遥感蚀变信息提取研究综述

王生礼, 李志军. 遥感蚀变信息提取研究综述[J]. 地质与资源, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
引用本文: 王生礼, 李志军. 遥感蚀变信息提取研究综述[J]. 地质与资源, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
WANG Sheng-li, LI Zhi-jun. A REVIEW OF REMOTE SENSING ALTERATION INFORMATION EXTRACTION TECHNIQUES[J]. Geology and Resources, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010
Citation: WANG Sheng-li, LI Zhi-jun. A REVIEW OF REMOTE SENSING ALTERATION INFORMATION EXTRACTION TECHNIQUES[J]. Geology and Resources, 2023, 32(4): 462-470. doi: 10.13686/j.cnki.dzyzy.2023.04.010

遥感蚀变信息提取研究综述

  • 基金项目:
    国家自然基金面上项目"西藏狮泉河中生代增生杂岩地质记录:对班公湖-怒江特提斯洋西段演化的结束"(42172118)
详细信息
    作者简介: 王生礼(1997—), 男, 硕士研究生, 资源环境遥感研究方向, 通信地址四川省成都市成华区东三路1号, E-mail//1178812870@qq.com
    通讯作者: 李志军(1974—), 男, 副教授, 从事遥感地质学教学与研究, 通信地址四川省成都市成华区东三路1号, E-mail//lizhijun@cdut.edu.cn
  • 中图分类号: P627;TP75

A REVIEW OF REMOTE SENSING ALTERATION INFORMATION EXTRACTION TECHNIQUES

More Information
  • 矿物蚀变信息是地质找矿的重要依据和手段,利用遥感数据提取蚀变信息是遥感应用领域研究的热点.通过对近年来蚀变信息提取涉及的遥感数据、矿物类别、常用方法等进行梳理,对比分析不同遥感蚀变信息提取方法的效果,总结了遥感蚀变信息提取的发展方向.结果表明,遥感数据朝着高空间分辨率发展,蚀变信息的地面精度随之提高;光谱分辨率的提高使得可提取矿物越来越多;数学方法和人工智能的发展提升了蚀变信息提取方法的应用空间.

  • 加载中
  • 图 1  不同数据源各波段空间分辨率、光谱分辨率比较(据NASA官网)

    Figure 1. 

    图 2  典型铁染矿物光谱曲线图

    Figure 2. 

    图 3  典型羟基蚀变矿物光谱曲线

    Figure 3. 

    表 1  离子光谱吸收位置及代表矿物

    Table 1.  Ion spectra absorption positions and representative minerals

    离子 吸收峰位置/μm 代表矿物
    Fe2+ 0.43,0.45,0.51,0.55,1.0~1.1,1.8~1.9 菱铁矿、黄铁矿
    Fe3+ 0.4,0.45,0.49,0.52,0.7,0.87 赤铁矿、褐铁矿
    Cu2+ 0.80 蓝铜矿、孔雀石
    Mn2+ 0.34,0.37,0.41,0.55 菱锰矿、水锰矿
    OH- 1.4,2.2(Al–OH);2.30(Mg–OH) 绿泥石、蒙脱石、白云母、绿帘石
    CO32- 1.9,2.0,2.16,2.35,2.55 方解石、菱铁矿、白云石
    H2O 主要在1.4和1.9 石英、石膏、蒙脱石
    下载: 导出CSV
  • [1]

    李根军, 张焜, 李善财, 等. GF-1数据在柴达木盆地北缘大柴旦地区找矿预测中的应用[J]. 矿产勘查, 2017, 8(4): 672–681. doi: 10.3969/j.issn.1674-7801.2017.04.020

    Li G J, Zhang K, Li S C, et al. Application of GF-1 remote sensing data in prospecting prediction in the Dachaidan area, northern margin of Qaidam Basin[J]. Mineral Exploration, 2017, 8(4): 672–681. doi: 10.3969/j.issn.1674-7801.2017.04.020

    [2]

    吴一全, 盛东慧, 周杨. PCA和布谷鸟算法优化SVM的遥感矿化蚀变信息提取[J]. 遥感学报, 2018, 22(5): 810–821. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201805009.htm

    Wu Y Q, Sheng D H, Zhou Y. Remote sensing mineralization alteration information extraction based on PCA and SVM optimized by cuckoo algorithm[J]. National Remote Sensing Bulletin, 2018, 22(5): 810–821. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201805009.htm

