滇西潞西地区晚寒武世岩浆构造热事件的新认识

宋冬虎, 刘兵, 路永岩, 刘晓玮, 包佳凤, 王燕, 刘军平, 孙柏东, 田素梅. 滇西潞西地区晚寒武世岩浆构造热事件的新认识[J]. 地质与资源, 2021, 30(5): 533-543. doi: 10.13686/j.cnki.dzyzy.2021.05.003
引用本文: 宋冬虎, 刘兵, 路永岩, 刘晓玮, 包佳凤, 王燕, 刘军平, 孙柏东, 田素梅. 滇西潞西地区晚寒武世岩浆构造热事件的新认识[J]. 地质与资源, 2021, 30(5): 533-543. doi: 10.13686/j.cnki.dzyzy.2021.05.003
SONG Dong-hu, LIU Bing, LU Yong-yan, LIU Xiao-wei, BAO Jia-feng, WANG Yan, LIU Jun-ping, SUN Bai-dong, TIAN Su-mei. THE LATE CAMBRIAN MAGMATIC TECTONIC THERMAL EVENTS IN LUXI AREA, WESTERN YUNNAN: A New Understanding[J]. Geology and Resources, 2021, 30(5): 533-543. doi: 10.13686/j.cnki.dzyzy.2021.05.003
Citation: SONG Dong-hu, LIU Bing, LU Yong-yan, LIU Xiao-wei, BAO Jia-feng, WANG Yan, LIU Jun-ping, SUN Bai-dong, TIAN Su-mei. THE LATE CAMBRIAN MAGMATIC TECTONIC THERMAL EVENTS IN LUXI AREA, WESTERN YUNNAN: A New Understanding[J]. Geology and Resources, 2021, 30(5): 533-543. doi: 10.13686/j.cnki.dzyzy.2021.05.003

滇西潞西地区晚寒武世岩浆构造热事件的新认识

  • 基金项目:
    云南省省级财政预算项目"云南省矿产资源总体规划(2021-2025年)""云南省‘十四五’自然资源规划";云南省自然资源厅地勘基金项目"云南1:5万曼彦等5幅区域地质调查"(D2017013)
详细信息
    作者简介: 宋冬虎(1986-), 男, 工程师, 从事矿产资源规划及区域地质调查工作, 通信地址 云南省昆明市官渡区云南省国土资源规划设计研究院, E-mail//380097649@qq.com
    通讯作者: 刘兵(1984-), 男, 高级工程师, 从事区域地质调查工作, 通信地址: 云南省昆明市官渡区云南省国土资源规划设计研究院, E-mail//bb5167@126.com
  • 中图分类号: P579

THE LATE CAMBRIAN MAGMATIC TECTONIC THERMAL EVENTS IN LUXI AREA, WESTERN YUNNAN: A New Understanding

More Information
  • 保山地块作为冈瓦纳大陆的重要组成部分,其西缘发育有以平河岩体为代表的大量早古生代侵入岩,但由于缺少野外调查资料,其地质意义存在长期争议.通过1:5万区域地质调查,详实的野外接触关系证实平河岩体存在两期侵入岩.沉积作用及年代学、岩石地球化学等赋予了其新的地质意义.潞西地区早期侵入岩主要岩石类型为二长花岗岩,应用LA-ICP-MS获得锆石U-Pb年龄为488.3±3.9 Ma.通过主、微量元素分析,其岩石属高温富黑云母含堇青石过铝花岗岩,属高钾钙碱系列岩石,具中等负Eu异常稀土特征,属"南岭型"花岗岩.结合沉积作用和区域地质构造背景,认为该期侵入岩为晚寒武世保山地块与腾冲地块碰撞拼合后上地壳部分熔融产物.

  • 加载中
  • 图 1  滇西地区地质背景图

    Figure 1. 

    图 2  潞西地区平河岩体两期花岗岩及其围岩

    Figure 2. 

    图 3  平河岩体花岗岩锆石阴极发光图像和U-Pb年龄谐和图

    Figure 3. 

    图 4  平河花岗岩分类判别图解

    Figure 4. 

    图 5  潞西地区平河岩体稀土元素球粒陨石标准化配分曲线图及微量元素洋中脊玄武岩标准化蛛网图

    Figure 5. 

