APPLICATION OF MAGNETOTELLURIC SOUNDING METHOD IN GEOTHERMAL RESOURCES EXPLORATION IN NORTHERN ORDOS BASIN
-
摘要:
鄂尔多斯盆地北部地热资源埋藏深、温度高、储量大、开发潜力大, 合理地选择物探方法可以很好地确定靶区, 圈定热储构造, 更精准地为钻探提供依据. 由于MT法探测深度的优势, 其反演电阻率特征能很清晰地反映出地热田导水导热构造的分布、产状等特征. 本研究利用前期ER01、ER02地热井测井成果, 重新标定ER03地热井物探解释参数, 划分出4 000 m深度范围内的热储层在水平和纵向上的分布规律, 圈定地热异常范围和空间分布特点, 确定地下热水的富水部位及有利的勘探井位, 提出下一步工作的建议.
Abstract:The geothermal resources in northern Ordos Basin are characterized by deep burial, high temperature, large reserves and great development potential. Reasonable geophysical prospecting methods can accurately determine the target area, delineate the thermal reservoir structure, and provide basis for drilling. Due to the advantages of magnetotelluric sounding(MT) method in detecting depth, the characteristics of resistivity inversion can clearly reflect the distribution and occurrence of water conductivity and thermal conductivity structures in geothermal fields. Based on the previous logging results of ER01 and ER02 geothermal wells, the study recalibrates the geophysical interpretation parameters of ER03 geothermal well, reveals the horizontal and longitudinal distribution rules of thermal reservoirs within 4 000 m depth, delineates the range of geothermal anomalies and spatial distribution, determines the water-rich location of geothermal water and favorable positions for drilling, and puts forward suggestions for next work.
-
表 1 ER01井测井解释成果表
Table 1. Logging interpretation results of ER01
层号 起始深度/m 终止深度/m 厚度/m 电阻率/Ωm 声波时差/(μs/m) 孔隙度/% 渗透率/(10-3μm2) 泥质含量/% 井温/℃ 解释结论 1 502.2 709.9 20.7 19.42 302.37 18.35 116.28 14.24 32.00 水层 2 719.4 738.1 18.7 8.31 333.27 17.16 63.79 25.44 34.30 水层 3 744.1 748.9 4.8 8.11 330.09 16.67 58.63 27.43 34.80 水层 4 757.0 768.8 11.0 8.59 304.77 17.41 65.09 24.45 35.20 水层 5 847.2 854.0 6.8 12.80 326.13 22.09 187.85 6.62 36.90 水层 6 860.5 880.4 19.9 10.78 324.25 19.22 106.70 17.52 37.30 水层 7 905.5 948.6 43.1 10.69 303.72 17.15 63.78 21.11 38.10 水层 8 951.6 955.9 4.3 11.40 289.27 20.36 134.30 11.33 38.60 水层 9 1 189.1 1 235.6 46.5 18.25 241.99 9.46 7.24 21.54 46.00 低不层 10 1 248.3 1 266.3 18.0 15.33 278.12 19.16 115.50 9.47 47.10 水层 11 1 307.6 1 364.6 57.0 14.72 277.95 16.45 63.79 20.79 48.60 水层 12 1 368.2 1 377.8 9.6 14.22 289.76 18.64 87.98 16.63 49.20 水层 13 1 382.4 1 394.8 12.4 14.39 277.62 18.06 78.81 15.66 49.50 水层 14 1 398.2 1 430.2 32.0 13.72 283.67 17.74 77.32 19.34 50.00 水层 15 1 432.8 1 440.3 7.5 14.84 269.42 16.62 66.96 13.27 50.30 水层 16 1 443.2 1 456.3 13.1 13.82 256.69 15.22 43.19 10.15 50.70 水层 17 1 469.6 1 479.0 9.4 13.01 273.67 16.51 60.47 18.15 51.20 水层 18 1 481.3 1 504.4 24.1 13.53 264.12 14.88 45.76 12.98 51.80 水层 19 1 509.2 1 541.9 32.7 13.88 283.70 20.24 140.80 6.98 52.20 水层 20 1 553.1 1 563.8 10.7 12.37 275.08 19.72 121.21 5.79 52.90 水层 21 1 581.8 1 606.8 25.0 14.43 279.92 20.47 138.84 5.98 54.10 水层 22 1 612.3 1 648.4 36.1 12.79 303.19 19.96 127.91 12.89 54.60 水层 23 1 661.2 1 682.5 21.3 12.56 289.55 19.84 124.99 11.73 55.50 水层 24 1 723.0 1 727.7 4.7 11.45 282.18 20.42 130.82 8.00 55.90 水层 25 1 808.1 1 812.0 3.9 11.58 254.13 11.91 12.90 22.78 58.30 低不层 26 1 837.1 1 843.2 6.1 11.89 244.63 10.42 8.63 20.86 59.40 低不层 -
[1] 田廷山, 李明朗, 白冶. 中国地热资源及开发利用[M]. 北京: 中国环境科学出版社, 2006: 12-57.