    [3]

    唐淑兰, 曹建农, 王凯. 结合PCA、多尺度分割及SVM的ASTER遥感蚀变信息提取[J]. 遥感学报, 2021, 25(2): 653–664. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102011.htm

    Tang S L, Cao J N, Wang K. Remote sensing mineralization alteration information extraction based on PCA, multilevel segment method, and SVM[J]. National Remote Sensing Bulletin, 2021, 25(2): 653–664. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202102011.htm

    [4]

    董丽芳. 基于遗传算法的遥感矿化蚀变信息提取——以青海拉陵灶火地区为例[D]. 长春: 吉林大学, 2020.

    Dong L F. Extracting mineral alteration information from remote sensing images based on genetic algorithm in Qinghai Lalingzaohuo region[D]. Changchun: Jilin University, 2020.

    [5]

    陈三明, 钱建平, 陈宏毅. 桂东南植被覆盖区的抗干扰遥感蚀变信息优化提取与找矿预测[J]. 桂林理工大学学报, 2010, 30(1): 33–40. doi: 10.3969/j.issn.1674-9057.2010.01.005

    Chen S M, Qian J P, Chen H Y. Remote sensing alteration information optimization extractionin vegetation coverage areaand prospects forecasting in southeast Guangxi[J]. Journal of Guilin University of Technology, 2010, 30(1): 33–40. doi: 10.3969/j.issn.1674-9057.2010.01.005

    [6]

    赵芝玲, 王萍, 荆林海, 等. 用ASTER数据提取植被覆盖区遥感铁矿化蚀变信息[J]. 金属矿山, 2016(10): 109–115. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610023.htm

    Zhao Z L, Wang P, Jing L H, et al. Extraction method of iron mineralized alteration information in vegetation covered areas based on remote sensing ASTER data[J]. Metal Mine, 2016(10): 109–115. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201610023.htm

    [7]

    贺婷, 王成楠, 李建国, 等. ASTER遥感数据蚀变异常信息提取研究——以赞比亚15973矿权区铜多金属矿为例[C]//江西遥感. 南昌: 江西省遥感应用协会, 2017(2): 23–28, 34.

    He T, Wang C N, Li J G, et al. Extraction of alteration anomaly information from ASTER remote sensing data: A case study of the 15973 copper polymetallic deposit in Zambia[C]//Jiangxi Remote Sensing. Nanchang: Jiangxi Remote Sensing Application Association, 2017(2): 23–28, 34. (in Chinese)

    [8]

    连琛芹, 姚佛军, 杨建民, 等. 半裸露区遥感蚀变信息提取研究——以甘肃玛曲地区为例[J]. 现代地质, 2019, 33(5): 1079–1085. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905016.htm

    Lian C Q, Yao F J, Yang J M, et al. The extraction of alteration information with remote sensing image of semi-exposed area: A case study of the Maqu area in Gansu[J]. Geoscience, 2019, 33(5): 1079–1085. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201905016.htm

    [9]

    Seifi A, Esmaeily A, Mokhtari Z. A new hybrid method for epithermal gold exploration using multi-sensor satellite data in Sistan and Baluchestan Province (Iran)[J]. Ore Geology Reviews, 2021, 138: 104357. doi: 10.1016/j.oregeorev.2021.104357

    [10]

    Huang X, Zhang L P. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 257–272. doi: 10.1109/TGRS.2012.2202912

    [11]

    Amer R, Kusky T, Ghulam A. Lithological mapping in the central eastern desert of Egypt using ASTER data[J]. Journal of African Earth Sciences, 2010, 56(2/3): 75–82.

    [12]

    Jiang Y T. Research on road extraction of remote sensing image based on convolutional neural network[J]. EURASIP Journal on Image and Video Processing, 2019(1): 31.