    图 6  潞西地区平河岩体Sr-Yb花岗岩分类图解

    Figure 6. 

    图 7  潞西地区平河岩体R1-R2成因分类图

    Figure 7. 

    表 1  潞西地区平河岩体锆石U-Pb同位素比值测定结果

    Table 1.  Test results for U-Pb isotope ratio of zircons from Pinghe pluton in Luxi area

    测点 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U
    比值 比值 比值 年龄/Ma 年龄/Ma 年龄/Ma
    1 0.0580 0.0013 0.6225 0.0165 0.0790 0.0019 529.6 49.74 491.4 10.29 489.8 11.08
    2 0.0577 0.0016 0.6395 0.0217 0.0811 0.0019 518.2 58.37 502 13.41 502.6 11.48
    3 0.0549 0.0013 0.6201 0.0174 0.0773 0.0018 406.9 51.67 489.9 10.9 480.1 10.86
    4 0.0586 0.0012 0.6305 0.0133 0.0801 0.0019 552.9 43.33 496.4 8.28 496.9 11.12
    5 0.0564 0.0017 0.6167 0.0226 0.0779 0.0019 468.8 63.55 487.8 14.21 483.4 11.07
    6 0.0568 0.0013 0.6166 0.0156 0.0770 0.0018 481.3 48.74 487.7 9.78 478.3 10.75
    7 0.0566 0.0013 0.6296 0.0176 0.0794 0.0019 473.7 52.09 495.8 10.95 492.4 11.09
    8 0.0566 0.0021 0.6289 0.0316 0.0798 0.0020 474.3 80.97 495.4 19.67 494.7 11.62
    9 0.0579 0.0012 0.6435 0.0144 0.0804 0.0019 525.9 45.18 504.5 8.88 498.4 11.11
    10 0.0560 0.0013 0.6392 0.0176 0.0809 0.0019 452 51.14 501.8 10.88 501.2 11.24
    11 0.0562 0.0013 0.6212 0.0159 0.0783 0.0018 458.9 49.52 490.6 9.95 485.8 10.83
    12 0.0576 0.0012 0.6079 0.0139 0.0776 0.0018 513.9 46.04 482.2 8.77 481.5 10.7
    13 0.0578 0.0021 0.6327 0.0318 0.0784 0.0019 520.5 79.51 497.8 19.76 486.5 11.37
    14 0.0567 0.0013 0.6319 0.0173 0.0781 0.0018 479.7 51.26 497.3 10.76 484.5 10.8
    15 0.0562 0.0012 0.6640 0.0155 0.0828 0.0019 460.6 46.8 517 9.43 513.1 11.34
    16 0.0581 0.0014 0.6390 0.0179 0.0800 0.0019 534.5 51.7 501.7 11.07 496.1 11.04
    17 0.0569 0.0021 0.5981 0.0301 0.0764 0.0019 487.9 81.45 476 19.11 474.6 11.07
    18 0.0559 0.0013 0.6145 0.0155 0.0776 0.0018 449.4 48.82 486.4 9.77 482 10.67
    19 0.0571 0.0012 0.6108 0.0129 0.0767 0.0018 495.4 44.14 484 8.16 476.1 10.48
    20 0.0584 0.0012 0.6429 0.0144 0.0802 0.0018 543.4 44.98 504.1 8.87 497.4 10.94
    21 0.0585 0.0017 0.6298 0.0230 0.0787 0.0018 550 61.35 496 14.32 488.1 10.95
    22 0.0564 0.0012 0.6072 0.0137 0.0774 0.0018 468.7 46.37 481.8 8.63 480.6 10.53
    23 0.0579 0.0017 0.6148 0.0228 0.0777 0.0018 524.7 63.49 486.6 14.34 482.2 10.81
    24 0.0577 0.0013 0.6247 0.0151 0.0781 0.0018 517.2 47.57 492.8 9.42 485 10.63
    25 0.0565 0.0013 0.6416 0.0160 0.0812 0.0019 471.1 48.94 503.3 9.9 503.3 11.01
    26 0.0563 0.0012 0.6477 0.0150 0.0808 0.0018 462.4 46.89 507.1 9.21 500.6 10.92
    27 0.0574 0.0013 0.6377 0.0166 0.0773 0.0018 507.4 49.8 500.9 10.27 480.3 10.52
    28 0.0574 0.0012 0.6205 0.0142 0.0772 0.0018 506.7 46.59 490.2 8.92 479.5 10.46
    29 0.0590 0.0033 0.6202 0.0483 0.0777 0.0020 565.5 116.67 490 30.27 482.2 12.04
    30 0.0566 0.0020 0.6213 0.0292 0.0773 0.0018 474.8 76.79 490.7 18.27 479.7 10.91
    下载: 导出CSV

