7±4.8)Ma和(460.1±4.9)Ma,指示该矿床东矿段和西矿段成岩及与其相关的成矿作用分别发生于晚奥陶世和中奥陶世。综合分析认为,下陶勒盖铁铜矿床形成于中—晚奥陶世陆缘弧构造环境,与洋盆俯冲产生的挤压作用有关。
Abstract:The Xiataolegai iron and copper deposit, located in Inner Mongolia, is a representative skarn-type deposit within the active continental margin of the Beishan Metallogenic Belt. Situated in the western part of the Ejina Banner in the Alashan League, it is closely associated in both time and space with granodiorite and monzogranite linked to Fe-Cu mineralization. To ascertain the formation age, source characteristics, and the relationship between magmatism and mineralization, samples underwent petrography, geochemical analysis, and zircon U-Pb dating. Results reveal high SiO2, Al2O3, alkalinity, and low MgO, with LREE enrichment and HREE depletion in both granodiorite and monzogranite. Granodiorite exhibits Rb, La enrichment, Ta, Nb, Ti, P depletion, weak Ce positive and Eu negative anomaly, while monzogranite shows Rb, U enrichment, Nb, Ti, P depletion, Ce positive and weak Eu negative anomaly Both granodiorite and monzogranite are classified as calc-alkaline I-type granite. The obtained U-Pb ages for zircons from granodiorite and monzogranite are (451.7±4.8)Ma and (460.1±4.9)Ma, indicating that the magmatism and related mineralization in the eastern and western section of the deposit occurred in the Late Ordovician and Middle Ordovician, respectively. A comprehensive analysis suggests that the Xiataolegai deposit formed in the late-middle Ordovician within an active continental margin arc tectonic setting, likely associated with oceanic plate subduction.
-
-
图 1 下陶勒盖铁铜矿大地构造区(a)与内蒙古北山成矿带铁、铜、钼和金多金属矿床分布图(b)(据Ding et al.,2017;高树起等,2021)
Figure 1.
表 1 下陶勒盖铁铜矿床花岗闪长岩与二长花岗岩全岩主量元素(%)、稀土和微量元素(10−6)分析结果表
Table 1. Major elements (%), REE and trace elements (10−6) compositions of the granodiorite and monzogranite from the Xiataolegai iron and copper deposit
样品号 样品名 SiO2 TiO2 Al2O3 TFe2O3 MgO CaO Na2O K2O P2O5 烧失量 总量 Sc Ti Cr Co Ni Rb Sr Y Zr XT-044 花岗闪
长岩65.92 0.43 15.56 3.21 0.88 3.46 1.95 6.28 0.19 1.22 98.89 8.75 2556.73 2.87 2.87 3.16 273.09 217.88 25.11 245.99 XT-045 花岗闪
长岩63.38 0.49 16.61 3.98 1.49 3.31 2.23 5.34 0.21 1.23 98.26 11.75 2998.22 3.1 7.21 9.83 228.31 345.71 26.05 327.47 XT-046 花岗闪
长岩64.57 0.38 16.47 3.31 1.03 2.62 2.34 6.05 0.14 2.21 99.11 7.49 2254.02 3.45 4.03 8.22 248.55 287.41 15.45 248.25 XT-048 花岗闪
长岩65.57 0.41 16.46 3.37 1.17 2.31 1.67 6.42 0.14 1.99 99.47 8.22 2414.66 3.19 3.68 3.61 278.26 260.31 16.29 285.03 XT-049 花岗闪