    [13]

    荆凤, 陈建平. 矿化蚀变信息的遥感提取方法综述[J]. 遥感信息, 2005, 20(2): 62–65, 57. doi: 10.3969/j.issn.1000-3177.2005.02.016

    Jing F, Chen J P. The review of the alteration information extraction with remote sensing[J]. Remote Sensing Information, 2005, 20(2): 62–65, 57. doi: 10.3969/j.issn.1000-3177.2005.02.016

    [14]

    梁丹迪, 周可法, 王珊珊, 等. 不同空间分辨率高光谱遥感数据对蚀变矿物信息提取的影响[J]. 地质科技情报, 2019, 38(3): 282–289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903031.htm

    Liang D D, Zhou K F, Wang S S, et al. Effects of different spatial resolution hyperspectral remote sensing data on the extraction of alteration minerals information[J]. Geological Science and Technology Information, 2019, 38(3): 282–289. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201903031.htm

    [15]

    Sabins F F. Remote sensing for mineral exploration[J]. Ore Geology Reviews, 1999, 14(3/4): 157–183.

    [16]

    于晓. TM/ETM+遥感影像蚀变异常提取与筛选系统开发[D]. 北京: 中国地质大学, 2015.

    Yu X. TM/ETM+ remote sensing image alteration anomaly extraction and filter system development[D]. Beijing: China University of Geosciences, 2015.

    [17]

    张胜龙, 刘林, 耿海军, 等. 基于Landsat 8 OLI数据甘肃陇南赵家庄地区遥感蚀变信息提取[J]. 铀矿地质, 2020, 36(6): 535–540. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202006007.htm

    Zhang S L, Liu L, Geng H J, et al. Remote sensing alteration extraction based on Landsat 8 OLI data in Zhaojiazhuang area, Longnan, Gansu Province[J]. Uranium Geology, 2020, 36(6): 535–540. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202006007.htm

    [18]

    宋坤, 王恩德, 付建飞, 等. 基于Landsat 8数据的弓长岭矿区遥感蚀变异常信息提取[J]. 金属矿山, 2022, 37(4): 149–157. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202204021.htm

    Song K, Wang E D, Fu J F, et al. Extraction of remote sensing alteration anomaly information based on Landsat 8 data in Gongchangling mining area[J]. Metal Mine, 2022, 37(4): 149–157 https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202204021.htm

    [19]

    陈刚, 陈金群, 王进寿. 基于ETM+的遥感蚀变信息提取研究——以青海省拉陵灶火地区为例[J]. 资源调查与环境, 2014, 35(4): 293–298. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201404009.htm

    Chen G, Chen J Q, Wang J S. Study on remote sensing alteration information extraction based on ETM+ data: Taking Lalingzaohuo area of Qinghai Province as an example[J]. Resources Survey and Environment, 2014, 35(4): 293–298. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201404009.htm

    [20]

    张玉君, 曾朝铭, 陈薇. ETM+(TM)蚀变遥感异常提取方法研究与应用——方法选择和技术流程[J]. 国土资源遥感, 2003, 16(2): 44–49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302011.htm

    Zhang Y J, Zeng Z M, Chen W. The methods for extraction of alteration anomalies from the ETM+(TM) data and their application: Method selection and technological flow chart[J]. Remote Sensing for Land & Resources, 2003, 16(2): 44–49. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200302011.htm

    [21]

    刘建宇, 陈玲, 李伟, 等. 基于ASTER数据韧性剪切带型金矿蚀变信息提取方法优化[J]. 国土资源遥感, 2019, 31(1): 229–236. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901031.htm

    Liu J Y, Chen L, Li W, et al. An improved method for extracting alteration related to the ductile shear zone type gold deposits using ASTER data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 229–236. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201901031.htm

    [22]

    刘磊, 周军, 尹芳, 等. 基于ASTER数据的巴里坤地区蚀变矿物填图及找矿[J]. 遥感技术与应用, 2013, 28(4): 556–561. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304003.htm

    Liu L, Zhou J, Yin F, et al. Alteration mineral mapping and ore prospecting based on ASTER data in Balikun, Xinjing[J]. Remote Sensing Technology and Application, 2013, 28(4): 556–561. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201304003.htm

    [23]

    付翰泽, 刘得磊, 窦海鹏, 等. ASTER数据在萨热克铜矿地区蚀变信息提取中的应用[J]. 矿山测量, 2017, 45(6): 69–72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201706016.htm

    Fu H Z, Liu D L, Dou H P, et al. Application of ASTER in alternation extraction in Sareke copper mine region[J]. Mine Surveying, 2017, 45(6): 69–72. https://www.cnki.com.cn/Article/CJFDTOTAL-KSCL201706016.htm

    [24]

    李星喆. 基于Sentinel-2A卫星数据蚀变信息提取的研究——以北衙金矿为例[D]. 长春: 吉林大学, 2021.

