碳中和目标驱动下干热岩和增强型地热系统增产技术发展

王贵玲, 陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011
引用本文: 王贵玲, 陆川. 碳中和目标驱动下干热岩和增强型地热系统增产技术发展[J]. 地质与资源, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011
WANG Gui-ling, LU Chuan. STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET[J]. Geology and Resources, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011
Citation: WANG Gui-ling, LU Chuan. STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET[J]. Geology and Resources, 2023, 32(1): 85-95. doi: 10.13686/j.cnki.dzyzy.2023.01.011

碳中和目标驱动下干热岩和增强型地热系统增产技术发展

  • 基金项目:
    国家重点研发计划课题项目"深部碳酸盐岩热储层天然构造及人工干预下综合评价技术"(2019YFB150410302)
详细信息
    作者简介: 王贵玲(1964-), 男, 研究员, 从事地热资源勘探开发技术研究工作, 通信地址 河北省石家庄市新华区中华北大街268号, E-mail//guilingw@163.com
    通讯作者: 陆川(1972-), 男, 研究员, 从事地热资源开发利用技术研究工作, 通信地址 河北省石家庄市新华区中华北大街268号, E-mail//luchuancn@163.com
  • 中图分类号: P314;TK529

STIMULATION TECHNOLOGY DEVELOPMENT OF HOT DRY ROCK AND ENHANCED GEOTHERMAL SYSTEM DRIVEN BY CARBON NEUTRALITY TARGET

More Information
  • 地热能作为一种清洁低碳、稳定连续的非碳基能源, 可为实现碳中和、碳达峰目标提供重要保障. 通过回顾国内外干热岩和增强型地热系统的开发现状, 储层改造建造技术现状和近期发展, 微地震监测技术发展和诱发地震灾害评估方法进展, 示踪技术进步和电磁法的监测潜力, 展望干热岩和增强型地热系统增产技术发展前景和研究开发方向, 为相关的工程技术和研究人员提供参考.

  • 加载中
  • 图 1  水力压裂和超临界压裂样品的CT扫描(据文献[30])

    Figure 1. 

    图 2  利用Terzaghi有效应力计算的滑动趋势(据文献[61])

    Figure 2. 

    表 1  典型干热岩工程循环试验对比

    Table 1.  Comparison of cyclic tests among typical hot dry rock engineering

    项目 深度/m 温度/℃ 压力/MPa 流量
    热源 产热 温差 注入 采出 注入/(L/s) 采出/(L/s) 损耗/%
    芬顿山 2800 195 158 37 9.7 1.4 6.3 5.9 3.2
    3500 235 183 52 27.3 9.7 6.74 5.65 11.7
    3500 235 190 45 31.5 15.1 7.57 5.9 22.1
    罗斯马诺维斯 2600 100 55 45 15 10.5 24 16.7 30.4
    希久里 1800 250 150 100 16.7 22
    2200 270 180 90 3 16.7 23
    小口町 1100 228 109 119 19 1200 30 97.5
    1100 228 160 68 16 750 65 91.3
    1100 228 170 58 9 750 150 80
    下载: 导出CSV
  • [1]

    国家能源局. 关于促进地热能开发利用的若干意见(征求意见稿) [EB/OL]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm,2021-04-14.

    Nation Energy Administration. Opinions on promoting the development and utilization of geothermal energy[EB/OL]. http://www.nea.gov.cn/2021-04/14/c_139880250.htm,2021-04-14. (in Chinese)

    [2]

    王贵玲, 陆川. 碳中和目标驱动下地热资源开采利用技术进展[J]. 地质与资源, 2022, 31(3): 412-425, 341. doi: 10.13686/j.cnki.dzyzy.2022.03.017 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10403.shtml

    Wang G L, Lu C. Progress of geothermal resources exploitation and utilization technology driven by carbon neutralization target[J]. Geology and Resources, 2022, 31(3): 412-425, 341. doi: 10.13686/j.cnki.dzyzy.2022.03.017 http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10403.shtml

    [3]

    Tester J W, Anderson B J. The future of geothermal energy: Impact of enhanced geothermal systems (EGS) on the United States in the 21st Century[R]. Boston, USA: Massachusetts Institute of Technology, 2006.