    表 2  潞西地区平河岩体晚寒武世花岗岩主要岩石类型主量、微量元素及CIPW标准矿物分析结果

    Table 2.  Major and trace element contents and CIPW norm mimeral calculation results for the Late Cambrian granites in Luxi area

    样品编号 D3504-1 D1873-2 D0842-1 PM5-25 PM5-14 PM5-19 D6511-1 D6511-1 D0846-1 D1904-2
    岩性 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 黑云二长花岗岩 花岗闪长岩 花岗闪长岩 黑云二长花岗岩 黑云二长花岗 黑云二长花岗岩 黑云二长花岗岩
    SiO2 73.45 71.56 74.07 70.72 70.57 69.91 75.15 74.71 74.53 73.87
    TiO2 0.22 0.27 0.21 0.31 0.37 0.38 0.15 0.15 0.18 0.23
    Al2O3 13.15 14.69 13.1 13.88 14.07 14.27 12.65 12.93 12.72 13.02
    Fe2O3 1.44 1.96 1.39 0.66 1.82 2.16 1.05 0.70 1.41 2.04
    FeO 1.72 1.06 1.60 3.44 2.32 2.18 1.64 1.82 1.80 1.13
    MnO 0.09 0.05 0.05 0.09 0.16 0.08 0.04 0.05 0.05 0.06
    MgO 0.45 0.80 0.45 0.91 0.50 0.86 0.33 0.28 0.38 0.56
    CaO 1.37 1.24 1.25 0.61 1.03 0.92 0.88 1.03 1.19 1.13
    Na2O 2.87 3.21 2.58 2.51 2.16 2.34 2.74 2.98 2.66 2.74
    K2O 4.47 3.84 4.63 4.33 4.69 4.40 4.52 4.75 4.73 4.40
    P2O5 0.08 0.05 0.08 0.07 0.09 0.06 0.06 0.04 0.07 0.05
    H2O+ 0.58 0.85 0.57 1.91 1.68 2.17 0.69 0.35 0.20 0.73
    CO2 0.06 0.05 0.29 0.16 0.81 0.15 0.11 0.06 0.22 0.05
    LOI 0.54 1.21 0.54 1.54 1.64 1.83 0.70 0.43 0.23 0.78
    Zr 113.90 111.90 129.00 161.00 159.00 179.00 108.50 99.50 110.80 106.00
    Zn 56.20 19.90 35.00 173.0 22.00 48.00 29.90 28.60 35.70 21.20
    V 20.00 21.60 20.50 33.50 34.70 40.70 12.40 13.90 16.60 21.80
    Th 23.73 25.30 25.40 14.30 13.30 18.40 22.54 19.69 21.81 24.50
    Sc 3.80 3.90 4.80 7.07 6.37 8.83 5.10 4.90 5.70 4.90
    Sr 78.90 89.60 75.30 67.80 40.60 83.60 49.80 52.70 64.20 97.30
    Rb 292.8 211.9 215.0 181.0 219.0 200.0 225.7 255.6 223.0 230.7
    Ni 4.80 5.30 6.00 9.08 8.66 7.58 5.40 5.60 5.50 5.50
    Nb 16.00 16.10 14.60 12.70 12.00 13.20 15.30 15.50 13.30 16.7
    Cu 17.90 7.10 9.00 10.30 12.00 8.22 8.60 6.90 7.00 8.40
    Cr 13.20 12.00 18.10 18.80 32.80 21.00 14.30 13.50 15.60 9.40
    Co 4.40 5.10 4.40 5.96 3.48 6.41 4.30 5.10 4.90 4.75
    Ba 397.9 195.6 492.0 475.0 2440. 632.0 243.9 307.2 392.7 371.0
    Hf 5.10 3.30 6.19 4.97 4.63 5.25 6.75 5.51 4.65 3.52
