阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束

高永宝, 陈康, 王亮, 赵辛敏, 李艳广, 刘明, 张龙, 王元伟, 张毅, 刘基. 2024. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质, 57(4): 1-20. doi: 10.12401/j.nwg.2024038
引用本文: 高永宝, 陈康, 王亮, 赵辛敏, 李艳广, 刘明, 张龙, 王元伟, 张毅, 刘基. 2024. 阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束. 西北地质, 57(4): 1-20. doi: 10.12401/j.nwg.2024038
GAO Yongbao, CHEN Kang, WANG Liang, ZHAO Xinmin, LI Yanguang, LIU Ming, ZHANG Long, WANG Yuanwei, ZHANG Yi, LIU Ji. 2024. Genesis of Kumutashi Fluorite Deposit in the West Altyn-Tagh Orogen, NW China: Constraints from Apatite In-Situ U-Pb Dating, Sr-Nd Isotope and Chemistry. Northwestern Geology, 57(4): 1-20. doi: 10.12401/j.nwg.2024038
Citation: GAO Yongbao, CHEN Kang, WANG Liang, ZHAO Xinmin, LI Yanguang, LIU Ming, ZHANG Long, WANG Yuanwei, ZHANG Yi, LIU Ji. 2024. Genesis of Kumutashi Fluorite Deposit in the West Altyn-Tagh Orogen, NW China: Constraints from Apatite In-Situ U-Pb Dating, Sr-Nd Isotope and Chemistry. Northwestern Geology, 57(4): 1-20. doi: 10.12401/j.nwg.2024038

阿尔金西段库木塔什萤石矿床成因:磷灰石U-Pb年龄、原位Sr-Nd同位素、地球化学约束

  • 基金项目: 陕西省自然科学基础研究计划项目“阿尔金卡尔恰尔超大型萤石矿带高氟岩浆-热液演化与成矿机制研究”(2023-JC-YB-241),中国地质调查局自然资源综合调查指挥中心科技创新基金项目“阿尔金卡尔恰尔地区超大型萤石成矿带成矿流体性质研究”(KC20230011),中国地质调查局项目“西昆仑大红柳滩-甜水海地区大型矿产资源基地综合调查”(DD20190143)、“新疆若羌县帕夏拉依档一带萤石、锂矿产调查评价”(DD20243309)、“阿尔金伊里奇曼-红柳沟地区萤石、金铜矿产调查评价”(DD20211551)联合资助。
详细信息
    作者简介: 高永宝(1982−),男,研究员,博士,主要从事区域成矿及矿床学研究,E−mail:gaoyongbao2006@126.com
  • 中图分类号: P571;P597

Genesis of Kumutashi Fluorite Deposit in the West Altyn-Tagh Orogen, NW China: Constraints from Apatite In-Situ U-Pb Dating, Sr-Nd Isotope and Chemistry

  • 近年来,阿尔金西段取得萤石找矿重大突破,相继发现卡尔恰尔和库木塔什等矿床,但成矿时代和成矿机制研究薄弱。笔者选取库木塔什矿床与萤石密切共生磷灰石为研究对象,开展原位U-Pb定年、Sr-Nd同位素及地球化学分析,以探讨萤石矿成矿时代及矿床成因。磷灰石常呈自形–半自形结构,表面均匀,单偏光下近乎透明,主要与萤石、方解石、带云母、氟碳铈矿等矿物共生。结果显示,磷灰石U-Pb同位素年龄为(448±27 )Ma,成矿作用与碱长花岗岩侵入活动密切相关,均为晚奥陶世构造–岩浆活动产物。磷灰石中F含量为4.20%~5.12%,Cl含量小于0.02%,极低的Cl含量表明出溶的流体Cl含量较低。磷灰石稀土元素含量较高(908×10−6~2164×10−6),稀土配分曲线显示强烈Eu负异常和Ce正异常,且与萤石、方解石、碱长花岗岩有明显的一致性,推测与岩浆-热液阶段大量流体出溶密切相关。磷灰石的87Sr/86Sr值为0.70913~0.71047,143Nd/144Nd值为0.51138~0.51153,εNd(t)值为−13.3~−10.3,表明成矿物质具有壳幔混合特征。综合研究表明,阿尔金西段萤石成矿时代为奥陶纪,与同期碱长花岗岩密切相关,形成于后碰撞伸展阶段,成矿流体来源于碱长花岗岩的熔体–流体演化,为岩浆热液充填型矿床。

  • 加载中
  • 图 1  阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带地质矿产图

    Figure 1. 

    图 2  库木塔什萤石矿区地质图

    Figure 2. 

    图 3  库木塔什萤石矿区磷灰石野外及镜下特征

    Figure 3. 

    图 4  磷灰石的CL图像和U-Pb谐和图

    Figure 4. 

    图 5  库木塔什萤石矿区磷灰石SiO2-MnO图解(据Zhao et al., 2020

    Figure 5. 

    图 6  库木塔什萤石矿床中磷灰石Sr-Y与Sr-Mn图解

    Figure 6. 

    图 7  库木塔什萤石矿区岩体与不同矿物地球化学协变图

    Figure 7. 

    图 8  库木塔什矿区岩体及不同矿物稀土元素配分模式图

    Figure 8. 

    图 9  库木塔什萤石矿区87Sr/86Sr-143Nd/144Nd图解

    Figure 9. 

    图 10  卡尔恰尔超大型萤石矿带区域成矿模式图

    Figure 10. 

    表 1  库木塔什萤石矿区磷灰石主量元素含量(%)

    Table 1.  Major elements composition (%) of apatite from the Kumutashi fluorite deposit

    样号 F SiO2 P2O5 Na2O SrO FeO MnO CaO Cl BaO Total F/Cl
    01 4.47 0.15 40.7 0.25 0.12 / 0.06 55.7 0.01 0.16 99.7 745
    02 4.39 0.07 41.3 0.23 0.13 0.05 0.04 55.7 0.01 0.10 100 399
    03 4.48 0.14 40.4 0.25 0.08 0.03 0.04 56.1 0.02 0.05 99.7 213
    04 4.86 0.14 40.6 0.23 0.19 / 0.02 55.7 0.01 0.10 99.8 374
    05 4.60 / 41.3 0.45 0.08 0.02 0.01 55.5 0.01 0.01 100 418
    06 5.12 0.15 40.6 0.29 0.13 0.04 / 55.5 0.01 / 99.7 639
    07 4.59 0.27 40.3 0.22 0.06 0.06 / 55.9 0.01 0.08 99.5 656
    08 4.66 0.15 41.1 0.17 0.14 0.03 / 55.5 0.02 / 99.8 194
    09 5.04 0.22 41.2 0.27 0.07 / 0.04 55.6 0.01 / 100 630
    10 4.20 0.26 41.2 0.21 0.10 0.07 0.09 56.2 0.02 / 101 200
    11 4.30 0.22 40.5 0.22 0.09 0.05 0.03 56.0 0.01 0.04 99.6 330
     注:“/”表示含量低于检测限。
    下载: 导出CSV