    [4]

    Brown D. The US hot dry rock program: 20 years of experience in reservoir testing[C]//Proceedings of the World Geothermal Congress. Florence, Italy, 1995.

    [5]

    王贵玲, 张薇, 梁继运, 等. 中国地热资源潜力评价[J]. 地球学报, 2017, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm

    Wang G L, Zhang W, Liang J Y, et al. Evaluation of geothermal resources potential in China[J]. ActaGeoscienticaSinica, 2017, 38(4): 449-459. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201704002.htm

    [6]

    汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    Wang J Y, Hu S B, Pang Z H, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    [7]

    Olasolo P, Juárez M C, Morales M P, et al. Enhanced geothermal systems (EGS): A review[J]. Renewable and Sustainable Energy Reviews, 2016, 56: 133-144. doi: 10.1016/j.rser.2015.11.031

    [8]

    Brown D. 1995 verification flow testing of the HDR reservoir at Fenton Hill, New Mexico[R]. Los Alamos, NM, United States: Los Alamos National Laboratory, 1995.

    [9]

    Xu T F, Liang X, Xia Y, et al. Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data[J]. Renewable Energy, 2022, 181: 1197-1208. doi: 10.1016/j.renene.2021.09.111

    [10]

    陆川, 王贵玲. 干热岩研究现状与展望[J]. 科技导报, 2015, 33(19): 13-21. doi: 10.3981/j.issn.1000-7857.2015.19.001

    Lu C, Wang G L. Current status and prospect of hot dry rock research [J]. Science & Technology Review, 2015, 33(19): 13-21. doi: 10.3981/j.issn.1000-7857.2015.19.001

    [11]

    Schill E, Cuenot N, Genter A, et al. Review of the hydraulic development in the multi-reservoir/multi-well EGS project of Soultzsous-Forêts[C]//Proceedings World Geothermal Congress 2015. Melbourne, Australia, 2015.

    [12]

    Jung R, Rummel F, Jupe A, et al. Large scale hydraulic injections in the granitic basement in the European HDR programme at Soultz, France[C]//Proc3rd Int HDR Forum, Santa Fe, 1996.

    [13]

    Hori Y, Kitano K, Kaieda H, et al. Present status of the Ogachi HDR Project, Japan, and future plans[J]. Geothermics, 1999, 28(4/5): 637-645.

    [14]

    Schroeder R, Swenson D, Shinohara N, et al. Strategies for the Hijiori long term flow test[C]//Proc 23rd Workshop on Geothermal Reservoir Engineering Stanford University, 1998.

    [15]

    Economides M J, Nolte K G. Reservoir stimulation[M]. 2nd ed. Englewood Cliffs, New Jersey: Prentice Hall, 1989.

    [16]

    王鸿勋, 张士诚. 水力压裂设计数值计算方法[M]. 北京: 石油工业出版社, 1998: 363.

    Wang H X, Zhang S C. Numerical calculation methods of hydraulic fracturing design[M]. Beijing: Petroleum Industry Press, 1998: 363.

    [17]

    Valkó P, Economides M J. Hydraulic fracture mechanics[M]. Chichester: Wiley, 1995.

    [18]

    王仲茂, 胡江明. 水力压裂形成裂缝形态的研究[J]. 石油勘探与开发, 1994, 21(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK406.011.htm

    Wang Z M, Hu J M. A study on the fracture types induced by hydro-fracturing[J]. Petroleum Exploration and Development, 1994, 21(6): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK406.011.htm

    [19]

    Batchelor A S. Reservoir behaviour in a stimulated hot dry rock system[R]. England: Cambrone School of Mines, 1986.

