碳中和目标驱动下地热资源开采利用技术进展

王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425. doi: 10.13686/j.cnki.dzyzy.2022.03.017
引用本文: 王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425. doi: 10.13686/j.cnki.dzyzy.2022.03.017
WANG Gui-ling, LU Chuan. PROGRESS OF GEOTHERMAL RESOURCES EXPLOITATION AND UTILIZATION TECHNOLOGY DRIVEN BY CARBON NEUTRALIZATION TARGET[J]. Geology and Resources, 2022, 31(3): 412-425. doi: 10.13686/j.cnki.dzyzy.2022.03.017
Citation: WANG Gui-ling, LU Chuan. PROGRESS OF GEOTHERMAL RESOURCES EXPLOITATION AND UTILIZATION TECHNOLOGY DRIVEN BY CARBON NEUTRALIZATION TARGET[J]. Geology and Resources, 2022, 31(3): 412-425. doi: 10.13686/j.cnki.dzyzy.2022.03.017

碳中和目标驱动下地热资源开采利用技术进展

  • 基金项目:
    国家重点研发项目"深部碳酸盐岩热储层天然构造及人工干预下综合评价技术"(2019YFB150410302)
详细信息
    作者简介: 王贵玲(1964-), 男, 研究员, 从事地热资源勘探开发技术研究工作, 通信地址河北省石家庄市新华区中华北大街268号, E-mail//guilingw@163.com
    通讯作者: 陆川(1972-), 男, 研究员, 从事地热资源开发利用技术研究工作, 通信地址河北省石家庄市新华区中华北大街268号, E-mail//luchuancn@163.com
  • 中图分类号: P314;TK529

PROGRESS OF GEOTHERMAL RESOURCES EXPLOITATION AND UTILIZATION TECHNOLOGY DRIVEN BY CARBON NEUTRALIZATION TARGET

More Information
  • 碳中和、碳达峰需要能源供给领域的重大系统变革,地热能作为一种清洁低碳、稳定连续的非碳基能源,可为实现这一目标提供重要保障.本文简要介绍了中国地热资源赋存条件,就直接利用和地热发电分别综述了浅层-中深层地温能和水热型地热资源的开发利用技术和发展; 重点介绍了地热制冷、重力热管、地热-太阳能联合发电等广受关注的新技术、新方向; 展望了发展前景和研究开发方向,为相关的工程技术和研究人员提供参考.

  • 加载中
  • 图 1  1995-2020年全球地热发电装机容量

    Figure 1. 

    图 2  不同地热发电循环系统数量

    Figure 2. 

    图 3  发电循环类型的装机容量和发电量占比

    Figure 3. 

    表 1  2020年地热发电装机容量排前十的国家

    Table 1.  Top 10 countries in installed capacity of geothermal power generation in 2020

    序号 国家 装机容量/MW 序号 国家 装机容量/MW
    1 美国 3700 6 墨西哥 1105
    2 印尼 2289 7 新西兰 1064
    3 菲律宾 1918 8 意大利 916
    4 土耳其 1549 9 冰岛 755
    5 肯尼亚 1193 10 日本 550
    据文献[73, 75].
    下载: 导出CSV

    表 2  各大洲地热发电装机容量

    Table 2.  Installed capacity of geothermal power eneration by continent

    背压式 双工质 双级闪蒸 干蒸汽 单级闪蒸 三级闪蒸 总计
    非洲 48 11 - - 543 - 602
    亚洲 - 236 525 484 2514 - 3758
    欧洲 - 268 273 795 796 - 2133
    拉丁美洲 90 135 510 - 908 - 1642
    北美 - 873 881 1584 60 50 3450
    大洋洲 44 266 356 - 259 132 1056
    总计 181 1790 2544 2863 5079 182 12640
    装机容量单位: MW.
    下载: 导出CSV

    表 3  ORC循环中不同工质的临界温度和临界压力

    Table 3.  Critical temperature and pressure of different working fluids in organic Rankine cycle

    工质 临界温度/℃ 临界压力/MPa
    异戊烷 187.2 3.370
    异丁烷 134.7 3.640
    n-戊烷 196.5 3.364
    n-丁烷 152.0 3.796
    下载: 导出CSV
  • [1]

    国家能源局. 国家能源局综合司关于公开征求《关于促进地热能开发利用的若干意见(征求意见稿)》意见的公告[EB/OL]. (2021-04- 14)[2022-05-01]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm.