    Li X Z. Research on alteration information extraction based on Sentinel-2A satellite data: Taking the Beiya Gold Mine as an example[D]. Changchun: Jilin University, 2021.

    [25]

    王磊, 杨斌, 李丹, 等. 基于Sentinel-2A的矿化蚀变异常信息提取应用[J]. 西南科技大学学报, 2018, 33(1): 55–61, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201801010.htm

    Wang L, Yang B, Li D, et al. Abnormal information extraction and application of mineralization alteration based on Sentinel-2A[J]. Journal of Southwest University of Science and Technology, 2018, 33(1): 55–61, 74. https://www.cnki.com.cn/Article/CJFDTOTAL-XNGX201801010.htm

    [26]

    孙娅琴. WorldView-3数据处理与蚀变信息提取方法研究——以新疆坡北地区为例[D]. 北京: 中国地质大学, 2017.

    Sun Y Q. Method research of WorldView-3 data on data processing and alteration information extraction: A case study of Pobei district in Xinjiang Province[D]. Beijing: China University of Geosciences, 2017.

    [27]

    牛璐璐. 航空高光谱遥感影像自动拼接技术研究[D]. 长春: 吉林大学, 2016.

    Niu L L. Research on automatic image mosaic techniques of aerial hyperspectral remote sensing images[D]. Changchun: Jilin University, 2016.

    [28]

    付严宇, 杨桄, 关世豪. 航空航天高光谱成像仪研究现状及发展趋势[J]. 红外, 2020, 41(8): 1–8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202008001.htm

    Fu Y Y, Yang G, Guan S H. Research status and development trend of hyperspectral imagers onboard airborne and spaceborne platforms[J]. Infrared, 2020, 41(8): 1–8, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI202008001.htm

    [29]

    Laukamp C, Rodger A, Legras M, et al. Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra[J]. Minerals, 2021, 11(4): 347.

    [30]

    朱骏. 植被干扰区蚀变信息遥感提取方法研究[D]. 杭州: 浙江大学, 2012.

    Zhu J. A study on remote sensing alteration information extraction in vegetation area[D]. Hangzhou: Zhejiang University, 2012.

    [31]

    梁昊, 李程, 李佳奇. 基于Landsat 8遥感影像的矿化信息提取——以内蒙古额济纳为例[J]. 南方国土资源, 2016(11): 30–32, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ201611014.htm

    Liang H, Li C, Li J Q. Extraction of mineralization information based on Landsat 8 remote sensing images[J]. Southern Land and Resources, 2016(11): 30–32, 36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ201611014.htm

    [32]

    吴志春, 叶发旺, 郭福生, 等. 主成分分析技术在遥感蚀变信息提取中的应用研究综述[J]. 地球信息科学学报, 2018, 20(11): 1644–1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201811012.htm

    Wu Z C, Ye F W, Guo F S, et al. A review on application of techniques of principle component analysis on extracting alteration information of remote sensing[J]. Journal of Geo-Information Science, 2018, 20(11): 1644–1656. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201811012.htm

    [33]

    姜天. 辽宁省弓长岭区遥感蚀变信息提取[D]. 长春: 吉林大学, 2019.

    Jiang T. Extraction of alteration information from remote sensing data in the Gongchangling district, Liaoning Province[D]. Changchun: Jilin University, 2019.

    [34]

    高少锋. 江西德兴斑岩型铜多金属矿集区遥感蚀变异常信息提取[D]. 西安: 长安大学, 2017.

    Gao S F. Remote sensing alteration extraction in Dexing porphyry copper deposits area of Jiangxi Province[D]. Xi'an: Chang'an University, 2017.

    [35]

    王磊. 基于Sentinel-2A的矿化蚀变异常信息提取分析与应用[D]. 绵阳: 西南科技大学, 2018.

    Wang L. Extraction and analysis of mineralized alteration anomaly information based on Sentinel-2A[D]. Mianyang: Southwest University of Science and Technology, 2018.