    表 2  库木塔什萤石矿区磷灰石、方解石微量元素与稀土元素表(10−6

    Table 2.  Trace element and rare earth element compositions (10−6) of apatite and calcite from the Kumutashi fluorite deposit

    样品号 Ap-01 Ap-02 Ap-03 Ap-04 Ap-05 Ap-06 Ap-07 Ap-08 Ap-09 Cal-01 Cal-02 Cal-03 Cal-04
    矿物 磷灰石 磷灰石 磷灰石 磷灰石 磷灰石 磷灰石 磷灰石 磷灰石 磷灰石 方解石 方解石 方解石 方解石
    Sc 0.26 0.16 0.2 0.22 0.15 0.17 0.2 0.14 0.12 0.36 0.37 0.42 0.28
    V 65.3 65.9 68.9 92.5 103 95.1 97 93.1 94.7 0.07 0.13 0.16 0.10
    Mn 130 118 287 126 135 111 104 104 111 1158 1187 1187 1182
    Fe 248 216 232 203 198 181 182 178 172 1535 1530 1541 1537
    Co 0.06 0.03 0.27 0.03 0.02 0.02 0.03 0.02 0.02 0.07 0.08 0.09 0.09
    Ga 0.29 0.22 1 0.17 0.13 0.16 0.1 0.13 0.11 0.42 0.34 0.23 0.22
    Rb 0 0.01 0 0.03 0 0.04 0.03 0 0.02 0.00 0.00 0.01 0.46
    Sr 834 888 891 810 708 713 715 699 676 1218 1228 1235 1221
    Y 103 124 118 85 58.1 74.4 78.1 75.4 57.4 36.6 36.8 36.2 35.0
    Sn 0.25 0.17 0.22 0.2 0.13 0.12 0.23 0.15 0.13 0.06 0.09 0.02 0.08
    Cs 0 0.03 0.01 0.02 0.01 0.01 0 0.01 0 0.00 0.01 0.10 0.08
    Ba 3.51 4 32.3 3.6 2.53 3.33 2.99 2.77 2.47 12.8 7.66 6.25 5.70
    La 309 366 343 223 159 194 209 205 150 34.3 41.1 14.1 9.87
    Ce 892 1016 949 625 453 540 570 561 428 102 113 57.4 46.5
    Pr 110 125 119 77.7 57.3 68.2 70.6 70 52.8 13.5 13.4 8.95 7.4
    Nd 394 450 434 270 205 241 250 243 189 50 50.2 37.7 33.5
    Sm 68.7 78.7 75.3 48.2 35 42.3 43.6 41.7 32.9 10.1 10.5 9 8.75
    Eu 6.63 7.72 7.44 5.01 4.07 4.29 4.56 4.43 3.54 1.05 1.07 1 1.02
    Gd 45.4 53.2 52.3 32.3 23.7 28 29.4 28 22.6 7.65 7.99 8.23 7.19
    Tb 5.55 6.39 6.19 3.99 2.94 3.59 3.6 3.53 2.91 1.13 1.17 1.09 1.1
    Dy 27.7 32.5 30.8 21.5 14.9 18.4 18.7 18.1 14.1 6.95 6.78 6.93 6.56
    Ho 4.35 5.22 4.98 3.49 2.48 2.91 3.02 2.94 2.45 1.4 1.42 1.35 1.32
    Er 11 12.8 12.2 8.34 6.21 7.66 7.81 7.49 5.93 4.08 4.19 4.07 4.17
    Tm 1.23 1.56 1.43 1.04 0.75 0.92 0.94 0.96 0.69 0.62 0.59 0.6 0.58
    Yb 6.88 8.32 7.32 5.59 3.96 4.62 4.84 4.95 3.74 4.33 4.27 4.31 4.2
    Lu 0.77 0.96 0.94 0.68 0.52 0.65 0.58 0.6 0.42 0.69 0.6 0.67 0.66
    W 0.05 0.06 0.33 0.06 0.03 0.05 0.02 0.04 0.02 0.00 0.00 0.01 0.01
    Bi 5.19 5.08 5.65 4.56 3.5 3.76 3.4 3.56 2.95 0.05 0.16 0.05 0.07
    Th 184 184 213 327 260 281 243 243 221 0.00 0.00 0.00 0.00
    U 25.7 24.3 27.5 31.7 18.4 22.4 17.1 17.2 15.2 0.00 0.00 0.00 0.00
    ΣREE 1883 2165 2043 1325 968 1157 1217 1191 908 238 256 155 133
    LREE 1780 2044 1927 1249 913 1090 1148 1124 856 211 229 128 107
    HREE 103 121 116 76.9 55.5 66.7 68.9 66.5 52.8 26.8 27 27.2 25.8
    LREE/HREE 17.3 16.9 16.6 16.2 16.5 16.3 16.7 16.9 16.2 7.87 8.48 4.7 4.16
    (La/Y)N 32.2 31.6 33.6 28.7 28.8 30.2 31 29.7 28.7 5.67 6.91 2.35 1.69
    δEu 0.34 0.34 0.34 0.37 0.41 0.36 0.37 0.37 0.38 0.35 0.34 0.35 0.38
    δCe 1.18 1.16 1.15 1.16 1.16 1.15 1.15 1.14 1.18 1.17 1.17 1.22 1.27