    Nation Energy Administration. Several opinions on promoting the development and utilization of geothermal energy (Exposure draft) [EB/OL]. (2021-04-14)[2022-05-01]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm. (in Chinese)

    [2]

    国家发展改革委发布. 地热能开发利用"十三五"规划[EB/OL]. (2017-02-04)[2022-05-01]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201702/W020190905497910773317.pdf.

    National Development and Reform Commission. The 13th Five-Year Plan for geothermal energy development and utilization[EB/OL]. (2017-02-04)[2022-05-01]. https://www.ndrc.gov.cn/xxgk/zcfb/ghwb/201702/W020190905497910773317.pdf. (in Chinese)

    [3]

    李德英. 我国清洁能源与清洁取暖发展机遇与挑战[EB/OL]. (2021-01-14). http://www.cnste.org/html/jishu/2021/0114/7438.html.

    Li D Y. Development opportunities and challenges of clean energy and clean heating in China[EB/OL]. (2021-01-14). http://www.cnste.org/html/jishu/2021/0114/7438.html. (in Chinese)

    [4]

    汪集旸. 地热学及其应用[M]. 北京: 科学出版社, 2015.

    Wang J Y. Geothermics and its applications[M]. Beijing: Science Press, 2015.

    [5]

    自然资源部中国地质调查局, 国家能源局新能源和可再生能源司, 中国科学院科技战略咨询研究院, 等. 中国地热能发展报告-2018 [M]. 北京: 中国石化出版社, 2018.

    China Geological Survey, Ministry of Natural Resources of the Republic of China, Department of New Energy and Renewable Resources, National Energy Administration, Institute of Science and Technology Strategy Consulting, Chinese Academy of Sciences, et al. China geothermal energy development report[M]. Beijing: China Petrochemical Press, 2018.

    [6]

    蔺文静, 刘志明, 王婉丽, 等. 中国地热资源及其潜力评估[J]. 中国地质, 2013, 40(1): 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    Lin W J, Liu Z M, Wang W L, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321. doi: 10.3969/j.issn.1000-3657.2013.01.021

    [7]

    王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459.

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38 (4): 449-459.

    [8]

    王贵玲, 刘彦广, 朱喜, 等. 中国地热资源现状及发展趋势[J]. 地学前缘, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    Wang G L, Liu Y G, Zhu X, et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers, 2020, 27(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001002.htm

    [9]

    Lund J W, Toth A N. Direct utilization of geothermal energy 2020 worldwide review[J]. Geothermics, 2021, 90: 101915. doi: 10.1016/j.geothermics.2020.101915

    [10]

    赵军, 李扬, 李浩, 等. 中低温能源在中国[J]. 太阳能学报, 2022, 43(2): 250-260.

    Zhao J, Li Y, Li H, et al. Mid-/low-temperature energy in China[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 250-260.

    [11]

    Zheng K Y, Dong Y, Chen Z H, et al. Speeding up industrialized development of geothermal resources in China: Country update report 2010-2014[R]. Melbourne: Proceedings World Geothermal Congress, 2015.

    [12]

    王婉丽, 王贵玲, 朱喜, 等. 中国省会城市浅层地热能开发利用条件及潜力评价[J]. 中国地质, 2017, 44(6): 1062-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706003.htm

    Wang W L, Wang G L, Zhu X, et al. Characteristics and potential of shallow geothermal resources in provincial capital cities of China[J]. Geology in China, 2017, 44(6): 1062-1073. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201706003.htm

    [13]

    Zhu J L, Hu K Y, Lu X L, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects[J]. Energy, 2015, 93: 466-483. doi: 10.1016/j.energy.2015.08.098

    [14]

    Self S J, Reddy B V, Rosen M A. Geothermal heat pump systems: Status review and comparison with other heating options[J]. Applied Energy, 2013, 101: 341-348. doi: 10.1016/j.apenergy.2012.01.048

    [15]

    Hepbasli A, Kalinci Y. A review of heat pump water heating systems [J]. Renewable and Sustainable Energy Reviews, 2009, 13(6/7): 1211-1229. https://www.sciencedirect.com/science/article/pii/S1364032108001032

    [16]

    Tian T S, Dong Y, Zhang W, et al. Rapid development of China's geothermal industry: China national report of the 2020 world geothermal conference[R]. Iceland: Proceedings World Geothermal Congress, 2020.