    [36]

    塔娜, 鲍甜甜, 冯一鸣, 等. 湖南长城岭-凤凰山地区遥感蚀变信息提取与成矿预测[J]. 地质找矿论丛, 2021, 36(3): 328–341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202103010.htm

    Ta N, Bao T T, Feng Y M, et al. Remote sensing alteration information extraction from Changchengling-Fenghuangshan area, Hunan Province and the metallogenic prediction[J]. Contributions to Geology and Mineral Resources Research, 2021, 36(3): 328–341. https://www.cnki.com.cn/Article/CJFDTOTAL-DZZK202103010.htm

    [37]

    陈江, 王安建. 利用ASTER热红外遥感数据开展岩石化学成分填图的初步研究[J]. 遥感学报, 2007, 11(4): 601–608. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200704024.htm

    Chen J, Wang A J. The pilot study on petrochemistry components mapping with ASTER thermal infrared remote sensing data[J]. Journal of Remote Sensing, 2007, 11(4): 601–608. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB200704024.htm

    [38]

    吴德文, 张远飞, 朱谷昌. 遥感图像岩石信息提取的最优密度分割方法[J]. 国土资源遥感, 2002, 14(4): 51–54, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204011.htm

    Wu D W, Zhang Y F, Zhu G C. The best density separation method for extracting rock information from remote sensing image[J]. Remote Sensing for Land & Resources, 2002, 14(4): 51–54, 66. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204011.htm

    [39]

    甘甫平, 王润生, 郭小方, 等. 高光谱遥感信息提取与地质应用前景——以青藏高原为试验区[J]. 国土资源遥感, 2000, 12(3): 38–44. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200003005.htm

    Gan F P, Wang R S, Guo X F, et al. Extraction for rock and ore deposits information and prospects for application of geology using hypersperctral remote sensing: Tibet Plateau as test sample[J]. Remote Sensing for Land & Resources, 2000, 12(3): 38–44. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200003005.htm

    [40]

    甘甫平, 王润生, 杨苏明. 西藏Hyperion数据蚀变矿物识别初步研究[J]. 国土资源遥感, 2002, 14(4): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204009.htm

    Gan F P, Wang R S, Yang S M. Studying on the alteration minerals identification using hyperion data[J]. Remote Sensing for Land & Resources, 2002, 14(4): 44–50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200204009.htm

    [41]

    龙明周, 李伟, 岳小军. 广西罗维铅锌银多金属矿区围岩蚀变与矿化关系研究——基于SVM遥感矿化蚀变信息提取方法[J]. 矿产与地质, 2021, 35(3): 580–585, 602. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202103029.htm

    Long M Z, Li W, Yue X J. Study on the relationship between surrounding rock alteration and mineralization of Luowei Pb-Zn-Ag polymetallic mining area: Extraction method of mineralization alteration information based on SVM remote sensing[J]. Mineral Resources and Geology, 2021, 35(3): 580–585, 602. https://www.cnki.com.cn/Article/CJFDTOTAL-KCYD202103029.htm

    [42]

    王东. 基于粒子群智能的遥感找矿方法研究[D]. 长沙: 中南大学, 2008.

    Wang D. Research of remote sensing ore-finding method based on particle swarm intelligence[D]. Changsha: Central South University, 2008.

    [43]

    陈尧东. 基于支持向量机的遥感矿化蚀变信息提取方法研究[D]. 长沙: 中南大学, 2007.

    Chen Y D. Research on an approach of extracting remote sensing altered rock's information by support vector machine[D]. Changsha: Central South University, 2007.

    [44]

    邓捷, 白亚辉, 吕凤军. 比值法遥感蚀变信息提取及阈值确定[J]. 地质学刊, 2017, 41(3): 504–510. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703020.htm

    Deng J, Bai Y H, Lyu F J. Remote sensing alteration information extraction and threshold determination by band ratio method[J]. Journal of Geology, 2017, 41(3): 504–510. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703020.htm

    [45]

    何凯涛, 甘甫平, 王永江. 高空间分辨率卫星遥感地质微构造及蚀变信息识别[J]. 国土资源遥感, 2009, 21(1): 97–99. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200901021.htm

    He K T, Gan F P, Wang Y J. The extraction of geological micro-structure and altered rock information with high-resolution satellite images in a small range[J]. Remote Sensing for Land & Resources, 2009, 21(1): 97–99. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG200901021.htm

    [46]

    李玉琴, 苏程, 王习之, 等. 菲律宾吕宋岛斑岩铜金矿遥感找矿模型[J]. 遥感技术与应用, 2017, 32(6): 1151–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201706020.htm

    Li Y Q, Su C, Wang X Z, et al. Extraction of alteration information and establishment of prospecting model for porphyry copper-gold deposits in Luzon[J]. Remote Sensing Technology and Application, 2017, 32(6): 1151–1160. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201706020.htm

    [47]

    韩琦. 湖南花垣铅锌矿遥感信息提取与成矿预测研究[D]. 北京: 中国地质大学, 2017.