    样品号 Cal-05 Cal-06 Cal-07 Cal-08 Cal-09 Cal-10 Cal-11 Cal-12 Cal-13 Cal-14 Cal-15 Cal-16 Cal-17
    矿物 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石 方解石
    Sc 0.47 0.36 0.37 0.44 0.34 0.45 0.32 0.56 0.19 0.47 0.59 0.50 0.70
    V 0.07 0.14 0.06 0.03 0.03 0.20 0.06 0.00 0.01 0.13 1.79 0.18 0.20
    Mn 1176 1192 1372 1469 1423 1493 1389 1376 1058 1775 1800 2497 3858
    Fe 1556 1549 2695 3668 2559 4443 2475 2466 1169 1885 2636 2506 3710
    Co 0.01 0.12 0.11 0.12 0.12 0.08 0.09 0.12 0.07 0.09 0.21 0.09 0.14
    Ga 0.28 0.38 0.25 0.24 0.33 0.14 0.21 1.17 0.44 0.52 0.15 0.93 1.42
    Rb 0.39 0.10 0.22 0.04 0.04 0.23 0.13 0.12 0.04 0.02 0.42 0.14 0.25
    Sr 1187 1211 1110 1117 1125 1028 1146 1165 1047 1423 1049 2015 3011
    Y 36.0 35.2 40.3 38.4 40.0 50.6 43.0 42.4 30.4 40.0 47.0 61.9 99.8
    Sn 0.06 0.05 0.05 0.05 0.07 0.06 0.06 0.03 0.06 0.10 0.21 0.09 0.26
    Cs 0.14 0.02 0.08 0.02 0.04 0.10 0.06 0.03 0.01 0.02 0.10 0.07 0.08
    Ba 4.58 7.62 4.55 6.28 6.90 4.92 6.75 24.0 12.7 15.3 9.05 24.3 40.9
    La 13.4 30.6 28.5 29.3 43 12.9 99.4 94.6 44.5 29.4 29.9 83.8 259
    Ce 46.7 104 75.7 87.5 97.8 44.7 255 254 104 93.9 71.2 198 539
    Pr 6.74 12.9 9.65 11.3 11.7 7.29 29.2 29.2 12.2 12.6 11.3 23.8 57.7
    Nd 29.2 49.8 41.8 43.9 43.4 33.6 103 100 42.7 48.2 45.3 85 192
    Sm 8.66 9.87 9.49 9.21 9.56 10.2 16.3 14.8 8.75 10.7 10.4 17 29.7
    Eu 0.98 1.09 1.13 1.13 1.05 1.18 1.42 1.39 0.86 1.25 1.11 1.68 3.29
    Gd 6.6 8.04 8.38 8.47 8.45 9.8 10.2 10.1 6.49 8.26 8.62 13 21.1
    Tb 1.14 1.08 1.28 1.24 1.25 1.5 1.39 1.24 0.92 1.25 1.24 1.77 3.03
    Dy 6.63 6.53 7.72 7.68 7.84 9.91 8.18 8.16 5.28 7.3 7.96 11.7 17.4
    Ho 1.35 1.34 1.58 1.46 1.52 1.92 1.65 1.62 1.14 1.34 1.62 2.18 3.73
    Er 4.17 4.02 4.83 4.83 4.84 5.62 5.23 4.93 3.42 4.61 5 6.71 10.9
    Tm 0.61 0.62 0.75 0.68 0.69 0.79 0.75 0.71 0.47 0.66 0.85 0.99 1.49
    Yb 4.05 4.23 5.09 4.81 5 5.66 5.24 5.19 3.25 4.73 5.51 6.63 11.8
    Lu 0.67 0.63 0.79 0.74 0.82 0.78 0.91 0.82 0.51 0.75 0.9 1.09 1.67
    W 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.01
    Bi 0.04 0.04 0.02 0.02 0.03 0.02 0.01 0.00 0.11 0.18 0.40 0.29 0.38
    Th 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.31 0.14 0.11 0.35 0.70
    U 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.04 0.37 0.02 0.60
    ΣREE 131 235 197 212 237 146 538 527 235 225 201 453 1152
    LREE 106 209 166 182 207 110 504 494 213 196 169 409 1081
    HREE 25.2 26.5 30.4 29.9 30.4 36 33.5 32.8 21.5 28.9 31.7 44 71.1
    LREE/HREE 4.19 7.87 5.47 6.1 6.79 3.05 15.1 15.1 9.93 6.78 5.33 9.29 15.2
    (La/Yb)N 2.37 5.19 4.01 4.37 6.16 1.63 13.6 13.1 9.83 4.45 3.88 9.06 15.7
    δEu 0.38 0.36 0.38 0.38 0.35 0.36 0.31 0.33 0.34 0.39 0.35 0.33 0.38
    δCe 1.2 1.29 1.12 1.18 1.05 1.11 1.15 1.18 1.08 1.2 0.95 1.07 1.04
     注:δEu=EuN/(SmN×GdN1/2; δCe=CeN/(LaN×PrN1/2
    下载: 导出CSV