    Ta 6.05 5.40 5.50 1.67 1.39 1.76 5.79 5.42 4.73 5.96
    U 6.99 7.40 4.73 6.23 4.46 4.56 4.83 5.33 4.80 8.40
    Pb 50.40 32.60 44.70 175.0 25.40 40.80 47.00 50.60 44.80 56.60
    La 30.49 21.08 42.40 14.8 19.1 28.3 35.24 32.09 38.36 28.60
    Ce 59.97 42.36 87.10 48.1 52.0 64.4 73.97 67.49 79.60 51.00
    Pr 7.10 4.97 10.5 3.43 5.24 5.68 9.24 8.29 9.67 6.97
    Nd 27.01 18.96 40.90 15.1 23.2 24.3 35.42 32.08 37.70 26.70
    Sm 5.76 3.93 8.38 3.65 5.14 5.29 8.29 7.88 8.27 5.75
    Eu 0.75 0.63 0.84 0.78 0.89 0.89 0.56 0.60 0.74 0.78
    Gd 5.54 4.09 8.51 3.81 4.80 4.82 8.60 7.78 8.25 5.87
    Tb 0.94 0.71 1.51 0.76 0.87 0.84 1.70 1.55 1.46 1.03
    Dy 5.41 4.12 9.29 5.20 5.40 5.00 11.01 9.85 9.07 6.01
    Ho 1.00 0.80 1.92 1.15 1.11 0.99 2.19 1.90 1.79 1.18
    Er 3.03 2.55 5.72 3.40 3.11 2.72 6.64 5.95 5.33 3.42
    Tm 0.45 0.38 0.79 0.6 0.52 0.46 0.93 0.86 0.71 0.52
    Yb 2.82 2.45 4.43 4.24 3.52 3.16 5.57 5.41 4.31 3.35
    Lu 0.43 0.37 0.68 0.60 0.50 0.44 0.82 0.80 0.62 0.49
    Y 27.36 23.00 51.80 29.50 31.70 23.90 58.19 51.24 48.87 33.70
    ΣREE 178.05 130.40 274.7 135.12 157.10 171.19 258.35 233.76 254.75 175.37
    (La/Yb)N 7.29 5.81 6.45 2.35 3.66 6.04 4.26 4.00 6.00 5.76
    (La/Sm)N 3.33· 3.37 3.18 2.55 2.34 3.37 2.67 2.56 2.92 3.13
    (Gd/Yb)N 1.58 1.35 1.55 0.73 1.10 1.23 1.24 1.16 1.54 1.41
    δEu 0.40 0.48 0.30 0.63 0.54 0.53 0.20 0.23 0.27 0.41
    δCe 0.95 0.96 0.97 1.57 1.23 1.16 0.97 0.97 0.97 0.85
    ap 0.19 0.12 0.19 0.17 0.22 0.13 0.14 0.10 0.17 0.12
    c 1.30 3.16 1.77 4.23 3.87 4.22 1.81 1.12 1.23 1.83
    q 35.63 34.13 37.63 35.49 36.97 36.03 39.12 35.70 37.26 37.41
    or 26.60 22.98 27.52 26.23 28.34 26.65 26.92 28.23 28.03 26.20
    ab 24.46 27.51 21.96 21.78 18.69 20.30 23.37 25.36 22.57 23.37
    an 6.32 5.90 5.71 2.64 4.63 4.31 4.01 4.88 5.46 5.32
    含量单位:主量元素、标准矿物为%,微量元素为10-6.
    下载: 导出CSV
  • [1]

    Baig M S, Lawrence R D, Snee L W. Evidence for late Precambrian to early Cambrian orogeny in northwest Himalaya, Pakistan[J]. Geological Magazine, 1988, 125(1): 83-86. doi: 10.1017/S0016756800009390

    [2]