    Han Q. The study of the remote sensing technology on information extraction and prognosis in Huayuan lead-zinc deposits, Hunan[D]. Beijing: China University of Geosciences, 2017.

    [48]

    彭光雄, 王明艳, 何皎. 基于局部可变窗口的Crosta蚀变信息提取技术——以莫海拉亨为例[J]. 大地构造与成矿学, 2013, 37(3): 553–560. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303021.htm

    Peng G X, Wang M Y, He J. An improved Crosta technique based on local variable window for alteration information extraction: A case study of the Mohailaheng area[J]. Geotectonica et Metallogenia, 2013, 37(3): 553–560. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201303021.htm

    [49]

    宿虎, 陈美媛, 张丹青, 等. 高植被覆盖区遥感矿化蚀变信息提取方法研究——以甘肃省西河县大桥石峡地区为例[J]. 西北地质, 2020, 53(1): 146–161. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202001014.htm

    Su H, Chen M Y, Zhang D Q, et al. Study on the method of extracting information of mineralization alteration by using remote sensing in high vegetation coverage area: Taking Daqiao-Shixia area of Xihe County, Gansu Province for example[J]. Northwestern Geology, 2020, 53(1): 146–161. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202001014.htm

    [50]

    赵小星, 钱建平, 覃顺桥, 等. 云南江城大团包铜矿及外围高植被区遥感找矿预测[J]. 遥感技术与应用, 2013, 28(5): 879–889. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201305021.htm

    Zhao X X, Qian J P, Qin S Q, et al. Remote sensing prospecting in high vegetation coverage area: A case study of the in Datuanbao copper ore deposit and its environs, Jiangcheng, Yunnan Province[J]. Remote Sensing Technology and Application, 2013, 28(5): 879–889. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201305021.htm

    [51]

    路轩轩. 植被覆盖区的遥感蚀变信息提取研究及应用[D]. 长沙: 中南大学, 2014.

    Lu X X. The research and application of remote sensingalteration information extraction of vegetation coverage area[D]. Changsha: Central South University, 2014.

    [52]

    赵元洪, 张福祥, 陈南峰. 波段比值的主成份复合在热液蚀变信息提取中的应用[J]. 国土资源遥感, 1991, 3(3): 12–17. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm

    Zhao Y H, Zhang F X, Chen N F. The application of principal component integration of band ratios to extracting hydrothermal alteration information[J]. Remote Sensing for Land & Resources, 1991, 3(3): 12–17. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG199103002.htm

    [53]

    姚佛军, 杨建民, 张玉君, 等. 光谱角制图法与谱线平行分类法若干问题的探讨——以ETM数据为例[J]. 遥感信息, 2009, 24(1): 20–22, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200901007.htm

    Yao F J, Yang J M, Zhang Y J, et al. The analysis about SAM and parallel spectra classification[J]. Remote Sensing Information, 2009, 24(1): 20–22, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX200901007.htm

    [54]

    张玉君, 曾朝铭, 姚佛军. 利用光谱角填图(SAM)优化多光谱遥感异常[J]. 矿物学报, 2015, 35(S1): 985. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1712.htm

    Zhang Y J, Zeng Z M, Yao F J. Using spectral angle mapping (SAM) to optimize multi-spectral remote sensing anomalies[J]. Acta Mineralogica Sinica, 2015, 35(S1): 985. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2015S1712.htm

    [55]

    张洁. 玉龙斑岩铜矿带遥感蚀变信息提取技术方法研究[D]. 成都: 成都理工大学, 2017.

    Zhang J. Study on extraction method of remote sensing alteration information in Yulong porphyry copper belt[D]. Chengdu: Chengdu University of Technology, 2017.