    表 3  库木塔什矿区磷灰石LA-ICP-MS U-Pb分析结果

    Table 3.  LA-ICP-MS apatite U-Pb isotopic data from the Kumutashi fluorite deposit

    测点号 元素含量(10−6 U/Th 同位素比值
    U Th n(238U)/
    n(206Pb)
    n(207Pb)/
    n(206Pb)
    n(207Pb)/
    n(235U)
    n(206Pb)/
    n(238U)
    n(208Pb)/
    n(232Th)
    01 31.2 220 0.32 3.89 0.0530 0.4044 0.0069 14.16 0.1996 0.2572 0.0035 0.3304 0.0094
    02 36.7 258 0.31 4.47 0.0524 0.3835 0.0037 11.57 0.2336 0.2239 0.0026 0.2735 0.0064
    03 44.3 284 0.34 4.89 0.0572 0.3817 0.0042 10.53 0.1982 0.2045 0.0024 0.2740 0.0064
    04 47.3 300 0.31 5.11 0.0821 0.3622 0.0047 9.54 0.1923 0.1957 0.0031 0.2443 0.0051
    05 29.7 202 0.16 3.70 0.0656 0.4060 0.0065 15.23 0.2960 0.2702 0.0048 0.3171 0.0083
    06 29.9 212 0.16 3.44 0.0463 0.4171 0.0047 16.10 0.2191 0.2907 0.0039 0.3269 0.0085
    07 29.1 198 0.16 3.47 0.0453 0.4134 0.0054 15.83 0.2357 0.2883 0.0038 0.3328 0.0069
    08 30.8 214 0.16 3.65 0.0493 0.4119 0.0051 15.01 0.2139 0.2743 0.0037 0.3207 0.0083
    09 32.0 225 0.15 3.69 0.0430 0.4134 0.0050 15.01 0.2086 0.2709 0.0032 0.3131 0.0096
    10 31.8 217 0.16 3.69 0.0549 0.4207 0.0055 15.25 0.2204 0.2711 0.0040 0.3245 0.0073
    11 36.7 255 0.16 4.06 0.0766 0.4008 0.0061 13.24 0.1785 0.2460 0.0046 0.2912 0.0077
    12 35.8 247 0.16 4.03 0.0700 0.4063 0.0062 13.56 0.2164 0.2480 0.0043 0.2894 0.0084
    13 35.1 240 0.16 4.03 0.0569 0.4098 0.0068 13.71 0.1863 0.2482 0.0035 0.2950 0.0087
    14 36.3 250 0.16 4.05 0.0725 0.4123 0.0064 13.68 0.2371 0.2468 0.0044 0.2880 0.0083
    15 54.4 331 0.26 5.83 0.1343 0.3344 0.0050 7.48 0.2133 0.1715 0.0040 0.2344 0.0060
    16 57.3 345 0.25 5.72 0.0905 0.3442 0.0060 7.77 0.1164 0.1748 0.0028 0.2417 0.0063
    17 51.6 323 0.35 6.29 0.1334 0.2775 0.0040 5.95 0.1339 0.1591 0.0034 0.2336 0.0068
    18 52.4 322 0.34 6.20 0.1610 0.2811 0.0058 6.09 0.1674 0.1612 0.0042 0.2320 0.0078
    19 53.0 329 0.29 5.92 0.1796 0.3070 0.0050 6.76 0.2174 0.1688 0.0051 0.2353 0.0081
    20 55.3 339 0.23 5.43 0.0730 0.3645 0.0049 8.58 0.1444 0.1842 0.0025 0.2484 0.0073
    21 53.7 328 0.27 5.78 0.1402 0.3228 0.0057 7.21 0.1931 0.1731 0.0042 0.2433 0.0083
    22 48.8 309 0.39 6.32 0.1086 0.2587 0.0038 5.61 0.1081 0.1582 0.0027 0.2325 0.0071
    23 50.6 319 0.37 6.24 0.1206 0.2646 0.0040 5.80 0.1216 0.1604 0.0031 0.2315 0.0064
    24 56.2 347 0.21 5.19 0.1003 0.3873 0.0058 9.57 0.1592 0.1928 0.0037 0.2533 0.0056
    25 42.9 308 0.27 4.16 0.0680 0.5004 0.0070 16.28 0.2830 0.2404 0.0039 0.2926 0.0072
    26 50.1 358 0.23 5.07 0.0826 0.3905 0.0054 10.31 0.1208 0.1974 0.0032 0.2444 0.0056
    27 36.4 289 0.27 4.08 0.0488 0.4882 0.0049 15.99 0.2317 0.2448 0.0029 0.2952 0.0062
    28 37.1 362 0.27 6.03 0.0983 0.2567 0.0044 5.95 0.1040 0.1658 0.0027 0.1837 0.0058
    29 29.9 235 0.26 3.70 0.0550 0.5267 0.0075 18.96 0.3393 0.2702 0.0040 0.3157 0.0072
    30 43.8 457 0.17 4.80 0.0598 0.3948 0.0054 10.93 0.1380 0.2084 0.0026 0.2053 0.0047
    31 43.5 256 0.41 5.34 0.0705 0.2731 0.0034 6.79 0.0948 0.1873 0.0025 0.2880 0.0066
    32 59.1 332 0.44 7.78 0.1007 0.2113 0.0026 3.62 0.0450 0.1286 0.0017 0.2061 0.0059
    33 74.5 493 0.34 8.32 0.0930 0.1960 0.0025 3.36 0.0691 0.1201 0.0013 0.1669 0.0038
    34 47.2 280 0.28 5.83 0.0945 0.2570 0.0036 6.07 0.0985 0.1716 0.0028 0.2374 0.0075
    35 48.6 285 0.42 6.75 0.0910 0.2251 0.0034 4.42 0.0579 0.1482 0.0020 0.2208 0.0048
    36 65.1 384 0.34 7.11 0.0759 0.2165 0.0025 4.31 0.0591 0.1407 0.0015 0.2062 0.0044
    37 39.3 340 0.22 6.55 0.0959 0.2264 0.0033 4.90 0.0826 0.1527 0.0022 0.1736 0.0037
    38 63.5 328 0.49 8.18 0.0948 0.1847 0.0027 3.09 0.0409 0.1223 0.0014 0.2061 0.0052
    39 52.4 336 0.39 7.99 0.1200 0.1875 0.0023 3.23 0.0408 0.1251 0.0019 0.1921 0.0042
    40 51.6 340 0.38 7.97 0.1127 0.1804 0.0025 3.13 0.0404 0.1255 0.0018 0.1867 0.0051
    下载: 导出CSV

    表 4  库木塔什磷灰石原位Sr-Nd同位素分析结果

    Table 4.  Sr and Nd isotopic results from the Kumutashi fluorite deposit

    样号 87Rb/86Sr 87Sr/86Sr 147Sm/144Nd 143Nd/144Nd εNd(t
    01 0.000058 0.70933 0.10390 0.51149 −11.1
    02 0.000004 0.70973 0.10454 0.51151 −10.6
    03 0.000058 0.70943 0.10273 0.51151 −10.7
    04 0.000058 0.70947 0.09928 0.51141 −12.7
    05 0.000058 0.70960 0.10504 0.51143 −12.1
    06 0.000058 0.70948 0.10259 0.51140 −12.8
    07 0.000058 0.71047 0.10482 0.51149 −11.1
    08 0.000058 0.70938 0.10411 0.51151 −10.7
    09 0.000040 0.70949 0.10202 0.51153 −10.3
    10 0.000014 0.70965 0.10394 0.51152 −10.4
    11 0.000111 0.70916 0.10724 0.51145 −11.8
    12 0.000014 0.70928 0.10426 0.51138 −13.3
    13 0.000144 0.70913 0.10444 0.51145 −11.9
    14 0.000140 0.70921 0.10245 0.51138 −13.2
    15 0.000015 0.70915 0.10371 0.51149 −11.0
    下载: 导出CSV
  • [1]

    曹玉亭, 刘良, 王超, 等. 阿尔金南缘塔特勒克布拉克花岗岩的地球化学特征、锆石U-Pb定年及Hf同位素组成[J]. 岩石学报, 2010, 26(11): 3259−3271.

    CAO Yuting, LIU Liang, WANG Chao, et al. Geochemical, Zircon U-Pb Dating and Hf Isotope Compositions Studies for Tatelekebulake Granite in South Altyn Tagh[J]. Acta Petrologica Sinica,2010,26(11):3259−3271.

    [2]

    陈宁, 曾忠诚, 赵端昌, 等. 阿尔金造山带南缘晚奥陶世碱性辉长岩成因及其大地构造意义[J]. 西北地质, 2023, 56(4): 91−102.