    胡培远, 李才, 苏犁, 等. 青藏高原羌塘中部蜈蚣山花岗片麻岩锆石U-Pb定年——泛非与印支事件的年代学记录[J]. 中国地质, 2010, 37(4): 1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019

    Hu P Y, Li C, Su L, et al. Zircon U-Pb dating of granitic gneiss in Wugong Mountain area, central Qiangtang, Qinghai-Tibet Plateau: Age records of Pan-African movement and Indo-China movement[J]. Geology in China, 2010, 37(4): 1050-1061. doi: 10.3969/j.issn.1000-3657.2010.04.019

    [3]

    林仕良, 丛峰, 高永娟, 等. 滇西腾冲地块东南缘高黎贡山群片麻岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2012, 31(2): 258-263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1007.htm

    Lin S L, Cong F, Gao Y J, et al. LA-ICP-MS zircon U-Pb age of gneiss from Gaoligong Mountain Group on the southeastern margin of Tengchong block in western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2/3): 258-263. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2012Z1007.htm

    [4]

    Pan G T, Wang L Q, Li R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53: 3-14. doi: 10.1016/j.jseaes.2011.12.018

    [5]

    Ding H X, Zhang Z M, Dong X, et al. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean-type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 2015, 27(4): 1616-1629. doi: 10.1016/j.gr.2014.02.003

    [6]

    Cawood P A, Johnson M R W, Nemchin A A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.

    [7]

    董美玲, 董国臣, 莫宣学, 等. 滇西保山地块早古生代花岗岩类的年代学、地球化学及意义[J]. 岩石学报, 2012, 28(5): 1453-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205011.htm

    Dong M L, Dong G C, Mo X X, et al. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2012, 28(5): 1453-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205011.htm

    [8]

    刘琦胜, 叶培盛, 吴中海. 滇西高黎贡山南段奥陶纪花岗岩SHRIMP锆石U-Pb测年和地球化学特征[J]. 地质通报, 2012, 31(2): 250-257. doi: 10.3969/j.issn.1671-2552.2012.02.007

    Liu Q S, Ye P S, Wu Z H. SHRIMP zircon U-Pb dating and petrogeochemistry of Ordovician granite bodies in the southern segment of Gaoligong Mountain, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 250-257. doi: 10.3969/j.issn.1671-2552.2012.02.007

    [9]

    刘一鸣. 青藏高原羌南一保山板块550~450 Ma岩浆事件——兼论冈瓦纳大陆北缘基底构造演化[D]. 长春: 吉林大学, 2017: 1-180.

    Liu Y M. Magmatism at 550-450 Ma within the South Qiangtang-Baoshan Plate of the Tibetan Plateau: Constraints on the tectonic evolution of the basement of the northern Gondwana margin[D]. Changchun: Jilin University, 2017: 1-180.

    [10]

    李文昌, 潘桂堂, 侯增谦, 等. 西南"三江"多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 2010: 1-490.

    Li W C, Pan G T, Hou Z Q, et al. Archipelagic basin, forming collision theory and prospecting techniques along the Nujiang-Lancangjiang-Jinshajiang area in Southwestern China[M]. Beijing: Geological Publishing House, 2010: 1-490. (in Chinese)

    [11]

    李再会, 林仕良, 丛峰, 等. 滇西腾冲-保山地块早古生代岩浆作用和地球化学: 岩石成因和构造背景[J]. 矿物岩石地球化学通报, 2013, 32(6): 689-703. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306004.htm

    Li Z H, Lin S L, Cong F, et al. Magmatism and geochemistry of the Early Paleozoic of the Tengchong-baoshan block, Western Yunnan, China: Implications for petrogenesis and tectonics[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013, 32(6): 689-703. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201306004.htm

    [12]

    蔡志慧, 许志琴, 段向东, 等. 青藏高原东南缘滇西早古生代早期造山事件[J]. 岩石学报, 2013, 29(6): 2123-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306020.htm

    Cai Z H, Xu Z Q, Duan X D, et al. Early stage of Early Paleozoic orogenic event in western Yunnan Province, southeastern margin of Tibet Plateau[J]. Acta Petrologica Sinica, 2013, 29(6): 2123-2140. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201306020.htm

    [13]