    [20]

    Jung H B, Carroll K C, Kabilan S, et al. Stimuli-responsive/rheoreversible hydraulic fracturing fluids as a greener alternative to support geothermal and fossil energy production[J]. Green Chemistry, 2015, 17(5): 2799-2812. doi: 10.1039/C4GC01917B

    [21]

    朱丽君, 刘国良. 酸化压裂工艺技术综述[J]. 安徽化工, 2015, 41(2): 9-12. doi: 10.3969/j.issn.1008-553X.2015.02.004

    Zhu L J, Liu G L. Summary of acidizing fracturing technology[J]. Anhui Chemical Industry, 2015, 41(2): 9-12. doi: 10.3969/j.issn.1008-553X.2015.02.004

    [22]

    王静波, 赵立强, 方泽本, 等. 多级交替注入酸压优化新方法研究[J]. 天然气勘探与开发, 2011, 34(3): 41-44. doi: 10.3969/j.issn.1673-3177.2011.03.012

    Wang J B, Zhao L Q, Fang Z B, et al. A new method to optimize multistage alternating injection of acid fracturing[J]. Natural Gas Exploration & Development, 2011, 34(3): 41-44. (in Chinese) (in Chinese) doi: 10.3969/j.issn.1673-3177.2011.03.012

    [23]

    Tinker S J. 碳酸盐岩地层酸压新技术: 平衡酸压[J]. 曲良泉, 译. 油气田开发工程译丛, 1991(5): 21-28.

    Tinker S J. Equilibrium acid fracturing: A new fracture acidizing technique for carbonate formations[J]. SPE Production Engineering, 1991, 6(1): 25-32.

    [24]

    Grubelich M C, King D, Knudsen S, et al. An overview of a high energy stimulation technique for geothermal applications[C]//Proceedings World Geothermal Congress. Melbourne, Australia, 2015.

    [25]

    王安仕, 秦发动. 高能气体压裂技术[M]. 西安: 西北大学出版社, 1998: 190.

    Wang A S, Qin F D. High energy gas fracturing technology[M]. Xi' an: Northwest University Press, 1998. (in Chinese)

    [26]

    陈华彬, 马自强, 艾生军, 等. 射孔高能气体压裂技术研究及应用[J]. 钻采工艺, 2020, 43(3): 67-69. doi: 10.3969/J.ISSN.1006-768X.2020.03.20

    Chen H B, Ma Z Q, Ai S J, et al. Research & application of perforating high energy gas fracturing technology[J]. Drilling & Production Technology, 2020, 43(3): 67-69. doi: 10.3969/J.ISSN.1006-768X.2020.03.20

    [27]

    Chen Y Q, Nagaya Y, Ishida T. Observations of fractures induced by hydraulic fracturing in anisotropic granite[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1455-1461. doi: 10.1007/s00603-015-0727-9

    [28]

    赵旭. 高能气体压裂过程中压井液运动计算模型研究[J]. 爆破器材, 2020, 49(2): 29-33. doi: 10.3969/j.issn.1001-8352.2020.02.005

    Zhao X. Modeling of controlling fluid movement during high-energy gas fracturing[J]. Explosive Materials, 2020, 49(2): 29-33. doi: 10.3969/j.issn.1001-8352.2020.02.005

    [29]

    吴飞鹏. 高能气体压裂过程动力学模型与工艺技术优化决策研究[D]. 青岛: 中国石油大学(华东), 2009.

    Wu F P. The kinetic model and the technology optimization of HEGF process[D]. Qingdao: China University of Petroleum (EastChina), 2009.