    CHEN Ning, ZENG Zhongcheng, ZHAO Duanchang, et al. Petrogenesis and Tectonic Implications of Late Ordovician Alkaline Gabbro in the South Altyn Orogenic Belt[J]. Northwestern Geology,2023,56(4):91−102.

    [3]

    高永宝, 赵辛敏, 王博, 等. 阿尔金西段卡尔恰尔-库木塔什超大型萤石矿带矿床地质、控矿花岗岩特征及找矿远景[J]. 中国地质, 2023, 50(3): 704−729.

    GAO Yongbao, ZHAO Xinmin, WANG Bo, et al. Geological characteristics, associated granites and the prospecting potential of the super-large Kaerqiaer-Kumutashi fluorite mineralization belt in theWest Altyn-Tagh Orogen, NW China[J]. Geology in China,2023,50(3):704−729.

    [4]

    段星星, 张越, 袁彦伟, 等. 阿尔金南缘清水泉堆晶岩年代学、地球化学特征及其地质意义[J]. 西北地质, 2023, 56(4): 103−115.

    DUAN Xingxing, ZHANG Yue, YUAN Yanwei, et al. Geochronology, Geochemistry and Geological Significance of Cumulates in Qingshuiquan Region, South Altyn Tagh[J]. Northwestern Geology,2023,56(4):103−115.

    [5]

    何元方, 张振凯, 高峰, 等. 阿尔金索尔库里地区石英闪长玢岩锆石U-Pb年龄、地球化学特征及其地质意义[J]. 西北地质, 2018, 51(3): 38−52.

    HE Yuanfang, ZHANG Zhenkai, GAO Feng, et al. Zircon U-Pb Ages and Geochemical Characteristics of Quartz Diorite Porphyrite from Suoerkuli Area in Altyn Tagh and their Geological Significance[J]. Northwestern Geology,2018,51(3):38−52.

    [6]

    康磊, 刘良, 曹玉亭, 等. 阿尔金南缘塔特勒克布拉克复式花岗质岩体东段片麻状花岗岩的地球化学特征、锆石U-Pb定年及其地质意义[J]. 岩石学报, 2013, 29(9): 3039−3048.

    KANG Lei, LIU Liang, CAO Yuting, et al. Geochemistry, zircon U-Pb age and its geological significance of the gneissic granite from the eastern segment of the Tatelekebulake composite granite in the south Altyn Tagh[J]. Acta Petrologica Sinica,2013,29(9):3039−3048.

    [7]

    李杭, 洪涛, 杨智全, 等. 稀有金属花岗伟晶岩锆石、锡石与铌钽铁矿U-Pb和白云母40Ar/39Ar测年对比研究-以阿尔金中段吐格曼北锂铍矿床为例[J]. 岩石学报, 2020, 36(9): 2869−2892. doi: 10.18654/1000-0569/2020.09.16

    LI Hang, HONG Tao, YANG Zhiquan, et al. Comparative studying on zircon, cassiterite and coltan U-Pb dating and 40Ar/39Ar dating of muscovite rare-metal granitic pegmatites: A case study of the northern Tugeman lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica,2020,36(9):2869−2892. doi: 10.18654/1000-0569/2020.09.16

    [8]

    李杭, 洪涛, 杨智全, 等. 阿尔金中段吐格曼北花岗伟晶岩型锂铍矿床多阶段岩浆-成矿作用[J]. 岩石学报, 2022, 38(10): 3085−3103.

    LI Hang, HONG Tao, YANG Zhiquan, et al. Multi-stage magmatism-mineralization and tectonic setting of the North Tugeman granitic pegmatite lithium-beryllium deposit in the middle of Altyn Tagh[J]. Acta Petrologica Sinica,2022,38(10):3085−3103.

    [9]

    刘良, 张安达, 陈丹玲, 等. 阿尔金江尕勒萨依榴辉岩和围岩锆石LA-ICP-MS微区原位定年及其地质意义[J]. 地学前缘, 2007, 14(1): 98−107. doi: 10.1016/S1872-5791(07)60004-9

    LIU Liang, ZHANG Anda, CHEN Danling, et al. Implication based on LA-ICP-MS ages of eclogite and its country rock from Jiang galesayi area, Altyn Tagh[J]. Earth Science Frontiers,2007,14(1):98−107. doi: 10.1016/S1872-5791(07)60004-9

    [10]

    刘良, 康磊, 曹玉亭, 等. 南阿尔金早古生代俯冲碰撞过程中的花岗质岩浆作用[J]. 中国科学: 地球科学, 2015, 58(8): 1513−1522.

    LIU Liang,KANG Lei,CAO Yuting,et al. Early Paleozoic granitic magmatism related to the processes from subduction to collision in South Altyn,NW China[J]. Science China: Earth Sciences,2015,58(8):1513−1522.

    [11]

    刘亚非, 王立社, 魏小燕, 等. 应用电子微探针-扫描电镜-拉曼光谱-电子背散射衍射研究一种未知Ti-Zr-U氧化物的矿物学特征[J]. 岩矿测试, 2016, 35(1): 48−55.

    LIU Yafei, WANG Lishe, WEI Xiaoyan, et al. Study on the mineralogical properties of an unknown Ti-Zr-U oxide using EPMA, SEM, Raman Spectroscopy and EBSD techniques[J]. Rock and Mineral Analysis,2016,35(1):48−55.

    [12]

    马中平, 李向民, 徐学义, 等. 南阿尔金山清水泉镁铁-超镁铁质侵入体LA-ICP-MS锆石U-Pb同位素定年及其意义[J]. 中国地质, 2011, 38(4): 1071−1078.

    MA Zhongping, LI Xiangmin, XU Xueyi, et al. Zircon LA-ICP-MS U-Pb isotopic dating for Qingshuiquan layered mafic ulmafic intrusion southern Altun orogen, in northwestern China and its implication[J]. Geology in China,2011,38(4):1071−1078.

    [13]

    孙丰月, 石准立. 试论幔源C-H-O流体与大陆板内某些地质作用[J]. 地学前缘, 1995, 2(1−2): 167−174.

    SUN Fengyue, SHI Zhunli. On the mantle-derived C-H-O fluid system and its significance to some geologic processes within continental plate[J]. Earth Science Frontiers,1995,2(1−2):167−174.

