APPLICATION OF WIDE FIELD ELECTROMAGNETIC METHOD IN GEOTHERMAL EXPLORATION OF THICK COVERED AREA IN NORTHERN JIANGSU BASIN
-
摘要:
为了解决强干扰地区电磁数据采集质量差和厚覆盖区目标热储层埋深大的难题, 丰富沉积盆地型地热资源勘探的技术手段, 在江苏苏北盆地厚覆盖区开展了广域电磁法地热勘查工作. 经过野外资料采集和数据处理, 获得了地下3.5 km以浅的电性结构, 划分出7套电性层, 结合地层物性特征识别出7套地层, 查明了主要热储层的埋深及厚度, 部署了DR1地热井, 完井井深2 535 m, 并于1 634~2 535 m钻遇三垛组一段和戴南组二段热储层, 涌水量432 m3/d, 出水水温63.0℃. 钻探结果表明广域电磁法在地热勘探中取得了良好的应用效果, 可为类似地区开展地热勘查工作提供参考.
Abstract:To solve the problems of poor quality of electromagnetic data acquisition in strong interference area and large buried depth of target thermal reservoir in thick covered area, and to enrich the technical means of sedimentary basin-type geothermal resource exploration, the geothermal exploration by means of wide field electromagnetic method (WFEM) is carried out in the thick covered area of Northern Jiangsu Basin. Through field data gathering and data processing, the study obtains the electrical structure at the depth of 3.5 km below surface, delineates 7 sets of electrical layers, identifies 7 sets of strata based on the physical characteristics, and ascertains the burial depth and thickness of major thermal reservoirs. The DR1 geothermal well is deployed with a completion depth of 2535 m. The thermal reservoirs from the first member of Sanduo Formation and the second member of Dainan Formation are drilled at 1634-2535 m, with the water inflow of 432 m3/d and water temperature of 63.0℃. The drilling results show that WFEM has achieved good results in geothermal exploration and can provide reference for geothermal exploration in similar areas.
-
表 1 研究区地层及电性分层
Table 1. Lithological and electrical stratification in study area
地层 特征描述 电阻率/Ωm 电性特征 东台组 Qd 土黄、灰黄色砂质黏土与黄灰色沙砾层互层 8~21 低阻层 盐城组 N1-2y 下段为浅棕红、灰绿色粉砂质泥岩与灰白、灰黄色中粗砂岩、砾状砂岩、细砾岩互层,上段为浅灰黄、浅灰色砂砾层与浅棕色黏土层,组成3~4个正旋回 3.9~41 中阻层
(高低变化)三垛组 E2-3s2 浅棕、浅灰黄色粉—细砂岩,含砾砂岩夹棕红色泥岩 11 低阻层 E2-3s1 中上部棕红色泥岩夹浅棕、浅灰色砂岩,下部棕色块状砂岩、含砾砂岩,分7个砂层组,均有油层 24 戴南组 E2d2 褐色泥岩与浅棕、灰色粉砂岩、细砂岩呈不等厚互层,分5个砂层组,有油气显示 44 中阻层 E2d1 灰紫、灰黑色泥岩与灰色薄层粉细砂岩互层,分3个砂层组,均有油层 67 中高阻层 阜宁组 E1f 分四段:一段为深灰、暗棕色泥岩与浅棕、灰色粉、细砂岩互层;二段为灰黑色泥岩、灰质泥岩夹薄层泥灰岩等;三段为灰黑色泥岩、灰质泥岩夹薄层灰质粉砂岩等;四段为灰黑色泥岩、页岩夹薄层浅灰色泥灰岩等 105 高阻层 泰州组 E1t 下部灰白色块状砂岩、砾岩夹深灰、暗棕色泥岩,上部灰黑色泥岩夹薄层泥灰岩 -
[1] 庞忠和, 汪集暘. 地热能迎空前发展机遇[N]. 中国科学报, 2021-01-05(03).
Pang Z H, Wang J Y. Geothermal energy meets unprecedented development opportunities[N]. Chinese Journal of Science, 2021-01-05(03). (in Chinese)
[2] 汪集暘. 地热清洁取暖大有可为[N]. 中国科学报, 2020-09-02 (03).
Wang J Y. Geothermal clean heating is promising[N]. Chinese Journal of Science, 2020-09-02(03). (in Chinese)
[3] 陈昌昕, 严加永, 周文月, 等. 地热地球物理勘探现状与展望[J]. 地球物理学进展, 2020, 35(4): 1223-1231, doi: 10.6038/pg2020DD0229.
Chen C X, Yan J Y, Zhou W Y, et al. Status and prospects of geophysical method used in geothermal exploration[J]. Progress in Geophysics, 2020, 35(4): 1223-1231, doi: 10.6038/pg2020DD0229.