    [30]

    Hou L, Zhang S, Elsworth D, et al. Review of fundamental studies of CO2 fracturing: Fracture propagation, propping and permeating[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108823. doi: 10.1016/j.petrol.2021.108823

    [31]

    Middleton R S, Carey J W, Currier R P, et al. Shale gas and nonaqueous fracturing fluids: Opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500-509. doi: 10.1016/j.apenergy.2015.03.023

    [32]

    Sampath K H S M, Perera M S A, Ranjith P G, et al. CH4-CO2 gas exchange and supercritical CO2 based hydraulic fracturing as CBM production-accelerating techniques: A review[J]. Journal of CO2 Utilization, 2017, 22: 212-230. doi: 10.1016/j.jcou.2017.10.004

    [33]

    程宇雄, 李根生, 王海柱, 等. 超临界CO2连续油管喷射压裂可行性分析[J]. 石油钻采工艺, 2013, 35(6): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306020.htm

    Cheng Y X, Li G S, Wang H Z, et al. Feasibility analysis on coiled-tubing jet fracturing with supercritical CO2[J]. Oil Drilling & Production Technology, 2013, 35(6): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZC201306020.htm

    [34]

    李根生, 王海柱, 沈忠厚, 等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版), 2013, 37(5): 76-80, 87. doi: 10.3969/j.issn.1673-5005.2013.05.011

    Li G S, Wang H Z, Shen Z H, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering [J]. Journal of China University of Petroleum, 2013, 37(5): 76-80, 87. doi: 10.3969/j.issn.1673-5005.2013.05.011

    [35]

    张毅. 超临界CO2压裂在页岩气开发中的优势与挑战[J]. 现代化工, 2021, 41(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202101001.htm

    Zhang Y. Advantages and challenges of supercritical CO2 fracturing in shale gas exploitation[J]. Modern Chemical Industry, 2021, 41(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG202101001.htm

    [36]

    Kolle J J. Coiled-tubing drilling with supercritical carbon dioxide[C]//SPE/CIM International Conference on Horizontal Well Technology. Calgary, Alberta, Canada: SPE, 2000.

    [37]

    Ishida T, Aoyagi K, Niwa T, et al. Acoustic emission monitoring of hydraulic fracturing laboratory experiment with supercritical and liquid CO2[J]. Geophysical Research Letters, 2012, 39(16): L16309.

    [38]

    Watanabe N, Sakaguchi K, Goto R, et al. Cloud-fracture networks as a means of accessing superhot geothermal energy[J]. Scientific Reports, 2019, 9(1): 939. doi: 10.1038/s41598-018-37634-z

    [39]

    Pramudyo E, Goto R, Watanabe N, et al. CO2 injection-induced complex cloud-fracture networks in granite at conventional and superhot geothermal conditions[J]. Geothermics, 2021, 97: 102265. doi: 10.1016/j.geothermics.2021.102265

    [40]

    王磊, 梁卫国. 超临界CO2/清水压裂煤体起裂和裂缝扩展试验研究[J]. 岩石力学与工程学报, 2019, 38(S1): 2680-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1009.htm

    Wang L, Liang W G. Experimental study on fracture initiation and growth in coal using hydraulic fracturing with supercritical CO2 and normal water[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2680-2689. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1009.htm

    [41]

    Ma X F, Li N, Yin C B, et al. Hydraulic fracture propagation geometry and acoustic emission interpretation: A case study of Silurian Longmaxi Formation shale in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2017, 44(6): 1030-1037. doi: 10.1016/S1876-3804(17)30116-7

    [42]

    Wang YY, Deng H C, Deng Y, et al. Study on crack dynamic evolution and damage-fracture mechanism of rock with pre-existing cracks based on acoustic emission location[J]. Journal of Petroleum Science and Engineering, 2021, 201: 108420. doi: 10.1016/j.petrol.2021.108420

    [43]

    Calò M, Dorbath C. Different behaviours of the seismic velocity field at Soultz-sous-Forêts revealed by 4-D seismic tomography: case study of GPK3 and GPK2 injection tests[J]. Geophysical Journal International, 2013, 194(2): 1119-1137. doi: 10.1093/gji/ggt153

    [44]

    Abdulaziz A M. Microseismic imaging of hydraulically induced-fractures in gas reservoirs: A case study in Barnett shale gas reservoir, Texas, USA[J]. Open Journal of Geology, 2013, 3(5): 361-369. doi: 10.4236/ojg.2013.35041