    [14]

    谭侯铭睿, 黄小文, 漆亮, 等. 磷灰石化学组成研究进展: 成岩成矿过程示踪及对矿产勘查的指示[J]. 岩石学报, 2022, 38(10): 3067−3084. doi: 10.18654/1000-0569/2022.10.11

    TAN Houminrui, HUANG Xiaowen, QI Liang, et al. Research progress on chemical composition of apatite: Application in petrogenesis, ore genesis and mineral exploration[J]. Acta Petrologica Sinica,2022,38(10):3067−3084. doi: 10.18654/1000-0569/2022.10.11

    [15]

    王核, 马华东, 张嵩, 等. 新疆阿尔金地区黄龙岭超大型伟晶岩型锂矿床的发现及找矿意义[J]. 岩石学报, 2023, 39(11): 3307−3318. doi: 10.18654/1000-0569/2023.11.06

    WANG He, MA Huadong, ZHANG Song, et al. Discovery of the Huanglongling giant lithium pegmatite deposit in Altyn Tagh, Xinjiang, China[J]. Acta Petrologica Sinica,2023,39(11):3307−3318. doi: 10.18654/1000-0569/2023.11.06

    [16]

    王立社, 杨鹏飞, 段星星, 等. 阿尔金南缘中段清水泉斜长花岗岩同位素年龄及成因研究[J]. 岩石学报, 2016, 32(3): 759−774.

    WANG Lishe, YANG Pengfei, DUAN Xingxing, et al. Isotopic age and genesis of plagiogranite from Qingshuiquan area in the middle of South Altyn Tagh[J]. Acta Petrologica Sinica,2016,32(3):759−774.

    [17]

    吴益平, 张连昌, 袁波, 等. 新疆阿尔金地区卡尔恰尔超大型萤石矿床地质特征及成因[J]. 地球科学与环境学报, 2021, 43(6): 962−977.

    WU Yiping, ZHANG Lianchang, YUAN Bo, et al. Geological Characteristics and Genesis of the Super-large Kalqiar Fluorite Deposit in Altyn Tagh Area of Xinjiang, China[J]. Journal of Earth Sciences and Environment,2021,43(6):962−977.

    [18]

    吴益平, 张连昌, 周月斌, 等. 阿尔金卡尔恰尔超大型萤石矿床成矿流体特征及形成机制探讨[J]. 地质科学, 2022, 57(2): 495−509.

    WU Yiping, ZHANG Lianchang, ZHOU Yuebin, et al. Study on fluid characteristic and metallogenic mechanism of the super-large Kalqiaer fluorite deposit in Altyn Tagh area[J]. Chinese Journal of Geology,2022,57(2):495−509.

    [19]

    邢凯, 舒启海. 磷灰石在矿床学研究中的应用[J]. 矿床地质, 2021, 40(02): 189−205.

    XING Kai, SHU QiHai. Applications of apatite in study of ore deposits: A review[J]. Mineral Deposits,2021,40(02):189−205.

    [20]

    徐兴旺, 李杭, 石福品, 等. 阿尔金中段吐格曼地区花岗伟晶岩型稀有金属成矿特征与找矿预测[J]. 岩石学报, 2019, 35(11): 3303−3316. doi: 10.18654/1000-0569/2019.11.03

    XU Xingwang, LI Hang, SHI Fupin, et al. Metallogenic characteristics and prospecting of granitic pegmatite-type rare metal deposits in the Tugeman area, middle part of Altyn Tagh[J]. Acta Petrologica Sinica,2019,35(11):3303−3316. doi: 10.18654/1000-0569/2019.11.03

    [21]

    许志琴, 杨经绥, 嵇少丞, 等. 中国大陆构造及动力学若干问题的认识[J]. 地质学报, 2010, 84(1): 1−29. doi: 10.1111/j.1755-6724.2010.00164.x

    XU Zhiqin, YANG Jingsui, JI Shaocheng, et al. On the Continental Tectonics and Dynamics of China[J]. Acta Geologica Sinica,2010,84(1):1−29. doi: 10.1111/j.1755-6724.2010.00164.x

    [22]

    赵辛敏, 高永宝, 燕洲泉, 等. 阿尔金卡尔恰尔超大型萤石矿带成因: 来自年代学、稀土元素和Sr-Nd同位素的约束[J]. 西北地质, 2023, 56(1): 31−47.

    ZHAO Xinmin, GAO Yongbao, YAN Zhouquan, et al. Genesis of Kalqiaer Super–large Fluorite Zone in Altyn Tagh Area: Chronology, Rare Earth Elements and Sr–Nd Isotopes Constraints[J]. Northwestern Geology,2023,56(1):31−47.

    [23]

    赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267−286.

    ZHAO Zhenhua. Trace element geochemistry of accessory minerals and its applications in petrogenesis and metallogenesis[J]. Earth Science Frontiers,2010,17(1):267−286.

    [24]

    喻学惠. 地幔交代作用: 研究进展、问题及对策[J]. 地球科学进展, 1995, 10(4): 330−335.

    YU Xuehui. Mantle metasomatism: progresses, problems and countermeasure[J]. Advance in Earth Sciences,1995,10(4):330−335.

    [25]

    张若愚, 曾忠诚, 朱伟鹏, 等. 阿尔金造山带帕夏拉依档岩体锆石U-Pb年代学、地球化学特征及地质意义[J]. 地质论评, 2016, 62(5): 1283−1299.

    ZHANG Ruoyu, ZENG Zhongcheng, ZHU Weipeng, et al. LA-ICP-MS Zircon U-Pb Dating, Geochemical Features and Their Geological Implications of Paxialayidang Plutons on the Southern Margin of Altyn Tagh[J]. Geological Review,2016,62(5):1283−1299.

    [26]

    张若愚, 曾忠诚, 陈宁, 等. 阿尔金造山带南缘中-晚奥陶世正长花岗岩的发现及其地质意义[J]. 地质通报, 2018, 37(4): 545−558.

    ZHANG Ruoyu, ZENG Zhongcheng, CHEN Ning, et al. The discovery of Middle-Late Ordovician syenogranite on thesouthern margin of Altun orogenic belt and its geological significance[J]. Geological Bulletin of China,2018,37(4):545−558.

    [27]

    周敖日格勒, 王英, 唐菊兴, 等. 冈底斯斑岩铜矿带东段早中新世剥蚀作用及对渐新世—中新世斑岩矿床时空分布的影响[J]. 西北地质, 2022, 55(3): 286−296.

    ZHOU Aorigele, WANG Ying, TANG Juxing, et al. Early Miocene Exhumation History in the Eastern Gangdese Porphyry Copper Belt and Its Influence on the Spatiotemporal Distribution of Oligocene-Miocene Porphyry Deposits[J]. Northwestern Geology,2022,55(3):286−296.

