3D VISUAL DISPLAY OF HIGH DENSITY RESISTIVITY EXPLORATION DATA BASED ON Voxler PLATFORM: Its Application in Tailings Pond Hidden Danger Exploration
-
摘要:
尾矿库内堆放的有污染的固体和液体废物若得不到合理妥善的处理, 会对周边的环境造成严重的污染. 为了确定尾矿库的稳定性, 分析尾矿库内的固、液废弃物对周边土壤和地下水的影响, 急需查明尾矿库的形态特征和库容规模. 高密度电法作为一种常规的物探方法, 以其简便、快捷、高效等特点, 在确定尾矿库形态特征方面成为现场探测的首选技术手段. 本研究运用高密度电法反演得到尾矿库的底界面范围, 并结合钻孔验证, 在Voxler平台构建了尾矿库的可视化三维模型, 从而更加精确计算尾矿砂的方量, 证明了高密度电法在确定尾矿库形态特征中的可行性.
Abstract:It will cause serious contamination to surroundings if the polluted solid and liquid wastes piled up in tailings pond are not properly treated. To determine the stability of tailings pond and analyze the influence of solid and liquid wastes on the surrounding soil and groundwater, it is urgent to find out the morphological characteristics and storage capacity scale of tailings pond. As a conventional geophysical prospecting method, high-density resistivity technique is simple, rapid and effective, and has become the preferred option of on-site detection in determining the morphological characteristics of tailing ponds. In this study, the range of bottom interface of tailings pond is obtained by inversion of high-density resistivity method. Combined with drilling verification, the 3D visualization model of tailings pond is built on Voxler platform for more accurate calculation of volume of tailing sand, which proves the feasibility of high-density resistivity method in determining the morphological characteristics of tailings pond.
-
Key words:
- high-density resistivity /
- tailings pond /
- visualization /
- 3D model /
- Voxler
-
表 1 尾矿库及周边岩性物性特征
Table 1. Physical parameters of tailings pond and surroundings lithology
岩性 电阻率范围/Ωm 尾矿砂 13~56.4 含水尾矿砂 < 13 第四系黄土 20.6~48 砂砾石层 60~200 基岩 >200 表 2 钻孔定位表
Table 2. Borehole positioning data
钻孔编号 X Y Z 方位角/(°) 倾角/(°) 终孔深度/m ZK01 1193.2671 6842.0693 582.414 0 -90 270 ZK02 1411.3651 6983.6941 527.82 0 -90 193 ZK03 1059.1113 6754.9383 623.545 0 -90 284 ZK04 1407.5774 7227.5323 520.987 0 -90 156 ZK05 1282.0356 7288.2616 575.998 0 -90 170 注:表中数据为处理过的非实际坐标,只做演示. 表 3 钻孔测斜表
Table 3. Borehole inclination measuring data
钻孔编号 层面深度/m 方位角/(°) 倾角/(°) ZK01 582.414 0 0 ZK01 404.414 0 0 ZK01 312.414 0 0 ZK02 527.83 0 0 ZK02 394.83 0 0 表 4 岩性分层表
Table 4. Lithological stratification data
钻孔编号 From To 属性 岩性 ZK01 582.414 565.414 30 黄褐色尾矿 ZK01 565.414 408.414 20 灰黑色尾矿 ZK01 408.414 312.414 10 砂砾石黄土 ZK02 527.83 516.83 30 黄褐色尾矿 ZK02 516.83 394.83 20 灰黑色尾矿 -
[1] 国家安全生产监督管理总局. AQ 2006—2005尾矿库安全技术规程[S]. 北京: 煤炭工业出版社, 2006.
State Administration of Work Safety. AQ 2006-2005 Safety technical regulations for the tailings pond[S]. Beijing: China Coal Industry Publishing House, 2006.