    [17]

    李扬, 赵婉雨. 地热能领域产业技术分析报告[J]. 高科技与产业化, 2019(9): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GKFC201909028.htm

    Li Y, Zhao W Y. An industrial and technical analysis report of geothermal energy[J]. High-Technology & Commercialization, 2019 (9): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-GKFC201909028.htm

    [18]

    周亚素. 土壤热源热泵动态特性与能耗分析研究[D]. 上海: 同济大学, 2001.

    Zhou Y S. Study on dynamic performance and energy consumption of the ground-source heat pump[D]. Shanghai: Tongji University, 2001.

    [19]

    Zarrella A, De Carli M, Galgaro A. Thermal performance of two types of energy foundation pile: Helical pipe and triple U-tube[J]. Applied Thermal Engineering, 2013, 61(2): 301-310. doi: 10.1016/j.applthermaleng.2013.08.011

    [20]

    Aydın M, Sisman A. Experimental and computational investigation of multi U-tube boreholes[J]. Applied Energy, 2015, 145: 163-171. doi: 10.1016/j.apenergy.2015.02.036

    [21]

    Lund J W, Boyd T L. Direct utilization of geothermal energy 2015 worldwide review[J]. Geothermics, 2016, 60: 66-93. doi: 10.1016/j.geothermics.2015.11.004

    [22]

    徐健, 司华峰, 郭开华, 等. 地热驱动吸收式制冷技术在广东地热开发中的应用探讨[J]. 制冷, 2002, 21(4): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZZ200204011.htm

    Xu J, Si H F, Guo K H, et al. Discussion on the application of absorption refrigeration driven by geothermal energy to the development of geothermal energy in Guangdong Province[J]. Refrigeration, 2002, 21(4): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLZZ200204011.htm

    [23]

    姚远, 龚宇烈, 陆振能, 等. 中深层地热制冷技术在我国南方地区的应用与展望[J]. 科技促进发展, 2020, 16(3/4): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1018.htm

    Yao Y, Gong Y L, Lu Z N, et al. Application and prospect of mid- deep geothermal refrigeration technology in South China[J]. Science & Technology for Development, 2020, 16(3/4): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1018.htm

    [24]

    汪集旸, 罗霁. 地热理应在雾霾治理和南方供暖/制冷中发挥更大的作用[C]//2015年中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 中国地质学会, 2015.

    Wang J Y, Luo J. Geothermal should play a greater role in haze control and heating/cooling in South China[C]//2015 China Geoscience Joint Academic Annual Meeting. Beijing: China Geophysical Society, China Geological Society, 2015.

    [25]

    王连成. 天津市新近系馆陶组地热流体回灌研究[D]. 北京: 中国地质大学, 2014.

    Wang L C. A study of geothermal reinjection in the Guantao reservoir in Tianjin[D]. Beijing: China University of Geosciences, 2014.

    [26]

    刘久荣. 地热回灌的发展现状[J]. 水文地质工程地质, 2003, 30 (3): 100-104. doi: 10.3969/j.issn.1000-3665.2003.03.025

    Liu J R. The status of geothermal reinjection[J]. Hydrogeology & Engineering Geology, 2003, 30(3): 100-104. doi: 10.3969/j.issn.1000-3665.2003.03.025

    [27]

    刘雪玲, 朱家玲. 新近系砂岩地热回灌堵塞问题的探讨[J]. 水文地质工程地质, 2009, 36(5): 138-141. doi: 10.3969/j.issn.1000-3665.2009.05.031

    Liu X L, Zhu J L. A study of clogging in geothermal reinjection wells in the Neogene sandstone aquifer[J]. Hydrogeology & Engineering Geology, 2009, 36(5): 138-141. doi: 10.3969/j.issn.1000-3665.2009.05.031

    [28]