    [45]

    吴顺川, 黄小庆, 陈钒, 等. 岩体破裂矩张量反演方法及其应用[J]. 岩土力学, 2016, 37(S1): 1-18. doi: 10.16285/j.rsm.2016.S1.001

    Wu S C, Huang X Q, Chen F, et al. Moment tensor inversion of rock failure and its application[J]. Rock and Soil Mechanics, 2016, 37(S1): 1-18. doi: 10.16285/j.rsm.2016.S1.001

    [46]

    Hudson J A, Pearce R G, Rogers R M. Source type plot for inversion of the moment tensor[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B1): 765-774. doi: 10.1029/JB094iB01p00765

    [47]

    Foulger G R, Julian B R, Hill D P, et al. Non-double-couple microearthquakes at Long Valley caldera, California, provide evidence for hydraulic fracturing[J]. Journal of Volcanology and Geothermal Research, 2004, 132(1): 45-71. doi: 10.1016/S0377-0273(03)00420-7

    [48]

    Baig A, Urbancic T. Microseismic moment tensors: A path to understanding fracgrowth[J]. The Leading Edge, 2010, 29(3): 320-324. doi: 10.1190/1.3353729

    [49]

    Yu X, Rutledge J, Leaney S, et al. Discrete fracture network generation from microseismic data using Moment-Tensor constrained Hough transforms[C]//SPE Hydraulic Fracturing Technology Conference. The Woodlands, Texas, USA: SPE, 2014.

    [50]

    Zhang H L, Eaton D W. A regularized approach for estimation of a composite focal mechanism from a set of microearthquakes[J]. Geophysics, 2018, 83(5): KS65-KS75. doi: 10.1190/geo2017-0273.1

    [51]

    Foulger G R, Wilson M P, Gluyas J G, et al. Global review of human-induced earthquakes[J]. Earth-Science Reviews, 2018, 178: 438-514. doi: 10.1016/j.earscirev.2017.07.008

    [52]

    Baisch S, Weidler R, Vörös R, et al. A conceptual model for post-injection seismicity at Soultz-sous-Forêts[J]. Transactions-Geothermal Resources Council, 2006, 30: 601-605.

    [53]

    Cuenot N, Charléty J, Dorbath L, et al. Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forêts, France [J]. Geothermics, 2006, 35(5/6): 561-575.

    [54]

    Templeton D C, Wang J B, Goebel M K, et al. Induced seismicity during the 2012 Newberry EGS stimulation: Assessment of two advanced earthquake detection techniques at an EGS site[J]. Geothermics, 2020, 83: 101720. doi: 10.1016/j.geothermics.2019.101720

    [55]

    Majer E L, Baria R, Stark M, et al. Induced seismicity associated with enhanced geothermal systems[J]. Geothermics, 2007, 36(3): 185-222. doi: 10.1016/j.geothermics.2007.03.003

    [56]

    Kwiatek G, Saarno T, Ader T, et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland[J]. Science Advances, 2019, 5(5): eaav7224. doi: 10.1126/sciadv.aav7224

    [57]

    Bentz S, Kwiatek G, Martínez-Garzón P, et al. Seismic moment evolution during hydraulic stimulations[J]. Geophysical Research Letters, 2020, 47(5): e2019GL086185.

    [58]

    Galis M, Ampuero J P, Mai P M, et al. Induced seismicity provides insight into why earthquake ruptures stop[J]. Science Advances, 2017, 3(12): eaap7528. doi: 10.1126/sciadv.aap7528

    [59]

    McGarr A. Maximum magnitude earthquakes induced by fluid injection[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(2): 1008-1019. doi: 10.1002/2013JB010597

    [60]

    van der Elst N J, Page M T, Weiser D A, et al. Induced earthquake magnitudes are as large as (statistically) expected[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4575-4590. doi: 10.1002/2016JB012818

    [61]