[4] 曾昭发, 陈雄, 李静, 等. 地热地球物理勘探新进展[J]. 地球物理学进展, 2012, 27(1): 168-178, doi: 10.6038/j.issn.1004-2903.2012.01.019.
Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1): 168-178, doi: 10.6038/j.issn.1004-2903.2012.01.019.
[5] 丁雷, 宋绍军, 关键, 等. 地热资源勘探方法技术的应用与展望[J]. 吉林地质, 2004, 24(4): 113-117. doi: 10.3969/j.issn.1001-2427.2004.04.021
Ding L, Song S J, Guan J, et al. An application of exploration techniques to geothermal resources and its prospect[J]. Jilin Geology, 2004, 24(4): 113-117. doi: 10.3969/j.issn.1001-2427.2004.04.021
[6] 刁天仁, 杜霏. 综合物探方法在安徽省岳西县溪沸地热勘探中的应用[J]. 工程地球物理学报, 2019, 16(6): 815-821. doi: 10.3969/j.issn.1672-7940.2019.06.006
Diao T R, Du F. Application of integrated geophysical exploration method to Xifei geothermal exploration in Yuexi County of Anhui Province[J]. Chinese Journal of Engineering Geophysics, 2019, 16 (6): 815-821. doi: 10.3969/j.issn.1672-7940.2019.06.006
[7] 贾立国, 张帆, 蔡贺, 等. 综合物探方法在水文地质勘查中的应用——以东宁市浙江工业园勘查为例[J]. 地质与资源, 2017, 26 (5): 515-520. doi: 10.3969/j.issn.1671-1947.2017.05.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8576.shtml
Jia L G, Zhang F, Cai H, et al. Application of comprehensive geophysical methods in hydrogeological exploration: A case study of Zhejiang Industrial Park in Dongning City[J]. Geology and Resources, 2017, 26(5): 515-520. doi: 10.3969/j.issn.1671-1947.2017.05.013 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8576.shtml
[8] 赵宝峰, 汪启年, 陈同刚. 地球物理方法在带状热储地热资源调查中的应用——以湖南省汝城县热水镇朱屋区为例[J]. 物探化探计算技术, 2019, 41(6): 806-812. doi: 10.3969/j.issn.1001-1749.2019.06.15
Zhao B F, Wang Q N, Chen T G. The application of geophysical methods in the investigation of geothermal resources with banded reservoir: Taking an example of Zhuwu favorable area, in Hot Water Town, Rucheng County, Hunan Province[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2019, 41(6): 806-812. doi: 10.3969/j.issn.1001-1749.2019.06.15
[9] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究: 来自地球物理的证据[J]. 中国地质, 2021, 48(5): 1453-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105013.htm
Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiong'an New Area: Evidence from geophysics[J]. Geology in China, 2021, 48(5): 1453-1468. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105013.htm
[10] 苏永军, 马震, 孟利山, 等. 高密度电阻率法和激发极化法在抗旱找水定井位中的应用[J]. 现代地质, 2015, 29(2): 265-271. doi: 10.3969/j.issn.1000-8527.2015.02.007
Su Y J, Ma Z, Meng L S, et al. Application of high-density resistivity method and induced polarization method to determine a good well location in groundwater prospecting[J]. Geoscience, 2015, 29(2): 265-271. doi: 10.3969/j.issn.1000-8527.2015.02.007
[11] 段青梅, 龙文华, 王兵, 等. 内蒙古桌子山地区岩溶水特征及勘查方法[J]. 地质与资源, 2006, 15(1): 53-56, 10. doi: 10.3969/j.issn.1671-1947.2006.01.009 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9544.shtml
Duan Q M, Long W H, Wang B, et al. Groundwater in Zhuozishan area, Inner Mongolia[J]. Geology and Resources, 2006, 15(1): 53-56, 10. doi: 10.3969/j.issn.1671-1947.2006.01.009 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9544.shtml
[12] 焦彦杰, 吴文贤, 杨剑, 等. 云南岩溶石山区物探找水方法与实例分析[J]. 中国地质, 2011, 38(3): 770-778. doi: 10.3969/j.issn.1000-3657.2011.03.025
Jiao Y J, Wu W X, Yang J, et al. Geophysical water exploration methods in stone mountain karst areas and case analysis[J]. Geology in China, 2011, 38(3): 770-778. doi: 10.3969/j.issn.1000-3657.2011.03.025
[13] 凌丹丹, 薛胜利, 周少伟. 激电测深在城市浅层地下水调查评价中的应用[J]. 地球物理学进展, 2019, 34(5): 2079-2086, doi: 10.6038/pg2019CC0269.