长岩68.76 0.31 15.38 2.89 0.94 2.37 2.17 4.91 0.12 1.44 99.27 7.12 1846.33 2.45 4.43 2.36 217.81 271.06 17.87 193.32 XT-051 二长花
岗岩73.81 0.01 14.63 0.32 0.18 1.23 2.82 5.93 0.03 0.85 99.81 1.42 173.01 2.58 0.40 4.89 188.62 202.72 8.46 38.08 XT-052 二长花
岗岩74.47 0.01 13.81 0.34 0.18 0.85 3.03 5.53 0.05 1.11 99.33 1.07 179.12 1.45 0.26 1.23 189.78 185.41 8.36 24.17 XT-053 二长花
岗岩74.24 0.04 13.93 0.49 0.15 1.13 2.97 5.74 0.05 1.09 99.83 2.86 242.92 0.79 0.24 0.83 173.77 188.01 13.94 24.98 XT-054 二长花
岗岩73.95 0.02 14.15 0.51 0.18 1.42 3.08 5.21 0.03 1.34 99.88 1.96 209.39 0.47 0.41 0.63 166.95 153.62 16.85 48.82 样品号 样品名 Ba La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Hf Lu Ta Pb Bi Th XT-044 花岗闪
长岩888.49 36.12 73.21 8.23 32.96 5.89 1.35 4.95 0.62 4.74 0.87 2.57 0.41 2.23 5.96 0.36 1.03 3.56 0.58 5.54 XT-045 花岗闪
长岩1207.12 41.49 87.39 9.81 40.31 7.39 1.69 5.88 0.74 5.06 0.95 2.81 0.42 2.35 8.12 0.39 1.04 11.62 0.21 10.83 XT-046 花岗闪
长岩1383.96 64.21 122.78 12.46 45.29 6.83 1.63 5.37 0.54 3.51 0.73 2.13 0.33 2.01 6.31 0.33 0.99 9.91 0.22 15.19 XT-048 花岗闪
长岩1269.25 61.25 118.09 12.01 45.63 6.66 1.56 5.31 0.62 3.86 0.77 2.35 0.36 2.10 7.26 0.34 0.96 11.63 0.28 16.21 XT-049 花岗闪
长岩897.14 43.05 83.32 8.95 33.11 4.92 1.13 4.01 0.49 3.19 0.66 2.04 0.33 2.01 5.19 0.33 1.57 12.75 0.14 16.01 XT-051 二长花
岗岩379.84 8.09 23.35 2.56 9.33 1.74 0.64 1.63 0.24 1.89 0.41 1.29 0.23 1.26 1.72 0.22 0.61 31.71 0.07 8.39 XT-052 二长花
岗岩281.22 9.08 23.43 3.02 11.09 2.17 0.59 1.81 0.29 2.21 0.46 1.41 0.27 1.56 1.45 0.25 2.61 30.96 0.11 9.21 XT-053 二长花
岗岩354.39 8.38 17.89 2.84 10.41 2.23 0.47 2.04 0.36 2.96 0.66 2.04 0.36 2.25 1.52 0.35 1.42 19.36 0.06 9.71 XT-054 二长花
岗岩224.21 12.23 35.46 4.23 16.24 3.16 0.64 2.89 0.45 3.82 0.81 2.55 0.46 2.66 1.75 0.42 1.12 22.92 0.07 11.32 表 2 下陶勒盖铁铜矿床花岗闪长岩与二长花岗岩锆石U-Pb同位素 LA-ICP-MS 定年结果表
Table 2. Results of LA-ICP-MS zircon U-Pb dating for the granodiorite and monzogranite from the Xiataolegai iron and copper deposit
测试
点号元素含量 (10−6) 232Th/238U 同位素比值 年龄 (Ma) 谐和度(%) 206Pb 238U 232Th 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 样品 XT-47花岗闪长岩 XT-47-1 33.0 420 270 0.64 0.055683 0.000971 0.555747 0.009897 0.072438 0.000761 439.8 38.8 448.8 8.0 450.8 4.7 99 XT-47-2 59.5 708 635 0.90 0.056501 0.000875 0.567133 0.009134 0.072766 0.000745 472.1 34.3 456.2 7.3 452.8 4.6 99 XT-47-3 53.9 671 512 0.76 0.060149 0.000909 0.593241 0.009375 0.071511 0.000737 608.9 32.7 472.9 7.5 445.3 4.6 93 XT-47-4 54.7 677 536 0.80 0.061129 0.000972 0.601235 0.010187 0.071153 0.000719 643.8 34.2 478.0 8.1 443.1 4.5 92 XT-47-5 77.9 