    Blöcher G, Cacace M, Jacquey A B, et al. Evaluating micro-seismic events triggered by reservoir operations at the geothermal site of GroβSchönebeck (Germany)[J]. Rock Mechanics and Rock Engineering, 2018, 51(10): 3265-3279. doi: 10.1007/s00603-018-1521-2

    [62]

    岳高凡, 王贵玲, 马峰, 等. 地热规模化开发断层滑动概率评估——以雄安新区深部岩溶热储为例[J]. 中国地质, 2021, 48(5): 1382-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105007.htm

    Yue G F, Wang G L, Ma F, et al. Evaluation of fault slip probability of geothermal large-scale development: A case study of deep karst geothermal reservoir in Xiong'an New Area[J]. Geology in China, 2021, 48(5): 1382-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202105007.htm

    [63]

    许天福, 张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004

    Xu T F, Zhang Y J, Zeng Z F, et al. Technology progress in an enhanced geothermal system (hot dry rock)[J]. Science & Technology Review, 2012, 30(32): 42-45. doi: 10.3981/j.issn.1000-7857.2012.32.004

    [64]

    Rose P E, Capuno V, Peh A, et al. The use of naphthalene sulfonates as tracers in high temperature geothermal systems[C]//Proceedings of the 23rd Annual PNOC-EDC Geothermal Conference. 2002: 53-58.

    [65]

    Rose P E, Johnson S D, Kilbourn P, et al. Tracer testing at Dixie Valley, Nevada using 1-naphthalene sulfonate and 2, 6-naphthalene disulfonate[C]//Proceedings of theTwenty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, 2002.

    [66]

    Rose P E, Johnson S D, Kilbourn P. Tracer testing at Dixie Valley, Nevada, using 2-naphthalene sulfonate and 2, 7-naphthalene disulfonate[C]//Proceedings of theTwenty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford, CA, 2001.

    [67]

    Pope E C, Bird D K, Arnórsson S. Stable isotopes of hydrothermal minerals as tracers for geothermal fluids in Iceland[J]. Geothermics, 2014, 49: 99-110. doi: 10.1016/j.geothermics.2013.05.005

    [68]

    Dean C, Reimus P, Oates J, et al. Laboratory experiments to characterize cation-exchanging tracer behavior for fracture surface area estimation at Newberry Crater, OR[J]. Geothermics, 2015, 53: 213-224. doi: 10.1016/j.geothermics.2014.05.011

    [69]

    Hawkins A J, Becker M W, Tester J W. Inert and adsorptive tracer tests for field measurement of flow-wetted surface area[J]. Water Resources Research, 2018, 54(8): 5341-5358. doi: 10.1029/2017WR021910

    [70]

    Hawkins A J, Fox D B, Becker M W, et al. Measurement and simulation of heat exchange in fractured bedrock using inert and thermally degrading tracers[J]. Water Resources Research, 2017, 53(2): 1210-1230. doi: 10.1002/2016WR019617

    [71]

    Peacock J R, Thiel S, Reid P, et al. Magnetotelluric monitoring of a fluid injection: Example from an enhanced geothermal system[J]. Geophysical Research Letters, 2012, 39(18): L18403.

    [72]

    Peacock J R, Thiel S, Heinson G S, et al. Time-lapse magnetotelluric monitoring of an enhanced geothermal system[J]. Geophysics, 2013, 78(3): B121-B130. doi: 10.1190/geo2012-0275.1

    [73]

    Didana Y L, Thiel S, Heinson G, et al. Magnetotelluric monitoring of hydraulic fracture stimulation at the Habanero enhanced geothermal system, Cooper Basin, South Australia[J]. ASEG Extended Abstracts, 2016, 2016(1): 1-9.

  • 加载中

(2)

(1)

计量
  • 文章访问数:  2084
  • PDF下载数:  125
  • 施引文献:  0
出版历程
收稿日期:  2022-04-25
修回日期:  2022-05-13
刊出日期:  2023-02-25

目录