    [28]

    Amelin Y, Valeyev O. Nd-Pb-Sr isotope systematics of crustal assimilation in the Voisey's Bay and Mushuau intrusions, Labrador, Canadap[J]. Economic Geology,2000,95(4):815−830.

    [29]

    Bao B, Webster J D, Zhang D H, et al. Compositions of biotite, amphibole, apatite and silicate melt inclusions from the Tongchang mine, Dexing porphyry deposit, SE China: Implications for the behavior of halogens in mineralized porphyry systems[J]. Ore Geology Reviews,2016,79:443−462. doi: 10.1016/j.oregeorev.2016.05.024

    [30]

    Belousova E A, Walters S, Griffin W L, et al. Traceelement signatures of apatites in granitoids from the Mt Isa Inlier, northwestern Queensland[J]. Australian Journal of Earth Sciences,2001,48(4):603−619. doi: 10.1046/j.1440-0952.2001.00879.x

    [31]

    Belousova E A, Griffin W L, O'Reilly S Y, et al. Apatite as an indicator mineral for mineral exploration: trace-element composition and their relationship to host rock type[J]. Journal of Geochemical Exploration,2002,76(1):45−69. doi: 10.1016/S0375-6742(02)00204-2

    [32]

    Cao M J, Li G M, Qin K Z, et al. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization[J]. Resource Geology,2012,62(1):63−83. doi: 10.1111/j.1751-3928.2011.00180.x

    [33]

    Brehler B. Chlorine[J]. Handbook of Geochemistry,1974,2:17A−17O.

    [34]

    Chelle-Michou C, Chiaradia M. Amphibole and apatite in-sights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits[J]. Contributions to Mineralogy and Petrology,2017,172:105. doi: 10.1007/s00410-017-1417-2

    [35]

    Chen B, Ma X, Wang Z, et al. Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J]. Journal of Asian Earth Sciences,2014,93:301−314. doi: 10.1016/j.jseaes.2014.07.022

    [36]

    Creaser R A, Gray C M. Preserved initial 87Sr/86Sr in apatite from altered felsic igneous rocks: A case study from the Middle Proterozoic of South Australia[J]. Geochimica et Cosmochimica Acta,1992,56(7):2789−2795. doi: 10.1016/0016-7037(92)90359-Q

    [37]

    Ding T, Ma D S, Lu J J, et al. Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province Shi-Hang zone, China: Implications for petrogenesis and metallogenesis[J]. Ore Geology Reviews,2015,69:104−117. doi: 10.1016/j.oregeorev.2015.02.004

    [38]

    Fan J J, Tang G J, Wei G J, et al. Lithium isotope fractionation during fluid exsolution: Implications for Li mineralization of the Bailongshan pegmatites in the West Kunlun, NW Tibet[J]. Lithos,2020,352−353:105236. doi: 10.1016/j.lithos.2019.105236

    [39]

    Farver J R, Giletti B J. Oxygen and strontium diffusion kinetics in apatite and potential applications to thermal history determina tions[J]. Geochimica et Cosmochimica Acta,1989,53(7):1621−1631. doi: 10.1016/0016-7037(89)90243-3

    [40]

    Gao Y B, Zhao X M, Bagas L, et al. Newly discovered Ordovician Li-Be deposits at Tugeman in the Altyn-Tagh Orogen, NW China[J]. Ore Geology Reviews,2021,139:104515. doi: 10.1016/j.oregeorev.2021.104515

    [41]

    Gehrels G E, Yin A, Wang X F. Magmatic history of the northeastern Tibetan Plateau[J]. Journal of Geophysical Research,2003,108(B9):1−14.

    [42]

    Hovis G L, Harlov D E. Solution calorimetric investigation of fluorchlorapatite crystalline solutions[J]. American Mineralogist,2010,95(7):946−952. doi: 10.2138/am.2010.3485

    [43]

    Hughes J M, Rakovan J. Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals[J]. Elements,2015,11(3):165−170. doi: 10.2113/gselements.11.3.165

    [44]

    Liu L, Wang C, Chen D L, et a1. Petrology And geochronology of HP-UHP rocks from the South Altyn Tagh, northwestern China[J]. Journal of Asian Earth Sciences,2009,35(3−4):232−244. doi: 10.1016/j.jseaes.2008.10.007

    [45]

    Liu L, Wang C, Cao Y T, et al. Geochronology of multi-stage metamorphic events: constraints on episodic zircon growth from the UHP eclogite in the South Altun, NW China[J]. Lithos,2012,136-139:10−26. doi: 10.1016/j.lithos.2011.09.014

    [46]

    Liu M Y, Zhou M F, Su S G, et al. Contrasting Ggeochemistry of Aapatite from Pperidotites and Ssulfide Oores of the Jinchuan Ni-Cu Ssulfide Ddeposit, NW China[J]. Economic Geology,2021,116(5):1073−1092. doi: 10.5382/econgeo.4817

    [47]

    Long X P, Sun M, Yuan C, et al. Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: implications for the reconstruction of the Columbia supercontinent[J]. Precambrian Research,2012(222−223):474−487.

    [48]

    London D, Kontak D J. Granitic pegmatites: Scientific wonders and economic bonanzas[J]. Elements,2012,8(4):257−261. doi: 10.2113/gselements.8.4.257

    [49]

    Ludwig, K R. User’s manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology CenterSpecial Publication,2003(4):1−70.

    [50]

    Macdonald R, Bagiński B, Dzierz anowski P, et al. Apatite-supergroup minerals in UK Palaeogene granites: Composition and relationship to host-rock composition[J]. European Journal of Mineralogy,2013,25(3):461−471. doi: 10.1127/0935-1221/2013/0025-2291

    [51]

    Mathez E A, Webster J D. Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid[J]. Geochimica et Cosmochimica Acta,2005,69(5):1275−1286. doi: 10.1016/j.gca.2004.08.035

    [52]

    Mao M, Rukhlov A S, Rowins S M, et al. Apatite trace element compositions: A robust new tool for mineral exploration[J]. Economic Geology,2016,111:1187−1222. doi: 10.2113/econgeo.111.5.1187

    [53]

    McFarlane C R M, McCulloch M T. Coupling of in-situ Sm-Nd systematics and U-Pb dating of monazite and allanite with applications to crustal evolution studies[J]. Chemical Geology,2007,245(1−2):45−60.