    [56]

    田青林, 潘蔚, 李瑶, 等. 基于小波包变换和权重光谱角制图的岩心高光谱蚀变信息提取[J]. 国土资源遥感, 2019, 31(4): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201904009.htm

    Tian Q L, Pan W, Li Y, et al. Extraction of alteration information from hyperspectral core imaging based on wavelet packet transform and weight spectral angle mapper[J]. Remote Sensing for Land & Resources, 2019, 31(4): 41–46. https://www.cnki.com.cn/Article/CJFDTOTAL-GTYG201904009.htm

    [57]

    刘汉湖. 岩矿波谱数据分析与信息提取方法研究[D]. 成都: 成都理工大学, 2008.

    Liu H H. Research on the analysis of the spectrum data and extraction methods of minerals[D]. Chengdu: Chengdu University of Technology, 2008.

    [58]

    何政伟, 胡滨, 赵银兵, 等. 基于图像自身特征的绢云母化蚀变信息提取方法: 中国, 201510496890.4[P]. 2015-12-02.

    He Z W, Hu B, Zhao Y B, et al. Extraction method of sericitization alteration information based on image characteristics: CN, 201510496890.4[P]. 2015-12-02. (in Chinese)

    [59]

    林娜, 杨武年, 刘汉湖. 基于高光谱遥感的岩矿端元识别及信息提取研究[J]. 遥感信息, 2011, 26(5): 114–117, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201105023.htm

    Lin N, Yang W N, Liu H H. Mineral end member identification and information extraction based on hyperspectral remote sensing[J]. Remote Sensing Information, 2011, 26(5): 114–117, 99. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXX201105023.htm

    [60]

    Vapnik V, Vashist A. A new learning paradigm: Learning using privileged information[J]. Neural Networks, 2009, 22(5/6): 544–557.

    [61]

    薛云, 戴塔根, 邓会娟, 等. 基于蚁群算法的羟基蚀变信息的提取——以青海省同仁县阿哇地区为例[J]. 地质通报, 2008, 27(5): 657–661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200805011.htm

    Xue Y, Dai T G, Deng H J, et al. Extraction of hydroxyl alteration information based on the ant colony algorithm: A case study of the Awa area, Tongren County, Qinghai, China[J]. Geological Bulletin of China, 2008, 27(5): 657–661. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200805011.htm

    [62]

    薛云. 基于蚁群算法和支持向量机的矿化蚀变信息提取研究[D]. 长沙: 中南大学, 2008.

    Xue Y. Extraction of mineral alteration information based on ant colony optimization algorithm and support vector machine[D]. Changsha: Central South University, 2008.

    [63]

    陈江, 王安建, 黄妙芬. 多种类植被覆盖地区ASTER影像岩石、土壤信息提取方法研究[J]. 地球学报, 2007, 28(1): 86–91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200701012.htm

    Chen J, Wang A J, Huang M F. The aster imaging rock and soil information extraction method in multiple vegetations covered areas[J]. Acta Geoscientica Sinica, 2007, 28(1): 86–91. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB200701012.htm

    [64]

    程潭武, 陈建国, 徐梦扬. 混合像元分解法在植被覆盖区矿化蚀变信息提取中的应用——以江西大浩山金矿区为例[J]. 地质学刊, 2017, 41(3): 492–498. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703018.htm

    Cheng T W, Chen J G, Xu M Y. Application of mixed pixel decomposition in mineralization and alteration information extraction in vegetation-covered area: A case study of the Dahaoshan gold deposit in Jiangxi Province[J]. Journal of Geology, 2017, 41(3): 492–498. https://www.cnki.com.cn/Article/CJFDTOTAL-JSDZ201703018.htm

    [65]

    熊勤学, 胡佩敏. 基于HJ卫星混合像元分解法的湖北省四湖地区夏收作物种植信息提取[J]. 长江流域资源与环境, 2014, 23(6): 869–874. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201406018.htm

    Xiong Q X, Hu P M. Extracting planting information of summer harvesting crops in Shihu region from HJ CCD data using unmixing algorithm data[J]. Resources and Environment in the Yangtze Basin, 2014, 23(6): 869–874. https://www.cnki.com.cn/Article/CJFDTOTAL-CJLY201406018.htm

  • 加载中

(3)

(1)

计量
  • 文章访问数:  1310
  • PDF下载数:  40
  • 施引文献:  0
出版历程
收稿日期:  2022-03-30
修回日期:  2022-05-09
刊出日期:  2023-08-25

目录