    林建旺, 赵苏民. 天津地区馆陶组热储回灌量衰减原因探讨[J]. 水文地质工程地质, 2010, 37(5): 133-136. doi: 10.3969/j.issn.1000-3665.2010.05.025

    Lin J W, Zhao S M. An analysis of the reinjection attenuation of the Guantao Group geothermal reservoir in the Tianjin Area[J]. Hydrogeology & Engineering Geology, 2010, 37(5): 133-136. doi: 10.3969/j.issn.1000-3665.2010.05.025

    [29]

    李克文, 王磊, 毛小平, 等. 油田伴生地热资源评价与高效开发[J]. 科技导报, 2012, 30(32): 32-41. doi: 10.3981/j.issn.1000-7857.2012.32.003

    Li K W, Wang L, Mao X P, et al. Evaluation and efficient development of geothermal resource associated with oilfield[J]. Science & Technology Review, 2012, 30(32): 32-41. doi: 10.3981/j.issn.1000-7857.2012.32.003

    [30]

    宋超凡, 赵军, 尹洪梅, 等. 碳中和背景下油田区地热资源的低成本可持续利用[J]. 华电技术, 2021, 43(11): 66-73. doi: 10.3969/j.issn.1674-1951.2021.11.008

    Song C F, Zhao J, Yin H M, et al. Low-cost and sustainable utilization of geothermal resources in oilfields to achieve carbon neutrality[J]. Huadian Technology, 2021, 43(11): 66-73. doi: 10.3969/j.issn.1674-1951.2021.11.008

    [31]

    董秋生, 黄贤龙, 郎振海, 等. 废弃油井改造为地热井技术分析[J]. 探矿工程(岩土钻掘工程), 2016, 43(6): 18-21. doi: 10.3969/j.issn.1672-7428.2016.06.004

    Dong Q S, Huang X L, Lang Z H, et al. Technical analysis on transforming abandoned oil well into geothermal well[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2016, 43(6): 18-21. doi: 10.3969/j.issn.1672-7428.2016.06.004

    [32]

    Cheng S W Y, Kurnia J C, Ghoreishi-Madiseh S A, et al. Optimization of geothermal energy extraction from abandoned oil well with a novel well bottom curvature design utilizing Taguchi method [J]. Energy, 2019, 188: 116098. doi: 10.1016/j.energy.2019.116098

    [33]

    朱家玲, 汪健生, 张伟. 废弃石油井改造为地热井的发展现状[J]. 地热能, 2013(6): 3-6.

    Zhu J L, Wang J S, Zhang W. Development status of transforming abandoned oil well into geothermal well[J]. Geothermal Energy, 2013 (6): 3-6. (in Chinese)

    [34]

    胡霞, 吕建才, 张新成. 废弃油井直接换热技术及应用效果评价[J]. 地质与资源, 2020, 29(5): 497-502. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10237.shtml

    Hu X, Lyu J C, Zhang X C. Evaluation on application effect of direct heat exchange technology in abandoned oil wells[J]. Geology and Resources, 2020, 29(5): 497-502. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10237.shtml

    [35]

    李霄, 王晓光, 刘强, 等. 大庆石油勘探井改造地热井取得圆满成功[J]. 地质与资源, 2021, 30(1): 102.

    Li X, Wang X G, Liu Q, et al. Successful transformation from oil exploration hole into geothermal well in Daqing area[J]. Geology and Resources, 2021, 30(1): 102.

    [36]

    Rybach L, Hopkirk R. Shallow and deep borehole heat exchangers: Achievements and prospects[C]//Proceedings of World Geothermal Congress. Florence, Italy: International Geothermal Association, 1995.

    [37]

    Rybach L, Sanner B. Ground source heat pump systems, the European experience[J]. GHC Bull, 2000, 21(1): 16-26. https://www.researchgate.net/publication/246344083_Ground-Source_Heat_Pump_Systems-The_European_Experience

    [38]

    Rybach L, Brunner M, Gorhan H. Swiss geothermal update 1995- 2000[C]//Proceedings of the World Geothermal Congress. Kyushu-Tohoku, 2000.