Tian T S, Li M L, Bai Y. Development and utilization of geothermal resources in China[M]. Beijing: China Environmental Science Press, 2006: 12-57. (in Chinese)
[2] 徐世光, 郭远生. 地热学基础[M]. 北京: 科学出版社, 2009: 22-185.
Xu S G, Guo Y S. Fundamentals of geothermal science[M]. Beijing: Science Press, 2009: 22-185. (in Chinese)
[3] 刘少峰, 李思田, 庄新国, 等. 鄂尔多斯西南缘前陆盆地沉降和沉积过程模拟[J]. 地质学报, 1996, 70(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199601001.htm
Liu S F, Li S T, Zhuang X G, et al. Simulation of the subsidence and deposition of the foreland basin on the southwestern margin of Ordos [J]. Acta Geologica Sinica, 1996, 70(1): 12-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199601001.htm
[4] 李清林, 栗文山, 张晓普, 等. 鄂尔多斯及其周缘地热分布的某些特征[J]. 西北地震学报, 1996, 18(2): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ602.008.htm
Li Q L, Li W S, Zhang X Q, et al. Characteristics of geothermal distribution in Ordos and its vicinity[J]. Northwestern Seismological Journal, 1996, 18(2): 51-59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ602.008.htm
[5] 柳益群, 李文厚, 冯乔. 鄂尔多斯盆地东部上三叠统含油砂岩的古地温及成岩阶段[J]. 地质学报, 1997, 71(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199701007.htm
Liu Y Q, Li W H, Feng Q. Palaeotemperatures and diagenetic stage of the Upper Triassic oil sandstones in the eastern Ordos Basin[J]. Acta Geologica Sinica, 1997, 71(1): 65-74. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199701007.htm
[6] 汪集旸, 黄少鹏, 陈墨香. 中国大陆地区大地热流图[C]//袁学诚. 中国地球物理图集. 北京: 地质出版社, 1996: 67-113.
Wang J Y, Huang S P, Chen M X. Chinese mainland geothermal flow map[C]//Yuan X C. Geophysical maps of China. Beijing: Geological Publishing House, 1996: 67-113. (in Chinese)
[7] 黄少鹏. 我国大陆地区大地热流与地壳厚度的变化[J]. 地球物理学报, 1992, 35(4): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199204006.htm
Huang S P. Variations of heat flow and crustal thickness in the continental area of China[J]. Acta Geophysica Sinica, 1992, 35(4): 441-450. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX199204006.htm
[8] 孙歧发, 田辉, 张扩. 下辽河平原地区历史地面沉降情况研究[J]. 地质与资源, 2014, 23(5): 450-452. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8881.shtml
Sun Q F, Tian H, Zhang K. Study on the history of land subsidence in Lower Liaohe River Plain[J]. Geology and Resources, 2014, 23 (5): 450-452. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8881.shtml
[9] 田辉, 孙岐发, 王福刚, 等. D-InSAR在盘锦湿地地面沉降监测中的应用[J]. 地质与资源, 2015, 24(5): 507-510. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8781.shtml
Tian H, Sun Q F, Wang F G, et al. Application of D-InSAR in the land subsidence monitoring for Panjin wetland[J]. Geology and Resources, 2015, 24(5): 507-510. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8781.shtml
[10] 庞康, 吴柏林, 孙涛, 等. 鄂尔多斯盆地砂岩型铀矿碳酸盐岩碳氧同位素及其天然气-水混合流体作用特征[J]. 中国地质, 2022, 49 (5): 1571-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205014.htm
Pang K, Wu B L, Sun T, et al. Characteristics of natural gas-water mixed fluid and carbon oxygen isotopes of carbonatite in the sandstone uranium deposits, Ordos Basin[J]. Geology in China, 2022, 49(5): 1571-1590. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205014.htm
[11] 李娟, 郑佳, 雷晓东, 等. 北京平原区第四系热物性参数特征及对浅层地热能开采的影响因素分析[J]. 中国地质, 2022, 49(5): 1543-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205012.htm
Li J, Zheng J, Lei X D, et al. Analysis of quaternary thermal properties and influencing factors on shallow geothermal energy exploitation in Beijing plain[J]. Geology in China, 2022, 49(5): 1543-1554. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205012.htm