    邓军, 杨立强, 王长明. 三江特提斯复合造山与成矿作用研究进展[J]. 岩石学报, 2011, 27(9): 2501-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm

    Deng J, Yang L Q, Wang C M. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys[J]. Acta Petrologica Sinica, 2011, 27(9): 2501-2509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201109002.htm

    [14]

    Deng J, Wang Q F, Li G J, et al. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, Southwestern China[J]. Earth-Science Reviews, 2014, 138: 268-299. doi: 10.1016/j.earscirev.2014.05.015

    [15]

    李维科, 王晓林, 刘兵, 等. 滇西保山地块南部公养河群研究新进展[J]. 地质通报, 2018, 37(11): 1970-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201811002.htm

    Li W K, Wang X L, Liu B, et al. New progress in the study of Gongyanghe Group in southern Baoshan block, western Yunnan Province[J]. Geological Bulletin of China, 2018, 37(11): 1970-1979. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201811002.htm

    [16]

    金世昌, 庄凤良. 龙陵-潞西地区花岗岩矿物中熔融包裹体研究[J]. 昆明工学院学报, 1988, 13(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG198805000.htm

    Jin S C, Zhuang F L. Study of melting inclusion in granites at Longling in Luxi area[J]. Journal of Kunming Institute of Technology, 1988, 13(5): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG198805000.htm

    [17]

    陈吉琛. 滇西花岗岩类时代划分及同位素年龄值选用的讨论[J]. 云南地质, 1987, 6(2): 101-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD198702000.htm

    Chen J C. Discussion on the age division and the selects of isotopic age determination for granitic rock in western Yunnan[J]. Yunnan Geology, 1987, 6(2): 101-113. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD198702000.htm

    [18]

    Chen F K, Li X H, Wang X L, et al. Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, Southwestern China[J]. International Journal of Earth Sciences, 2007, 96(6): 1179-1194. doi: 10.1007/s00531-006-0146-y

    [19]

    郝家栩, 邹立志, 陈刚, 等. 滇西施甸地区卧牛寺组火山岩的地质时代及喷发环境[J]. 中国地质调查, 2015, 2(7): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201507008.htm

    Hao J X, Zou L Z, Chen G, et al. Age and eruption environment of volcanic rock from Woniusi Formation in Shidian, Western Yunnan Province[J]. Geological Survey of China, 2015, 2(7): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201507008.htm

    [20]

    禹丽, 李龚健, 王庆飞, 等. 保山地块北部晚白垩世岩浆岩成因及其构造指示: 全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J]. 岩石学报, 2014, 30(9): 2709-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm

    Yu L, Li G J, Wang Q F, et al. Petrogenesis and tectonic significance of the Late Cretaceous magmatism in the northern part of the Baoshan block: Constraints from bulk geochemistry zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2014, 30(9): 2709-2724. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201409020.htm

    [21]

    崔晓琳, 邓军, 张铎, 等. 滇西腾冲地块高黎贡山群早志留世变质花岗岩体的年代学、地球化学特征及意义[J]. 岩石学报, 2017, 33(7): 2085-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707008.htm

    Cui X L, Deng J, Zhang D, et al. Chronological and geochemical characteristics of the Early Silurian metamorphic granites in Tengchong Block, western Yunnan and their implications[J]. Acta Petrologica Sinica, 2017, 33(7): 2085-2098. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201707008.htm

    [22]

    Liu S, Hu R Z, Gao S, et al. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic Ⅰ-type granite from the Tengchong-Baoshan block, western Yunnan Province, SW China[J]. Journal of Asian Earth Sciences, 2009, 36(2/3): 168-182.

    [23]

    Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43.

    [24]

    周剑雄, 陈振宇. 电子探针下锆石阴极发光的研究[M]. 成都: 电子科技大学出版社, 2007: 1-104.

    Zhou J X, Chen Z Y. Study on cathodoluminescence of zircon by electron probe[M]. Chengdu: University of Electronic Science and Technology of China Press, 2007: 1-104. (in Chinese)

    [25]

    Black L P, Kamo S L, Williams I S, et al. The application of SHRIMP to Phanerozoic geochronology: A critical appraisal of four zircon standards[J]. Chemical Geology, 2003, 200(1/2): 171-188. doi: 10.1016/S0009-2541(03)00166-9

    [26]

    Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29-44.