    [39]

    Kohl T, Brenni R, Eugster W. System performance of a deep borehole heat exchanger[J]. Geothermics, 2002, 31(6): 687-708. doi: 10.1016/S0375-6505(02)00031-7

    [40]

    张鹏飞, 王俞舒, 段科锋, 等. 浅析中深层地热地埋管供热技术及其工程应用[J]. 中国石油和化工标准与质量, 2021, 41(21): 196-198. doi: 10.3969/j.issn.1673-4076.2021.21.096

    Zhang P F, Wang Y S, Duan K F, et al. Brief analysis on the heating technology of medium and deep geothermal buried pipe and its engineering application[J]. China Petroleum and Chemical Standard and Quality, 2021, 41(21): 196-198. (in Chinese) doi: 10.3969/j.issn.1673-4076.2021.21.096

    [41]

    邓杰文, 魏庆芃, 张辉, 等. 中深层地热源热泵供暖系统能耗和能效实测分析[J]. 暖通空调, 2017, 47(8): 150-154.

    Deng J W, Wei Q P, Zhang H, et al. On-site measurement and analysis on energy consumption and energy efficiency ratio of medium-depth geothermal heat pump systems for space heating[J]. Heating Ventilating & Air Conditioning, 2017, 47(8): 150-154.

    [42]

    李骥, 徐伟, 李建峰, 等. 中深层地埋管供热技术综述及工程实测分析[J]. 暖通空调, 2020, 50(8): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202008008.htm

    Li J, Xu W, Li J F, et al. Heat supply technology review and engineering measurement analysis of medium and deep buried pipes [J]. Heating Ventilating & Air Conditioning, 2020, 50(8): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202008008.htm

    [43]

    陕西省住房和城乡建设厅. DBJ 61/T 166-2020中深层地热地埋管供热系统应用技术规程[S]. 北京: 中国建材工业出版社, 2020.

    Shaanxi Provincial Department of Housing and Urban Rural Development. DBJ 61/T 166-2020 Technical regulation for medium deep geothermal buried pipe heating system[S]. Beijing: China Building Materials Press, 2020.

    [44]

    杜甜甜, 满意, 姜国心, 等. 套管式中深层地埋管换热器传热建模及取热分析[J]. 可再生能源, 2020, 38(7): 887-892. doi: 10.3969/j.issn.1671-5292.2020.07.006

    Du T T, Man Y, Jiang G X, et al. Transfer modeling and heat extraction analysis of coaxial tubes deep borehole heat exchanger[J]. Renewable Energy Resources, 2020, 38(7): 887-892. doi: 10.3969/j.issn.1671-5292.2020.07.006

    [45]

    贾林瑞, 崔萍, 方亮, 等. 中深层地埋管换热器传热过程对周围岩土体的热影响[J]. 暖通空调, 2021, 51(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202101020.htm

    Jia L R, Cui P, Fang L, et al. Thermal effect of heat transfer process of deep borehole heat exchangers on surrounding rock and soil[J]. Heating Ventilating & Air Conditioning, 2021, 51(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-NTKT202101020.htm

    [46]

    刘俊, 蔡皖龙, 王沣浩, 等. 深层地源热泵系统实验研究及管井结构优化[J]. 工程热物理学报, 2019, 40(9): 2143-2150. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909028.htm

    Liu J, Cai W L, Wang F H, et al. Experimental study and tube structure optimization of deep borehole ground source heat pump[J]. Journal of Engineering Thermophysics, 2019, 40(9): 2143-2150. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201909028.htm

    [47]

    Liu J, Wang F H, Cai W L, et al. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger[J]. Renewable Energy, 2020, 149: 384-399. doi: 10.1016/j.renene.2019.11.158

    [48]

    王德敬, 胡松涛, 高志友, 等. 中深层套管式地埋管换热器性能的参数分析[J]. 区域供热, 2018(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QYGR201803002.htm

    Wang D J, Hu S T, Gao Z Y, et al. Parameter analysis of the performance of the deep borehole heat exchanger[J]. District Heating, 2018(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-QYGR201803002.htm

    [49]

    孔彦龙, 陈超凡, 邵亥冰, 等. 深井换热技术原理及其换热量评估[J]. 地球物理学报, 2017, 60(12): 4741-4752. doi: 10.6038/cjg20171216

    Kong Y L, Chen C F, Shao H B, et al. Principle and capacity quantification of deep-borehole heat exchangers[J]. Chinese Journal of Geophysics, 2017, 60(12): 4741-4752. doi: 10.6038/cjg20171216