[2] 郭朝阳, 唐治亚. 尾矿库溃坝模型探讨[J]. 中国安全生产科学技术, 2010, 6(1): 63-67. doi: 10.3969/j.issn.1673-193X.2010.01.014
Guo Z Y, Tang Z Y. Study on the tailings dam-break model[J]. Journal of Safety Science and Technology, 2010, 6(1): 63-67. doi: 10.3969/j.issn.1673-193X.2010.01.014
[3] 张书琛, 陈伟康, 刘芳斌, 等. 3DMine在某尾矿库管理方面的应用[J]. 现代矿业, 2020, 36(11): 187-188, 199. doi: 10.3969/j.issn.1674-6082.2020.11.056
Zhang S C, Chen W K, Liu F B, et al. Application of 3DMine in the management of a tailings pond[J]. Modern Mining, 2020, 36(11): 187-188, 199. doi: 10.3969/j.issn.1674-6082.2020.11.056
[4] 李军, 马新龙. 高密度电法在水库大坝塌陷勘测中的应用[J]. 工程勘察, 2010, 38(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201001024.htm
Li J, Ma X L. The application of high-density electrical method to the collapse-surveying on the dam[J]. Geotechnical Investigation & Surveying, 2010, 38(1): 89-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC201001024.htm
[5] 刘道涵, 伏永朋, 刘慧. 高密度电法在丹江口水源区某尾矿库三维探测中的应用研究[J]. 华南地质与矿产, 2020, 36(1): 33-37. doi: 10.3969/j.issn.1007-3701.2020.01.004
Liu D H, Fu Y P, Liu H. Application of high density resistivity method in three-dimensional detection of a tailings pond in Danjiangkou water source area[J]. Geology and Mineral Resources of South China, 2020, 36(1): 33-37. doi: 10.3969/j.issn.1007-3701.2020.01.004
[6] 刘彦奎, 王欣然, 李建, 等. 基于3DMine的胶东上庄金矿体三维建模及其应用[J]. 山东国土资源, 2020, 36(12): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202012008.htm
Liu Y K, Wang X R, Li J, et al. Three dimensional geological modeling and application of Shangzhuang gold ore body in Jiaodong Peninsula based on 3DMine software[J]. Shandong Land and Resources, 2020, 36(12): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SDDI202012008.htm
[7] 王守兴, 祁尧刚, 欧立鹏. 高密度电阻率法在老煤窑采空区勘探中的应用[J]. 科技尚品, 2021, 7(5): 27-28. doi: 10.12310/j.issn.1674-1064.2021.05.013
Wang S X, Qi Y G, Ou L P. Application of high density resistivity method in exploration of goaf in old coal mine[J]. Premiere, 2021, 7 (5): 27-28. (in Chinese) doi: 10.12310/j.issn.1674-1064.2021.05.013
[8] 韦乖强, 孙林, 张广琦, 等. 基于Voxler和Surfer软件在瞬变电磁法三维切片图绘制中的应用与研究[J]. 煤矿开采, 2015, 20(4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201504010.htm
Wei G Q, Sun L, Zhang G Q, et al. Application of Voxler and Surfer software in slice-map drawing of transient electromagnetic method[J]. Coal Mining Technology, 2015, 20(4): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-MKKC201504010.htm
[9] 贾立国, 郭晓东, 张帆, 等. 高密度电法数据三维可视化快速实现及在复杂采空沉降区的应用[J]. 地质与资源, 2017, 26(1): 81-83. doi: 10.3969/j.issn.1671-1947.2017.01.014 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9122.shtml
Jia L G, Guo X D, Zhang F, et al. Fast implementation of 3-D visualization of high-density resistivity data and application in complex goaf subsidence areas[J]. Geology and Resources, 2017, 26(1): 81-83. doi: 10.3969/j.issn.1671-1947.2017.01.014 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract9122.shtml
[10] Yasir S F, Jani J, Mukri M. A dataset of visualization methods to assessing soil profile using RES2DINV and VOXLER software[J]. Data in Brief, 2019, 24: 103821. doi: 10.1016/j.dib.2019.103821
[11] 张新虎, 苟国朝, 展积宝. 北祁连地区主要金属矿床成矿系列及区域成矿作用[J]. 地球科学进展, 1997, 12(4): 331-339. doi: 10.3321/j.issn:1001-8166.1997.04.004
Zhang X H, Gou G C, Zhan J B. Metallogenic series of main ore deposits and regional metallogeny in North Qilian Mountains[J]. Advance in Earth Sciences, 1997, 12(4): 331-339. doi: 10.3321/j.issn:1001-8166.1997.04.004
[12] 张洪培, 刘继顺, 方维萱, 等. 甘肃白银折腰山型和石青硐型块状硫化物矿床综合信息找矿模型研究[J]. 矿床地质, 2003, 22(4): 408-414. doi: 10.3969/j.issn.0258-7106.2003.04.010