885 908 1.03 0.056599 0.000819 0.579132 0.008990 0.074183 0.000800 475.9 32.0 463.9 7.2 461.3 5.0 99 XT-47-6 68.4 820 758 0.92 0.057073 0.000838 0.566472 0.008859 0.071918 0.000750 494.3 32.4 455.7 7.1 447.7 4.7 98 XT-47-7 39.8 490 382 0.78 0.056459 0.000908 0.565446 0.009521 0.072619 0.000764 470.5 35.6 455.1 7.7 451.9 4.8 99 XT-47-8 51.5 643 536 0.83 0.055836 0.000856 0.548034 0.008808 0.071138 0.000731 445.9 34.1 443.7 7.1 443.0 4.6 99 XT-47-9 60.7 701 703 1.00 0.058394 0.000891 0.590287 0.009525 0.073264 0.000765 544.6 33.3 471.1 7.6 455.8 4.8 96 XT-47-10 43.6 530 368 0.70 0.057726 0.000928 0.596570 0.010196 0.074922 0.000807 519.4 35.3 475.1 8.1 465.7 5.0 98 XT-47-11 59.9 707 663 0.94 0.057924 0.000903 0.585539 0.009673 0.073272 0.000772 526.9 34.2 468.0 7.7 455.8 4.8 97 样品 XT-50二长花岗岩 XT-50-1 65.7 853 373 0.44 0.058255 0.000854 0.599708 0.009533 0.074612 0.000805 539.4 32.1 477.0 7.6 463.5 5.0 97 XT-50-2 63.4 846 329 0.39 0.055924 0.000827 0.568218 0.008921 0.073668 0.000772 449.3 32.8 456.9 7.2 458.2 4.8 99 XT-50-3 65.6 882 334 0.38 0.060274 0.000926 0.598740 0.009818 0.071920 0.000739 613.4 33.2 476.4 7.8 447.7 4.6 93 XT-50-4 61.5 809 332 0.41 0.055732 0.000883 0.569984 0.009641 0.074167 0.000811 441.7 35.3 458.0 7.7 461.2 5.0 99 XT-50-5 69.7 910 506 0.56 0.064514 0.001077 0.626786 0.009992 0.071055 0.000806 758.5 35.2 494.1 7.9 442.5 5.0 88 XT-50-6 57.6 750 312 0.42 0.056160 0.000843 0.579898 0.009349 0.074860 0.000805 458.7 33.3 464.4 7.5 465.4 5.0 99 XT-50-7 72.2 902 414 0.46 0.060178 0.000886 0.631297 0.009776 0.076404 0.000902 610.0 31.8 496.9 7.7 474.6 5.6 95 XT-50-8 66.8 877 295 0.34 0.055790 0.000832 0.581459 0.009302 0.075534 0.000787 444.0 33.2 465.4 7.4 469.4 4.9 99 XT-50-9 45.2 581 259 0.45 0.056166 0.000925 0.580605 0.010168 0.074984 0.000806 458.9 36.5 464.9 8.1 466.1 5.0 99 注:1σ代表单个数据点误差。 -
[1] 卜建军, 吴俊, 史冀忠, 等 . 北山—巴丹吉林地区石炭纪—二叠纪构造古地理及其演化[J]. 地质科技情报,2019 ,38 (6 ):113 −120 .BU Jianjun, WU jun, SHI Jizhong, et al . Carboniferous-Permian Tectonic Paleogeograpohy of Beishan-Badain Jaran Region and its Evolution[J]. Bulletin of Geological Science and Technology,2019 ,38 (6 ):113 −120 .[2] 陈耀, 张成, 张青, 等 . 内蒙古北山成矿带月牙山—老硐沟地区金多金属矿床成矿预测[J]. 西北地质,2023 ,56 (2 ):151 −162 .CHEN Yao, ZHANG Cheng, ZHANG Qing, et al . Metallogenic Regularity and Prospecting Prediction of Gold Polymetallic Deposits in Yueyashan-Laodonggou Area of Beishan Metallogenic Belt, Inner Mongolia[J]. Northwestern Geology,2023 ,56 (2 ):151 −162 .[3] doi: 10.3969/j.issn.1000-6524.2021.06.007高树起, 王云峰, 王晓东, 等 . 