    [50]

    Song X Z, Wang G S, Shi Y, et al. Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J]. Energy, 2018, 164: 1298-1310. doi: 10.1016/j.energy.2018.08.056

    [51]

    Huang Y B, Zhang Y J, Xie Y Y, et al. Thermal performance analysis on the composition attributes of deep coaxial borehole heat exchanger for building heating[J]. Energy and Buildings, 2020, 221: 110019. doi: 10.1016/j.enbuild.2020.110019

    [52]

    孔彦龙, 黄永辉, 郑天元, 等. 地热能可持续开发利用的数值模拟软件OpenGeoSys: 原理与应用[J]. 地学前缘, 2020, 27(1): 170- 177. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001021.htm

    Kong Y L, Huang Y H, Zheng T Y, et al. Principle and application of OpenGeoSys for geothermal energy sustainable utilization[J]. Earth Science Frontiers, 2020, 27(1): 170-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202001021.htm

    [53]

    孔彦龙, 庞忠和, 邵亥冰, 等. 面向成本的中深层地热储群井采灌优化布局研究[J]. 科技促进发展, 2020, 16(3/4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1013.htm

    Kong Y L, Pang Z H, Shao H B, et al. Cost-oriented optimization on the multi-well layout for geothermal production and reinjection[J]. Science and Technology for Development, 2020, 16(3/4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-KJCJ2020Z1013.htm

    [54]

    余斌, 王沣浩, 颜亮. 钻孔间距和布置形式对地埋管管群传热影响的研究[J]. 制冷与空调, 2010, 10(5): 31-34, 30. doi: 10.3969/j.issn.1009-8402.2010.05.007

    Yu B, Wang F H, Yan L. Research on influence of space and arrangement between boreholes on the multi-pipe heat exchanger of GSHP[J]. Refrigeration and Air-Conditioning, 2010, 10(5): 31-34, 30. doi: 10.3969/j.issn.1009-8402.2010.05.007

    [55]

    孙荟晶, 孙世梅. 热管技术在可再生能源利用中的研究与探索[J]. 现代化工, 2007, 27(S2): 517-520. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG2007S2153.htm

    Sun H J, Sun S M. Utilization and exploration of heat pipe technology for renewable energy source[J]. Modern Chemical Industry, 2007, 27 (S2): 517-520. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG2007S2153.htm

    [56]

    李庭樑, 岑继文, 黄文博, 等. 超长重力热管传热性能实验研究[J]. 化工学报, 2020, 71(3): 997-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202003010.htm

    Li T L, Cen J W, Huang W B, et al. Experimental study on heat transfer performance of super long gravity heat pipe[J]. CIESC Journal, 2020, 71(3): 997-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202003010.htm

    [57]

    Bu X B, Ma W B, Li H S. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80- 85. doi: 10.1016/j.renene.2011.10.009

    [58]

    黄文博, 曹文炅, 李庭樑, 等. 干热岩热能重力热管采热系统数值模拟研究与经济性分析[J]. 化工学报, 2021, 72(3): 1302-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202103010.htm

    Huang W B, Cao W J, Li T L, et al. Numerical study and economic analysis of gravity heat pipe hot dry rock geothermal system[J]. CIESC Journal, 2021, 72(3): 1302-1313. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ202103010.htm

    [59]

    蒋方明, 黄文博, 曹文炅. 干热岩热能的热管开采方案及其技术可行性研究[J]. 新能源进展, 2017, 5(6): 426-434. doi: 10.3969/j.issn.2095-560X.2017.06.003

    Jiang F M, Huang W B, Cao W J. Mining hot dry rock geothermal energy by heat pipe: Conceptual design and technical feasibility study[J]. Advances in New and Renewable Energy, 2017, 5(6): 426-434. doi: 10.3969/j.issn.2095-560X.2017.06.003

    [60]

    Faghri A. Heat pipe science and technology[M]. Columbia: Global Digital Press, 1995.