    [54]

    Miles A J, Graham C M, Hawkesworth C J, et al. Apatite: A new redox proxy for silicic magmas?[J]. Geochimica et Cosmochimica Acta,2014,132:101−119. doi: 10.1016/j.gca.2014.01.040

    [55]

    Naylor R S, Steiger R H, Wasserburg G J. U-Th-Pb and Rb-Sr systematics in 2700×106 year old plutons from the southern Wind River Range, Wyoming[J]. Geochimica et Cosmochimica Acta,1970,34(11):1133−1159. doi: 10.1016/0016-7037(70)90055-4

    [56]

    Parat F, Holtz F, Klügel A. S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas[J]. Contributions to Mineralogy and Petrology,2011,162:463−478. doi: 10.1007/s00410-011-0606-7

    [57]

    Piccoli P M, Candela P A. Apatite in igneous systems[J]. Reviews in Mineralogy and Geochemistry,2002,48(1):255−292. doi: 10.2138/rmg.2002.48.6

    [58]

    Prowatke S, Klemme S. Trace element partitioning between apatite and silicate melts[J]. Geochimica et Cosmochimica Acta,2006,70(17):4513−4527. doi: 10.1016/j.gca.2006.06.162

    [59]

    Qu P, Li N B, Niu H C, et al. Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range, NE China[J]. Lithos,2019,348:105207.

    [60]

    Ramos F C, Wolff J A, Tollstrup D L. Measuring 87Sr/86Sr variations in minerals and groundmass from basalts using LA-MC-ICP-MS[J]. Chemical Geology,2004,211(1−2):135−158. doi: 10.1016/j.chemgeo.2004.06.025

    [61]

    Richards J P, López G P, Zhu J J, et al. Contrasting Tectonic Settings and Sulfur Contents of Magmas Associated with Cretaceous Porphyry Cu ± Mo ± Au and Intrusion-Related Iron Oxide Cu-Au Deposits in Northern Chile[J]. Economic Geology,2017,122(2):295−318.

    [62]

    Sha L K, Chappell B W. Apitate chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis[J]. Geochimica et Cosmochimica Acta,1999,63(22):3861−3881. doi: 10.1016/S0016-7037(99)00210-0

    [63]

    Sun S J, Yang X Y, Wang G J, et al. In situ elemental and Sr-O isotopic studies on apatite from the Xu-Huai intrusion at the southern margin of the North China Craton: implications for petrogenesis and metallogeny[J]. Chemical Geology,2019,510:200−214. doi: 10.1016/j.chemgeo.2019.02.010

    [64]

    Teiber H, Marks M A W, Wenzel T, et al. The distribution of halogens(F, Cl, Br)in granitoid rocks[J]. Chemical Geology,2014,374:92−109.

    [65]

    Thomas R, Webster J D. Strong tin enrichment in a pegmatite forming melt[J]. Mineralium Deposita,2000,35(6):570−582. doi: 10.1007/s001260050262

    [66]

    Treloar P J, Colley H. Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications[J]. Mineralogical Magazine,1996,60(2):285−301.

    [67]

    Wang C, Liu L, Yang W Q, et al. Provenance and ages of the Altyn complex in Altyn Tagh: Implications for the Early Neoproterozoic evolution of northwestern China[J]. Precambrian Research,2013,230:193−208. doi: 10.1016/j.precamres.2013.02.003

    [68]

    Wang C, Liu L, Xiao PX, et al. Geochemical and geochronologic constraints for Paleozoic magmatism related to the orogenic collapse in the Qimantagh-South Altyn region, northwestern China[J]. Lithos,2014,202-203:1−20. doi: 10.1016/j.lithos.2014.05.016

    [69]

    Wang C, Peng P, Wang X P, et al. Nature of three Proterozoic ( 1680 Ma, 1230 Ma and 775 Ma) mafic dyke swarms in North China: Implications for tectonic evolution and paleogeographic reconstruction[J]. Precambrian Research,2016,285:109−126. doi: 10.1016/j.precamres.2016.09.015

    [70]

    Webster J D, Kinzler R J, Mathez E A. Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing[J]. Geochimica et Cosmochimica Acta,1999,63(5):729−738. doi: 10.1016/S0016-7037(99)00043-5

    [71]

    Webster J D, Vivo B D. Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius[J]. American Mineralogist,2002,87(8-9):1046−1061. doi: 10.2138/am-2002-8-902

    [72]

    Xing K, Shu Q H, Lentz D R, et al. Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range, NE China[J]. American Mineralogist,2020,105(3):382−396.

    [73]

    Xu Z Q, He B Z, Zhang C L, et al. Tectonic framework and crustal evolution of the Precambrian basement of the Tarim Block in NW China: New geochronological evidence from deep drilling samples[J]. Precambrian Research,2013,235:150−162. doi: 10.1016/j.precamres.2013.06.001

    [74]

    Yang Y H, Wu FY, Yang J H, et al. Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology[J]. Chemical Geology,2014,385(14):35−55.

    [75]

    Yu S Y, Zhang J X, Del Real P G, et al. The Grenvillian orogeny in the Altun-Qilian-North Qaidam mountain belts of northern Tibet Plateau: constraints from geochemical and zircon U-Pb age and Hf isotopic study of magmatic rocks[J]. Journal of Asian Earth Sciences,2013,73:372−395. doi: 10.1016/j.jseaes.2013.04.042

    [76]

    Zhang J X, Zhang Z M, Xu Z Q, et al. Petrology and geochronology of eclogites from the Western segment of the Altyn Tagh, north western China[J]. Lithos,2001,56(2−3):187−206. doi: 10.1016/S0024-4937(00)00052-9

    [77]

    Yu J, Zheng D, Pang J, et al. Miocene range growth along the Altyn Tagh Fault: Insights from apatite fission track and (U-Th)/He thermochronometry in the western Danghenan Shan, China[J]. Journal of Geophysical Research: Solid Earth,2019,124(8):9433−9453.

    [78]

    Zhao J X, Qin K Z, Evans N J, et al. Volatile components and magma-metal sources at the Sharang porphyry Mo deposit. Tibet[J]. Ore Geology Reviews,2020,126:103779. doi: 10.1016/j.oregeorev.2020.103779

    [79]

    Zhou R J, Wen G, Li J W, et al. Apatite chemistry as a petrogenetic-metallogenic indicator for skarn ore-related granitoids: an example from the Daye Fe-Cu-(Au-Mo-W) district, Eastern China[J]. Contributions to Mineralogy and Petrology,2022,177:23. doi: 10.1007/s00410-022-01890-0

  • 加载中

(10)

(4)

计量
  • 文章访问数:  904
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2024-02-21
修回日期:  2024-03-28
录用日期:  2024-03-28
刊出日期:  2024-08-20

目录