Ling D D, Xue S L, Zhou S W. Application of induced polarization sounding method to exploration shallow groundwater in the city[J]. Progress in Geophysics, 2019, 34(5): 2079-2086, doi: 10.6038/pg2019CC0269.
[14] 张保祥, 刘春华. 瞬变电磁法在地下水勘查中的应用综述[J]. 地球物理学进展, 2004, 19(3): 537-542. doi: 10.3969/j.issn.1004-2903.2004.03.008
Zhang B X, Liu C H. Summarization on applications to groundwater exploration by using transient electromagnetic methods[J]. Progress in Geophysics, 2004, 19(3): 537-542. doi: 10.3969/j.issn.1004-2903.2004.03.008
[15] 彭海辉, 张湖源, 欧元超, 等. 瞬变电磁与高密度电法在岩溶区探测中的应用[J]. 安徽理工大学学报(自然科学版), 2020, 40(6): 75-81. doi: 10.3969/j.issn.1672-1098.2020.06.012
Peng H H, Zhang H Y, Ou Y C, et al. Application of transient electromagnetic and high density electrical methods in subsidence area detection[J]. Journal of Anhui University of Science and Technology (Natural Science), 2020, 40(6): 75-81. doi: 10.3969/j.issn.1672-1098.2020.06.012
[16] 周西西. CSAMT在辽宁省北镇市某深部地热勘探中的应用[J]. 工程地球物理学报, 2019, 16(6): 872-877. doi: 10.3969/j.issn.1672-7940.2019.06.013
Zhou X X. Application of CSAMT to deep geothermal exploration in Beizhen of Liaoning Province[J]. Chinese Journal of Engineering Geophysics, 2019, 16(6): 872-877. doi: 10.3969/j.issn.1672-7940.2019.06.013
[17] 王恒, 甘凤伟, 卫晓锋, 等. 基于可控源音频大地电磁的传导型地热资源特征分析[J]. 矿产勘查, 2019, 10(8): 1974-1978. doi: 10.3969/j.issn.1674-7801.2019.08.029
Wang H, Gan F W, Wei X F, et al. The analytical of conductive geothermal resources in south of Chengde[J]. Mineral Exploration, 2019, 10(8): 1974-1978. doi: 10.3969/j.issn.1674-7801.2019.08.029
[18] 付光明, 黄进调, 刘阳, 等. 高密度电阻率法与CSAMT法在江西会昌县坝背地热勘查中的综合探测[J]. 中国地质, 2019, 46(4): 927-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904022.htm
Fu G M, Huang J T, Liu Y, et al. Multi-electrode resistivity method and CSAMT method in geothermal exploration of Babei area in Huichang County, Jiangxi Province[J]. Geology in China, 2019, 46 (4): 927-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201904022.htm
[19] 皮伟, 邓国成, 吴侠. 地球物理方法在武川盆地地热勘查中的应用[J]. 矿产勘查, 2019, 10(8): 2015-2022. doi: 10.3969/j.issn.1674-7801.2019.08.035
Pi W, Deng G C, Wu X. Application of geophysical methods in geothermal exploration in Wuchuan Basin[J]. Mineral Exploration, 2019, 10(8): 2015-2022. doi: 10.3969/j.issn.1674-7801.2019.08.035
[20] 宋洪伟, 夏凡, 尚铭森. MT法在河北献县地区地热勘查中的应用[J]. 地质与资源, 2018, 27(3): 284-287. doi: 10.3969/j.issn.1671-1947.2018.03.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8468.shtml
Song H W, Xia F, Shang M S. Application of MT method in geothermal prospecting in Xianxian area, Hebei Province[J]. Geology and Resources, 2018, 27(3): 284-287. doi: 10.3969/j.issn.1671-1947.2018.03.012 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8468.shtml
[21] 周超, 王光杰, 李红领, 等. 花岗岩地区深部地热构造电磁法探测研究——以福建龙海地区为例[J]. 地球物理学进展, 2019, 34 (3): 1153-1158, doi: 10.6038/pg2019AA0178.
Zhou C, Wang G J, Li H L, et al. Magnetotelluric method study in prospecting the deep geothermal structure in granite area: A case study of the Longhai area, Fujian[J]. Progress in Geophysics, 2019, 34(3): 1153-1158, doi: 10.6038/pg2019AA0178.
[22] 严小丽, 康慧敏, 王光杰, 等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展, 2019, 34(5): 1945-1953, doi: 10.6038/pg2019CC0083.
Yan X L, Kang H M, Wang G J, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao [J]. Progress in Geophysics), 34(5): 1945-1953, doi: 10.6038/pg2019CC0083.