    [61]

    Faghri A. Review and advances in heat pipe science and technology [J]. Journal of Heat Transfer, 2012, 134(12): 123001. doi: 10.1115/1.4007407

    [62]

    黄梦清, 赵树兴, 许康鹿, 等. 地温条件下重力热管蒸发段极限长度研究[J]. 天津城建大学学报, 2021, 27(3): 173-177, 184. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCS202103004.htm

    Huang M Q, Zhao S X, Xu K L, et al. Study on limit length of evaporation section of gravitational heat pipe under the ground temperature condition[J]. Journal of Tianjin Chengjian University, 2021, 27(3): 173-177, 184. https://www.cnki.com.cn/Article/CJFDTOTAL-TJCS202103004.htm

    [63]

    林红. 某超长重力热管提取地热的模拟及分析[D]. 西安: 西安工程大学, 2016.

    Lin H. The simulation and analysis of an over-length gravity heat pipe's extracting geothermal technology[D]. Xi'an: Xi'an Polytechnic University, 2016.

    [64]

    Kusaba S, Suzuki H, Hirowatari K, et al. Extraction of geothermal energy and electric power generation using a large scale heat pipe[C] //Proceedings of World Geothermal Congress. Kyushu, 2000.

    [65]

    Vasil'Ev L L. Geothermal energy utilization with heat pipes[J]. Journal of Engineering Physics, 1990, 59(3): 1186-1190. doi: 10.1007/BF00870514

    [66]

    Mashiko K, Mochizuki M, Watanabe Y, et al. Development of a large scale loop type gravity assisted heat pipe having showering nozzles[C]//Proceedings of 4th International Heat Pipe Symposium. Tsukuba, Japan, 1994.

    [67]

    Zhang P P, Zhu J L, Chang N N, et al. Experimental study on heat transfer performance of new gravity heat pipe in geothermal utilization [J]. Energy Procedia, 2019, 158: 5629-5634. doi: 10.1016/j.egypro.2019.01.576

    [68]

    杨文斌, 杨峻. SiO2-乙醇纳米流体重力热管传热性能的试验研究[J]. 当代化工, 2019, 48(12): 2962-2966. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201912070.htm

    Yang W B, Yang J. Experimental research on heat transfer performance of SiO2-ethanol nanofluid gravity heat pipe[J]. Contemporary Chemical Industry, 2019, 48(12): 2962-2966. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHH201912070.htm

    [69]

    李锋, 陈娟雯, 岑继文, 等. 表面活性剂对水工质超长重力热管传热性能的影响[J]. 新能源进展, 2021, 9(2): 115-125. doi: 10.3969/j.issn.2095-560X.2021.02.005

    Li F, Chen J W, Cen J W, et al. Effect of surfactant on heat transfer performance of ultra-long gravity heat pipe with water as working fluid [J]. Advances in New and Renewable Energy, 2021, 9(2): 115-125. doi: 10.3969/j.issn.2095-560X.2021.02.005

    [70]

    张龙, 吴志湘, 邓保顺. 某超长重力热管提取地热技术的试验分析及改造措施[J]. 节能, 2015, 34(10): 77-80.

    Zhang L, Wu Z X, Deng B S. Experimental analysis and transformation measures of geothermal extraction technology with an ultra-long gravity heat pipe[J]. Energy Conservation, 2015, 34(10): 77-80. (in Chinese)

    [71]

    王晓东, 周大可, 刘洪辰, 等. 多级分离式重力热管设计[J]. 科技资讯, 2017, 15(19): 51-52.

    Wang X D, Zhou D K, Liu H C, et al. Design of multistage separated gravity heat pipe[J]. Science & Technology Information, 2017, 15(19): 51-52.

    [72]

    马尔科姆A格兰特, 保罗F比克斯勒. 热储工程学[M]. 王贵玲, 蔺文静, 译. 北京: 测绘出版社, 2013: 288.

    Grant M A, Bixley P F. Geothermal reservoir engineering[M]. Wang G L, Lin W J, trans. Beijing: Surveying and Mapping Publishing House, 2013: 288.