Zhang H P, Liu J S, Fang W X, et al. Comprehensive information prospecting models for Zheyaoshan and Shiqingdong massive sulfide deposits in Baiyin, Gansu Province[J]. Mineral Deposits, 2003, 22 (4): 408-414. doi: 10.3969/j.issn.0258-7106.2003.04.010
[13] 尹观, 张树发, 范良明, 等. 甘肃白银金属硫化物矿床及其矿区主要地质事件的同位素地质年代学研究[J]. 地质地球化学, 1998, 26(1): 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199801001.htm
Yin G, Zhang S F, Fan L M, et al. Isotope geochronology studies of the main geological events on the sulfide ore deposits and neighborhood in Baiyin, Gansu[J]. Geology-Geochemistry, 1998, 26(1): 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ199801001.htm
[14] 时彦芳, 李波. 综合电法在花岗岩地区找水中的应用效果分析[J]. 地质与资源, 2020, 29(4): 363-368. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10217.shtml
Shi Y F, Li B. Analysis on the application effect of integrated electrical method in water prospecting in granite regions[J]. Geology and Resources, 2020, 29(4): 363-368. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10217.shtml
[15] 贾立国, 吴继红. 高密度电法测量的应用及其在森林区的优势[J]. 地质与资源, 2014, 23(2): 181-183. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8827.shtml
Jia L G, Wu J H. Application of multi-electrode resistivity survey in forest-covered areas[J]. Geology and Resources, 2014, 23(2): 181-183. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8827.shtml
[16] 王超群, 贾丽云, 胡道功, 等. 海南岛北部马袅-铺前断裂东段活动性与地壳稳定性评价[J]. 中国地质, 2021, 48(2): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102020.htm
Wang C Q, Jia L Y, Hu D G, et al. Activity of eastern part of the Maniao-Puqian fault in northern Hainan Island and its evaluation of crustal stability[J]. Geology in China, 2021, 48(2): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102020.htm
[17] 李华, 王东辉, 张伟, 等. 地球物理探测技术在成都市浅表地质结构调查中的应用研究[J]. 中国地质, 2022, 49(5): 1438-1457. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205006.htm
Li H, Wang D H, Zhang W, et al. Application research of geophysical exploration technology in the investigation of shallow geological structure in Chengdu[J]. Geology in China, 2022, 49(5): 1438-1457. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202205006.htm
[18] 严加永, 孟贵祥, 吕庆田, 等. 高密度电法的进展与展望[J]. 物探与化探, 2012, 36(4): 576-584. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204014.htm
Yan J Y, Meng G X, Lv Q T, et al. The progress and prospect of the electrical resistivity imaging survey[J]. Geophysical and Geochemical Exploration, 2012, 36(4): 576-584. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201204014.htm
[19] 刘晓东, 张虎生, 黄笑春, 等. 高密度电法在宜春市岩溶地质调查中的应用[J]. 中国地质灾害与防治学报, 2002, 13(1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200201017.htm
Liu X D, Zhang H S, Huang X C, et al. The application of high density electrical method to karst geological survey in Yichun city[J]. The Chinese Journal of Geological Hazard and Control, 2002, 13 (1): 72-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200201017.htm
[20] 韩锡勤, 程邈, 林松. 高密度电法在某防空洞勘探中的应用[J]. 大地测量与地球动力学, 2010, 30(S1): 165-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB2010S1037.htm
Han X Q, Cheng M, Lin S. Application of high-density electrical method in investigation on air-raid shelter[J]. Journal of Geodesy and Geodynamics, 2010, 30(S1): 165-166. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB2010S1037.htm
[21] 巩建军, 邓居智, 陈辉, 等. 高密度电阻率法在高速公路隧道勘察中的应用研究[J]. 工程地球物理学报, 2016, 13(4): 429-434. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201604006.htm
Gong J J, Deng J Z, Chen H, et al. The application of high density resistivity method to the tunnel exploration of expressways[J]. Chinese Journal of Engineering Geophysics, 2016, 13(4): 429-434. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ201604006.htm