北山地区三道明水Cu-Zn矿床地质特征及矿床成因初探[J]. 岩石矿物学杂志,2021 ,40 (6 ):1141 −1154 . doi: 10.3969/j.issn.1000-6524.2021.06.007GAO Shuqi, WANG Yunfeng, WANG Xiaodong, et al . The Geologic Feature and Genetic Mechanism of the Sandaomingshui Cu-Zn Deposit in the Beishan Area[J]. Acta Petrologica et Mineralogica,2021 ,40 (6 ):1141 −1154 .[4] doi: 10.3969/j.issn.1009-6248.2002.01.004龚全胜, 刘明强, 李海林, 等 . 甘肃北山造山带类型及基本特征[J]. 西北地质,2002 ,39(3) :28 −34 . doi: 10.3969/j.issn.1009-6248.2002.01.004GONG Quansheng, LIU Mingqiang, LI Hailin, et al . The Type and Basic Characteristics of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology,2002 ,39(3) :28 −34 .[5] doi: 10.3969/j.issn.1009-6248.2003.01.002龚全胜, 刘明强, 梁明宏, 等 . 北山造山带大地构造相及构造演化[J]. 西北地质,2003 ,40(1) :11 −17 . doi: 10.3969/j.issn.1009-6248.2003.01.002GONG Quansheng, LIU Mingqiang, LIANG Minghong, et al . The Tectonic Facies and Tectonic Evolution of Beishan Orogenic Belt, Gansu[J]. Northwestern Geology,2003 ,40(1) :11 −17 .[6] 郝增元, 高鉴, 王晨, 等 . 北山造山带风雷山地区二长花岗岩LA-ICP-MS锆石U-Pb年龄及其构造背景[J]. 中国地质,2020 ,47 (4 ):1204 −1219 .HAO Zengyuan, GAO Jian, WANG Chen, et al . LA-ICP-MS Zircon U-Pb Dating and Tectonic Setting of the Monzogranites in the Fengleishan Area of Beishan Orogenic Belt, Inner Mongolia[J]. Geology in China,2020 ,47 (4 ):1204 −1219 .[7] doi: 10.3321/j.issn:1005-2321.2000.02.012洪大卫, 王式, 谢锡林, 等 . 兴蒙造山带正εNd(t)值花岗岩的成因和大陆地壳生长[J]. 地学前缘,2000 ,7 (2 ):441 −456 . doi: 10.3321/j.issn:1005-2321.2000.02.012HONG Dawei, WANG Shi, XIE Xilin, et al . Genesis of Positive εNd(t) Granitoids in the Da Hinggan Mts.-Mongolia Orogenic Belt and Growth Continental Crust[J]. Earth Science Frontiers,2000 ,7 (2 ):441 −456 .[8] 刘雪亚 . 甘肃北山区的钙碱系列岩浆活动及其与板块构造的关系[J]. 中国地质科学院院报,1984 ,3 :151 −165 .LIU Xueya . Magmatism of Galc-alkaline Series in the Beishan Region of Gansu Province and its Relation to Plate Tectonics[J]. Acta Geoscientica Sinica,1984 ,3 :151 −165 .[9] 柳永正, 张海平, 张永清, 等. 内蒙古中东部玛尼吐组火山岩形成时代及其大地构造环境[J]. 西北地质, 2023, 56(2): 46−60.
LIU Yongzheng, ZHANG Haiping, ZHANG Yongqing, et al. Zircon U–Pb Age and Tectonic Setting of the Manitu Formation in the Middle–East Inner Mongolia, China[J]. Northwestern Geology, 2023, 56(2): 46−60.
[10] 孟庆涛. 内蒙古北山地区晚奥陶—早志留世侵入岩地球化学特征及其地质意义[D]. 北京: 中国地质大学(北京), 2019. MENG Qingtao. The Geological Characteristics and Significance of Late Ordovician to Early Silurian Intrusive Rocks in Beishan Area, Nei Monggol[D]. Beijing: China University of Geosciences (Beijing), 2019. [11] 冉亚洲, 陈涛, 梁文天, 等. 西秦岭郎木寺组火山岩锆石U–Pb年龄及其构造意义[J]. 西北地质, 2024, 57(1): 110−121.