[23] 李煜, 肖晓, 汤井田, 等. 广域电磁法与CSAMT在岩溶区探测效果对比分析[J]. 中国科技信息, 2020(12): 74-79. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK202012034.htm
Li Y, Xiao X, Tang J T, et al. Comparison and analysis of wide area electromagnetic method and CSAMT detection effect in karst area[J]. China Science and Technology Information, 2020(12): 74-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJK202012034.htm
[24] 李帝铨, 胡艳芳. 强干扰矿区中广域电磁法与CSAMT探测效果对比[J]. 物探与化探, 2015, 39(5): 967-972, doi: 10.11720/wtyht.2015.5.15.
Li D Q, Hu Y F. A comparison of wide field electromagnetic method with CSAMT method in strong interferential mining area[J]. Geophysical and Geochemical Exploration, 2015, 39(5): 967-972, doi: 10.11720/wtyht.2015.5.15.
[25] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
He J S. Wide field electromagnetic method and pseudo random signal electrical method[M]. Beijing: Higher Education Press, 2010. (in Chinese)
[26] 曹彦荣, 宋涛, 韩红庆, 等. 用广域电磁法勘查深层地热资源[J]. 物探与化探, 2017, 41(4): 678-683, doi: 10.11720/wtyht.2017.4.14.
Cao Y R, Song T, Han H Q, et al. Exploration of deep geothermal energy resources with wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2017, 41(4): 678-683, doi: 10.11720/wtyht.2017.4.14.
[27] 何委徽, 崔健, 刘和花, 等. 江苏页岩气资源调查地球物理方法技术集成[J]. 地质学刊, 2019, 43(3): 349-358. doi: 10.3969/j.issn.1674-3636.2019.03.001
He W H, Cui J, Liu H H, et al. Research of integrated geophysical methods in the investigation of shale gas resources in Jiangsu Province [J]. Journal of Geology, 2019, 43(3): 349-358. doi: 10.3969/j.issn.1674-3636.2019.03.001
[28] 李麒麟, 李荣亮, 苏海伦, 等. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008, doi: 10.11720/wtyht.2020.0191.
Li Q L, Li R L, Su H L, et al. Investigation evaluation and method study of deep geothermal resources in Linze County, Gansu Province [J]. Geophysical and Geochemical Exploration, 2020, 44(5): 999-1008, doi: 10.11720/wtyht.2020.0191.
[29] 朱云起, 李帝铨, 胡艳芳, 等. 共和盆地恰卜恰地热区广域电磁法勘查[C]//2020年中国地球科学联合学术年会论文集(十五). 重庆: 北京伯通电子出版社, 2020.
Zhu Q Y, Li D Q, Hu Y F, et al. Wide field electromagnetic exploration of the Qiabuqia geothermal area in Gonghe Basin[C]// 2020 Chinese Earth Science Joint Academic Essays (15). Chongqing: Beijing Botong Electronic Publishing House, 2020. (in Chinese)
[30] 曾何胜, 徐元璋, 刘磊, 等. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44 (5): 1031-1038, doi: 10.11720/wtyht.2020.0228.
Zeng H S, Xu Y Z, Liu L, et al. Researches on the application of wide field electromagnetic method to the complex electromagnetic interference environment: Exemplified by the geothermal exploration around a city[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1031-1038, doi: 10.11720/wtyht.2020.0228.
[31] 田红军, 张光大, 刘光迪, 等. 黔北台隆区地热勘探中广域电磁法的应用效果[J]. 物探与化探, 2020, 44(5): 1093-1097, doi: 10.11720/wtyht.2020.0199.
Tian H J, Zhang G D, Liu G D, et al. The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area, northern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1093-1097, doi: 10.11720/wtyht.2020.0199.
[32] 危志峰, 陈后扬, 吴西全. 广域电磁法在宜春某地地热勘查中的应用[J]. 物探与化探, 2020, 44(5): 1009-1018, doi: 10.11720/wtyht.2020.0216.
Wei Z F, Chen H Y, Wu X Q. The application of wide field electromagnetic method to geothermal exploration in Yichun[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1009-1018, doi: 10.11720/wtyht.2020.0216.
[33] 徐学思. 江苏省岩石地层[M]. 武汉: 中国地质大学出版社, 1997.
Xu X S. Petrostratigraphy of Jiangsu Province[M]. Wuhan: China University of Geosciences Press, 1997. (in Chinese)
[34] 姜光政, 高堋, 饶松, 等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报, 2016, 59(8): 2892-2910, doi: 10.6038/cjg20160815.
Jiang G Z, Gao P, Rao S, et al. Compilation of heat flow data in the continental area of China (4th edition)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892-2910, doi: 10.6038/cjg20160815.