    [27]

    葛文春, 李献华, 李正祥, 等. 桂北新元古代两类过铝花岗岩的地球化学研究[J]. 地球化学, 2001, 30(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101003.htm

    Ge W C, Li X H, Li Z X, et al. Geochemical studies on two types of Neoproterozoic peraluminous granitoids in northern Guangxi[J]. Geochimica, 2001, 30(1): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200101003.htm

    [28]

    林广春, 马昌前. 过铝花岗岩的成因类型与构造环境研究综述[J]. 华南地质与矿产, 2003(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200301012.htm

    Lin G C, Ma C Q. Genesis of peraluminous granitoids and their tectonic settings[J]. Geology and Mineral Resources of South China, 2003(1): 65-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HNKC200301012.htm

    [29]

    廖忠礼, 莫宣学, 潘桂堂, 等. 过铝花岗岩的研究动向和进展——兼论西藏过铝花岗岩[J]. 沉积与特提斯地质, 2004, 24(2): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200402003.htm

    Liao Z L, Mo X X, Pan G T, et al. Peraluminous granites: Insights from recent developments with discussions on the peraluminous granites in Xizang[J]. Sedimentary Geology and Tethyan Geology, 2004, 24(2): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD200402003.htm

    [30]

    钟长汀, 邓晋福, 武永平, 等. 华北克拉通北缘中段古元古代强过铝质花岗岩地球化学特征及其构造意义[J]. 地质通报, 2006, 25(3): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200603008.htm

    Zhong C T, Deng J F, Wu Y P, et al. Geochemical characteristics and tectonic significations of Paleoproterozoic strongly peraluminous granitoids in the central segment of the northern margin of the North China craton[J]. Geological Bulletin of China, 2006, 25(3): 389-397. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200603008.htm

    [31]

    张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm

    Zhang Q, Wang Y, Li C D, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm

    [32]

    张旗, 潘国强, 李承东, 等. 花岗岩构造环境问题: 关于花岗岩研究的思考之三[J]. 岩石学报, 2007, 23(11): 2683-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711003.htm

    Zhang Q, Pan G Q, Li C D, et al. Are discrimination diagrams always indicative of correct tectonic settings of granites? Some crucial questions on granite study (3)[J]. Acta Petrologica Sinica, 2007, 23(11): 2683-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200711003.htm

    [33]

    刘振声, 王洁民. 青藏高原南部花岗岩地质地球化学[M]. 成都: 四川科技出版社, 1994: 1-133.

    Liu Z S, Wang J M. Geological and geochemical features of granite in the south of Qinghai-Tibet Plateau[M]. Chengdu: Sichuan Science and Technology Publishing House, 1994: 1-133. (in Chinese)

    [34]

    吕伯西, 王增, 张能德, 等. 三江地区花岗岩类及其成矿专属性[M]. 北京: 地质出版社, 1993: 1-328.

    Lv B X, Wang Z, Zhang N D, et al. Granitoids in the Sanjiang region (Nujiang-Lancangjiang-Jinshajiang Region) and their metallogenic specialization[M]. Beijing: Geological Publishing House, 1993: 1-328. (in Chinese)

    [35]

    Li G J, Wang Q F, Huang Y H, et al. Petrogenesis of Middle Ordovician peraluminous granites in the Baoshan block: Implications for the Early Paleozoic tectonic evolution along east Gondwana[J]. Lithos, 2016, 245: 76-92. doi: 10.1016/j.lithos.2015.10.012

    [36]

    Hu P Y, Zhai Q G, Jahn B M, et al. Early Ordovician granites from the South Qiangtang terrane, northern Tibet: Implications for the Early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 2015, 220-223: 318-338. doi: 10.1016/j.lithos.2014.12.020

    [37]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic Rocks[J]. Journal of Petrology, 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [38]

    Bonin B. A-type granites and related rocks: Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2): 1-29.

  • 加载中

(7)

(2)

计量
  • 文章访问数:  987
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2020-04-20
修回日期:  2020-12-07
刊出日期:  2021-10-25

目录