RAN Yazhou, CHEN Tao, LIANG Wentian, et al. Zircon U–Pb Age of Volcanic Rocks from the Langmusi Formation in the Western Qinling Mountains and Its Tectonic Significance[J]. Northwestern Geology, 2024, 57(1): 110−121.
[12] 任云伟, 任邦方, 牛文超, 等 . 内蒙古哈珠地区石炭纪白山组火山岩: 北山北部晚古生代活动陆缘岩浆作用的产物[J]. 地球科学,2019 ,44 (1 ):312 −327 .REN Yunwei, REN Bangfang, NIU Wenchao, et al . Carboniferous Volcanics from the Baishan Formation in the Hazhu Area, Inner Mongolia:Implications for the Late Paleozoic Active Continental Margin Magmatism in the Northern Beishan[J]. Earth Science,2019 ,44 (1 ):312 −327 .[13] 孙德有, 吴福元, 张艳斌, 等 . 西拉木伦河—长春—延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J]. 吉林大学学报(地球科学版),2004 ,34 (2 ):174 −181 .SUN Deyou, WU Fuyuan, ZHANG Yanbin, et al . The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone Evidence from the Dayushan Granitic Pluton, Jilin Province[J]. Journal of Jilin University (Earth Science Edition),2004 ,34 (2 ):174 −181 .[14] doi: 10.3969/j.issn.1000-6524.2017.02.001孙立新, 张家辉, 任邦方, 等 . 北山造山带白云山蛇绿混杂岩的地球化学特征、时代及地质意义[J]. 岩石矿物学杂志,2017 ,36 (2 ):131 −147 . doi: 10.3969/j.issn.1000-6524.2017.02.001SUN Lixin, ZHANG Jiahui, REN Bangfang, et al . Geochemical Characteristics and U-Pb Age of Baiyunshan Ophiolite Mélange in the Beishan Orogenic Belt and their Geological Implications[J]. Acta Petrologica et Mineralogica,2017 ,36 (2 ):131 −147 .[15] 王梁, 王根厚, 雷时斌, 等 . 内蒙古乌拉山大桦背岩体成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Hf同位素制约[J]. 岩石学报,2015 ,31 (7 ):1977 −1994 .WANG Liang, WANG Genhou, LEI Shibin, et al . Petrogenesis of Dahuabei Pluton from Wulasharn, Inner Mongolia:Constraints from Geochemistry, Zircon U-Pb Dating a and Sr-Nd-Hf Isotopes[J]. Acta Petrologica Sinica,2015 ,31 (7 ):1977 −1994 .[16] 王新雨, 王书来, 吴锦荣, 等. 青海省牛苦头铅锌矿床成矿时代研究: 来自成矿岩体年代学和黄铁矿Re–Os地球化学证据[J]. 西北地质, 2023, 56(6): 71−81.
WANG Xinyu, WANG Shulai, WU Jinrong, et al. Mineralization Age and Ore forming–Source of Niukutou Pb–Zn Deposit, Qinghai: Evidence from Geochronology of Ore–forming Rock Bodies and Re–Os Geochemistry of Pyrite[J]. Northwestern Geology, 2023, 56(6): 71−81.