[12] 周江羽, 吴冲龙, 韩志军. 鄂尔多斯盆地的地热场特征与有机质成熟史[J]. 石油实验地质, 1998, 20(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199801004.htm
Zhou J Y, Wu C L, Han Z J. Geothermal field and maturing history of organic matter in the Ordos Basin[J]. Experimental Petroleum Geology, 1998, 20(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199801004.htm
[13] 徐新学. 大地电磁测深法在深部矿产资源调查中的应用[J]. 物探与化探, 2011, 35(1): 17-19, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201101005.htm
Xu X X. The application of magnetotelluric sounding to the investigation of ore resources at depth[J]. Geophysical &Geochemical Exploration, 2011, 35(1): 17-19, 23. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201101005.htm
[14] 徐世浙, 刘斌. 大地电磁一维连续介质反演的曲线对比法[J]. 地球物理学报, 1995, 38(5): 676-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX505.014.htm
Xu S Z, Liu B. The curve comparison method of MT inversion for one-dimensional continuous medium[J]. Acta Geophysica Sinica, 1995, 38(5): 676-682. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX505.014.htm
[15] 王若, 王妙月, 底青云. 二维大地电磁数据的整体反演[J]. 地球物理学进展, 2001, 16(4): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200104008.htm
Wang R, Wang M Y, Di Q Y. 2D TM data integrated inversion[J]. Progress in Geophysics, 2001, 16(4): 53-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200104008.htm
[16] 魏胜, 王家映, 罗志琼. 大地电磁解释工作站[J]. 物探与化探, 1994, 18(1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH401.011.htm
Wei S, Wang J Y, Luo Z Q. The working station of magnetotelluric interpretation[J]. Geophysical & Geochemical Exploration, 1994, 18 (1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH401.011.htm
[17] 夏金伟. 高频大地电磁在地下水勘查中的应用研究[D]. 北京: 中国地质大学, 2015: 25-119.
Xia J W. The application and research of high-frequency magnetotelluric method in the groundwater exploration[D]. Beijing: China University of Geosciences, 2015: 25-119.
[18] 陈小斌, 赵国泽, 汤吉, 等. 大地电磁自适应正则化反演算法[J]. 地球物理学报, 2005, 24(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010025.htm
Chen X B, Zhao G Z, Tang J, et al. An adaptive regularized inversion algorithm for magnetotelluric data[J]. Chinese Journal of Geophysics, 2005, 24(4): 937-946. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202010025.htm
[19] 刘国栋, 邓前辉. 电磁方法研究与勘探[M]. 北京: 地震出版社, 1993: 9-118.
Liu G D, Deng Q H. Electromagnetic method research and exploration [M]. Beijing: Seismological Press, 1993: 9-118. (in Chinese)
[20] 张全胜, 王家映. 大地电磁测深资料的去噪方法[J]. 石油地球物理勘探, 2004, 39(S1): 17-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2004S1005.htm
Zhang Q S, Wang J Y. Denoising method of magnetotelluric sounding data[J]. Oil Geophysical Prospecting, 2004, 39(S1): 17-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2004S1005.htm
[21] 魏文博. 我国大地电磁测深新进展及瞻望[J]. 地球物理学进展, 2002, 17(2): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200202008.htm
Wei W B. New advance and prospect of magnetotelluric sounding (MT) in China[J]. Progress in Geophysics, 2002, 17(2): 245-254. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ200202008.htm
[22] 张赛珍, 王庆乙, 罗延钟. 中国电法勘探发展概况[J]. 地球物理学报, 1994, 37(S1): 408-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.037.htm
Zhang S Z, Wang Q Y, Luo Y Z. An overview on the development of the electrical prospecting method in China[J]. Acta Geophysica Sinica, 1994, 37(S1): 408-424. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX4S1.037.htm