    [73]

    Bertani R. Geothermal power generation in the world 2010-2014 update report[J]. Geothermics, 2016, 60: 31-43. doi: 10.1016/j.geothermics.2015.11.003

    [74]

    Shortall R, Davidsdottir B, Axelsson G. Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks[J]. Renewable and sustainable energy reviews, 2015, 44: 391-406. doi: 10.1016/j.rser.2014.12.020

    [75]

    Anderson A, Rezaie B. Geothermal technology: Trends and potential role in a sustainable future[J]. Applied Energy, 2019, 248: 18-34. doi: 10.1016/j.apenergy.2019.04.102

    [76]

    王永真, 杨柳, 张超, 等. 中国地热发电发展现状与面临的挑战[J]. 国际石油经济, 2019, 27(1): 95-100. doi: 10.3969/j.issn.1004-7298.2019.01.022

    Wang Y Z, Yang L, Zhang C, et al. Status quo and challenges of geothermal power generation in China[J]. International Petroleum Economics, 2019, 27(1): 95-100. doi: 10.3969/j.issn.1004-7298.2019.01.022

    [77]

    DiPippo R. Geothermal power plants: Principles, applications, case studies and environmental impact[M]. 3rd ed. Oxford: Butterworth- Heinemann, 2012.

    [78]

    Zarrouk S J, Moon H. Efficiency of geothermal power plants: A worldwide review[J]. Geothermics, 2014, 51: 142-153. doi: 10.1016/j.geothermics.2013.11.001

    [79]

    Rubio-Maya C, Díaz V AM, Martínez E P, et al. Cascade utilization of low and medium enthalpy geothermal resources: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 689-716. doi: 10.1016/j.rser.2015.07.162

    [80]

    Powell K M, Rashid K, Ellingwood K, et al. Hybrid concentrated solar thermal power systems: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 215-237. doi: 10.1016/j.rser.2017.05.067

    [81]

    Cardemil J M, Cortés F, Díaz A, et al. Thermodynamic evaluation of solar-geothermal hybrid power plants in northern Chile[J]. Energy Conversion and Management, 2016, 123: 348-361. doi: 10.1016/j.enconman.2016.06.032

    [82]

    Al-Ali M, Dincer I. Energetic and exergetic studies of a multigenerational solar-geothermal system[J]. Applied Thermal Engineering, 2014, 71(1): 16-23. doi: 10.1016/j.applthermaleng.2014.06.033

    [83]

    朱家玲. 太阳能-地热能混合发电系统优化初探[C]//首届中国太阳能热发电大会论文集. 敦煌: 中国可再生能源学会, 2015.

    Zhu J L. Study on solar-geothermal hybrid power system optimal design[C]//The First China Solar Thermal Power Generation Conference. Dunhuang: China Renewable Energy Society, 2015. (in Chinese)

    [84]

    谢迎春, 朱家玲, 宋安达, 等. 基于有机朗肯循环的太阳能与地热能耦合的发电系统装置: CN109139157A[P]. 2018-08-17.

    Xie Y C, Zhu J L, Song A D, et al. A power generation system device coupled with solar energy and geothermal energy based on organic Rankine cycle: CN109139157A[P]. 2018-08-17. (in Chinese)

    [85]

    全鸣玉. 基于有机朗肯循环的太阳能地热能联合发电系统研究[D]. 长春: 吉林大学, 2021.

    Quan M Y. Research on hybrid solar-geothermal power generation system based on organic Rankine cycle[D]. Changchun: Jilin University, 2021.

    [86]

    Gholamian E, Habibollahzade A, Zare V. Development and multi- objective optimization of geothermal-based organic Rankine cycle integrated with thermoelectric generator and proton exchange membrane electrolyzer for power and hydrogen production[J]. Energy Conversion and Management, 2018, 174: 112-125. doi: 10.1016/j.enconman.2018.08.027

    [87]

    Zare V, Palideh V. Employing thermoelectric generator for power generation enhancement in a Kalina cycle driven by low-grade geothermal energy[J]. Applied Thermal Engineering, 2018, 130: 418-428. doi: 10.1016/j.applthermaleng.2017.10.160

    [88]

    Habibollahzade A, Houshfar E, Ashjaee M, et al. Enhanced performance and reduced payback period of a low grade geothermal- based ORC through employing two TEGs[J]. Energy Equipment and Systems, 2019, 7(1): 23-39.

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1761
  • PDF下载数:  59
  • 施引文献:  0
出版历程
收稿日期:  2022-04-25
修回日期:  2022-05-13
刊出日期:  2022-06-25

目录