[17] 王珍珍, 刘栋, 赵志丹, 等 . 冈底斯带南部桑日高分异I型花岗岩的岩石成因及其动力学意义[J]. 岩石学报,2017 ,33 (8 ):2479 −2493 .WANG Zhenzhen, LIU Dong, ZHAO Zhidan, et al . The Sangri Highly Fractionated I-type Granites in Southern Gangdese:Petrogenesis and Dynamic implication[J]. Acta Petrologica Sinica,2017 ,33 (8 ):2479 −2493 .[18] doi: 10.3969/j.issn.1002-5065.2021.06.098魏民, 赵泽南, 杨建坤, 等 . 内蒙古北山地区矿物的地球化学特征及其地质意义[J]. 世界有色金属,2021 ,4 (6 ):207 −209 . doi: 10.3969/j.issn.1002-5065.2021.06.098WEI Min, ZHAO Zenan, YANG Jiankun, et al . Geochemical Characteristics and Geological Significance of Minerals in Beishan Area, Inner Mongolia[J]. World Nonferrous Metals,2021 ,4 (6 ):207 −209 .[19] doi: 10.3969/j.issn.1000-0569.2007.06.001吴福元, 李献华, 杨进辉, 等 . 花岗岩成因研究的若干问题[J]. 岩石学报,2007 ,23 (6 ):1217 −1238 . doi: 10.3969/j.issn.1000-0569.2007.06.001WU Fuyuan, LI Xianhua, YANG Jinhui, et al . Discussions on the Petrogenesis of Granites[J]. Acta Petrologica Sinica,2007 ,23 (6 ):1217 −1238 .[20] 许立权, 陈志勇, 张彤, 等. 内蒙古自治区铁矿资源潜力评价[M]. 武汉: 中国地质大学出版社, 2019. XU Liquan, CHEN Zhiyong, ZHANG Tong, et al. Evaluation of Iron Ore Resource Potential in Inner Mongolia Autonomous Region[M]. Wuhan: China University of Geosciences Press, 2019. [21] 袁禹. 北山造山带大陆地壳的形成与演化[D]. 北京: 中国地质大学(北京), 2020. YUAN Yu. The Continental Crust Formation and Evolution of the Beishan Orogenic Belt[D]. Beijing: China University of Geosciences (Beijing), 2020. [22] doi: 10.18654/1000-0569/2022.07.18袁玲玲, 王祎帆, 刘建平, 等 . 湖南香花岭晚侏罗世高分异花岗岩的岩石地球化学特征: 岩石成因与稀有金属成矿效应[J]. 岩石学报,2022 ,38 (7 ):2113 −2138 . doi: 10.18654/1000-0569/2022.07.18YUAN Lingling, WANG Yifan, LIU Jianping, et al . Petro-geochemistry of Late Jurassic highly fractio nated granites in the Xianghualing area of Hunan Province: Constraints on petrogen esis and rare-metal mineralization[J]. Acta Petrologica Sinica,2022 ,38 (7 ):2113 −2138 .[23] 左国朝, 张淑玲, 何国琦, 等 . 北山地区早古生代板块构造特征[J]. 地质科学,1990 ,25 (4 ):305 −314 .ZUO Guochao, ZHANG Shuling, HE Guoqi, et al . Early Paleozoic Plate Tectonics in Beishan Area[J]. Chinese Journal of Geology,1990 ,25 (4 ):305 −314 .[24] doi: 10.1046/j.1365-3121.2001.00364.xBea F, Fershtater G B, Montero P, et al . Recycling of continental crust into the mantle as revealed by Kytlym dunite zircons, Ural Mts, Russia[J]. Terra Nova,2001 ,13 (6 ):407 −412 .[25] doi: 10.1016/j.lithos.2006.12.007Bonin Bernard . A-type granites and related rocks: evolution of a concept, problems and prospects[J]. Lithos,2007 ,97 (1−2 ):1 −29 .[26] doi: 10.1016/j.jseaes.2014.10.038Cleven N, Lin S, Guilmette C, et al . Petrogenesis and Implications for Tectonic Setting of Cambrian Suprasubduction-zone Ophiolitic Rocks in the Central Beishan Orogenic Collage, Northwest China[J]. Journal of Asian Earth Sciences,2015 ,113 :369 −390 .[27] doi: 10.1016/j.oregeorev.2017.06.018Ding Jiaxin, Han Chunming, Xiao Wenjiao, et al . Geochronology, Geochemistry and Sr-Nd Isotopes of the Granitic Rocks Associated with Tungsten Deposits in Beishan District, NW China, Central Asian Orogenic Belt: Petrogenesis, Metallogenic and Tectonic Implications[J]. Ore Geology Reviews,2017 ,89 :441 −462 .[28] doi: 10.1016/j.precamres.2016.09.027Du Lilin, Yang Chonghui, Derek A . Wyman, et al. Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex: Constraints from zircon U-Pb ages and Hf isotopes of sandstones and dacite[J]. Precambrian Research,2016 ,286 :59 −100 .[29] doi: 10.1017/S0016756813000654Essaifi A, Samson S, Goodenough K . Geochemical and Sr-Nd isotopic constraints on the petrogenesis and geodynamic significance of the Jebilet magmatism (Variscan Belt, Morocco)[J]. Geological Magazine,2014 ,151 (4 ):666 −691 .[30] doi: 10.1093/petrology/42.11.2033Frost B R, Barnes C G, Collins W J, et al . A Geochemical Classification for Granitic Rocks[J]. Journal of Petrology,2001 ,42 :2033 −2048 .[31] doi: 10.1016/j.gr.2019.11.017Han Shuai, Li Haibing, Pan Jiawei, et al . Genesis and geodynamic process of early Cretaceous intermediate-felsic batholith within the Chem Co zone, western Qiangtang and implications for Bangong-Nujiang Tethyan Ocean subduction[J]. Gondwana Research,2020 ,82 :193 −220 .[32] doi: 10.1016/j.gca.2018.02.019Latisha A ,Brengman , Christopher M. Fedo. Development of a mixed seawater-hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (~2.7 Ga) Abitibi Greenstone Belt, Canada[J]. Geochimica et Cosmochimica Acta,2018 ,227 :227 −245 .[33] doi: 10.1016/j.gr.2018.03.001Leng Chengbiao, Gao Jianfeng, Chen Wei Terry , et al . Platinum-group elements, zircon Hf-O isotopes, and mineralogical constraints on magmatic evolution of the Pulang porphyry Cu-Au system, SW China[J]. Gondwana Research,2018 ,62 :163 −177 .[34] Li Shengrong, Sun Li, Zhang Huafeng, et al . Magma mixing genesis of the Qushui collisional granitoids, Tibet, China:Evidences from genetic mineralogy[J]. Acta Petrologica Sinica,2006 ,22 (4 ):884 −894 .[35] doi: 10.1007/s11434-010-3052-4Liu Yongsheng, Hu Zhaochu, Zong Keqing, et al . Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin,2010 ,55 (15 ):1535 −1546 .[36] doi: 10.1093/petrology/41.1.43Morris G A, Larson P B, Hooper P R . Subduction Style Magmatism in a Non-subduction Setting: the Colville Igneous Complex, NE Washington State, USA[J]. Journal of Petrology,2000 ,41 :43 −67 .[37] doi: 10.1016/0012-8252(94)90029-9Middlemost E A K . Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,1994 ,37 :215 −224 .[38] doi: 10.1038/srep17786Profeta L, Ducea M N, Chapman J B, et al . Quantifying Crustal Thickness over Time in Magmatic Arcs[J]. Scientific Reports,2015 ,5 :17786 .[39] Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[C]. In: Hawkesworth C J, Norry M J (Eds.), Continental Basalts and Mantle Xenoliths. Shiva Press Limited, Cheshire, 1983, 230−249. [40] doi: 10.1093/petrology/25.4.956Pearce J A, Harris N B, Tindle A G . Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,1984 ,25 :956 −983 .[41] doi: 10.1080/00206814.2013.792515Song Dongfang, Xiao Wenjiao, Han Chunming, et al . Geochronological and Geochemical Study of Gneiss-schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids[J]. International Geology Review,2013a ,55 :1705 −1727 .[42] doi: 10.1016/j.precamres.2012.06.011Song Dongfang, Xiao Wenjiao, Han Chunming, et al . Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-grade Complexes[J]. Precambrian Research,2013b ,227 :368 −388 .[43] doi: 10.3390/min13020187Tan Fucheng, Hua Kong, Biao Liu, et al . In Situ U-Pb Dating and Trace Element Analysis of Garnet in the Tongshanling Cu Polymetallic Deposit, South China[J]. Minerals,2023 ,13 (2 ):187 [44] doi: 10.2475/10.2010.12Xiao Wenjiao, Mao Qigui, Windley B F, et al . Paleozoic Multiple Accretionary and CollIsional Processes of the Beishan Orogenic Collage[J]. American Journal of Science,2010 ,310 (10 ):1553 −1594 . -