基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究

王金焕, 许承武, 乔宏亮, 唐露, 刘天勇, 曲端刚, 徐坚, 孟英杰, 李乙鸿. 基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究[J]. 地质与资源, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007
引用本文: 王金焕, 许承武, 乔宏亮, 唐露, 刘天勇, 曲端刚, 徐坚, 孟英杰, 李乙鸿. 基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究[J]. 地质与资源, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007
WANG Jin-huan, XU Cheng-wu, QIAO Hong-liang, TANG Lu, LIU Tian-yong, QU Duan-gang, XU Jian, MENG Ying-jie, LI Yi-hong. Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm[J]. Geology and Resources, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007
Citation: WANG Jin-huan, XU Cheng-wu, QIAO Hong-liang, TANG Lu, LIU Tian-yong, QU Duan-gang, XU Jian, MENG Ying-jie, LI Yi-hong. Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm[J]. Geology and Resources, 2025, 34(1): 61-69. doi: 10.13686/j.cnki.dzyzy.2025.01.007

基于深度学习算法的致密储层薄片图像颗粒、孔隙智能表征方法研究

  • 基金项目:
    国家自然基金面上项目"原位加热下页岩储层孔-裂隙动态演化机制研究"(42172163)
详细信息
    作者简介: 王金焕(1998—), 男, 硕士, 从事薄片鉴定与分析、深度学习图像分割研究, 通信地址黑龙江省大庆市发展路199号, E-mail//1311186348@qq.com
    通讯作者: 许承武(1978—), 男, 博士, 教授, 从事非常规油气地质学、构造沉积演化形成研究, 通信地址黑龙江省大庆市发展路199号, E-mail//2868915@qq.com
  • 中图分类号: P618.13

Intelligent characterization of particles and pores in thin slice images of tight reservoirs based on deep learning algorithm

More Information
  • 在致密砂岩储层薄片图像分析中, 针对传统方法的准确率不足和任务繁重等问题, 采用结合了Transformer和卷积神经网络的TransUnet及Unet神经网络, 用于颗粒、孔隙特征的高效表征.Unet、TransUnet在颗粒特征表征方面表现优异, 实验数据显示Unet的交并比达到79.6%, 召回率为87.3%, 精确率为89.7%, TransUnet的交并比达到71.3%, 召回率为86.1%, 精确率为82.5%.实验图像显示, 在局部像素差异较大的情况, TransUnet优于传统方法, 证明其在紧密复杂颗粒分割的有效性.Unet在孔隙特征方面也表现出高效表征效果, 其交并比、召回率和精确率分别为82.4%、84.3%和95.3%.实验还表明, 虽然面孔率影响交并比, 但模型整体仍保持高效率和准确性.这些结果充分说明深度学习方法, 在复杂致密储层薄片图像的精确分割中效果显著, 为非常规致密储层研究提供新思路, 展现了其在地质学领域应用的巨大潜力.

  • 加载中
  • 图 1  形状变换

    Figure 1. 

    图 2  非形状变换

    Figure 2. 

    图 3  模型结构图

    Figure 3. 

    图 4  颗粒识别

    Figure 4. 

    图 5  孔隙识别

    Figure 5. 

    图 6  部分不同面孔率致密砂岩薄片颗粒、孔隙识别

    Figure 6. 

    图 7  交并比与孔隙度关系图

    Figure 7. 

    图 8  大范围薄片图像拼接

    Figure 8. 

    表 1  实验环境参数表

    Table 1.  Experimental environment parameters

    操作系统 Ubuntu 22.04
    内存 10核32 GB
    显存 1卡* 24 GB
    硬盘 50 GB
    下载: 导出CSV

    表 2  颗粒、孔隙识别模型指标结果

    Table 2.  Model index results of particle and pore identification

    指标 颗粒识别 孔隙识别
    Unet TransUnet Dice_Loss_Unet CE_Loss_Unet
    MIoU 79.6% 71.3% 77.4% 82.4%
    Recall 87.3% 86.1% 77.3% 84.3%
    Precision 89.7% 82.5% 95.7% 95.3%
    F1-score 88.4% 84.0% 85.2% 89.3%
    注:Dice_Loss_Unet是以Dice为损失函数的Unet;CE_Loss_Unet是以交叉熵为损失函数的Unet.
    下载: 导出CSV

    表 3  模型识别与人工识别粒度分析参数结果

    Table 3.  Particle size parameter results by model recognition and manual recognition analysis

    识别方式 平均粒径(Mz)/φ 标准偏差(Sd)/φ 偏度(Sk) 峰度(Kg)
    模型识别分析 2.70 1.26 3.539 21.7
    人工识别分析 2.61 1.08 1.642 10.2
    下载: 导出CSV
  • [1]

    苏程, 朱孔阳. 岩石薄片图像智能分析研究进展[J]. 矿物岩石地球化学通报, 2023, 42(1): 13-25.

    Su C, Zhu K Y. Research progress of intelligent image analysis for petrographic thin section images[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2023, 42(1): 13-25.

    [2]

    陈宇豪. 简述薄片鉴定在岩石特征分析中的应用[J]. 新疆有色金属, 2022, 45(4): 23-24.

    Chen Y H. The application of thin section identification in rock characteristic analysis[J]. Xinjiang Nonferrous Metals, 2022, 45(4): 23-24. (in Chinese)

    [3]

    Tang D G, Milliken K L, Spikes K T. Machine learning for point counting and segmentation of arenite in thin section[J]. Marine and Petroleum Geology, 2020, 120: 104518. doi: 10.1016/j.marpetgeo.2020.104518

    [4]

    Das R, Mondal A, Chakraborty T, et al. Deep neural networks for automatic grain-matrix segmentation in plane and cross-polarized sandstone photomicrographs[J]. Applied Intelligence, 2022, 52(3): 2332-2345. doi: 10.1007/s10489-021-02530-z

    [5]

    姜枫, 顾庆, 郝慧珍, 等. 基于语义特征提取的砂岩薄片图像颗粒分割方法[J]. 中国科学: 信息科学, 2020, 50(1): 109-127.

    Jiang F, Gu Q, Hao H Z, et al. Grain segmentation of sandstone thin section images based on semantic feature extraction[J]. Scientia Sinica Informationis, 2020, 50(1): 109-127.

    [6]

    张利军, 鲁文豪, 张建东, 等. 基于深度学习的镜下岩石、矿物薄片识别[J]. 地学前缘, 2024, 31(3): 498-510.

    Zhang L J, Lu W H, Zhang J D, et al. Rock and mineral thin section identification based on deep learning[J]. Earth Science Frontiers, 2024, 31(3): 498-510.

    [7]

    Saxena N, Day-Stirrat R J, Hows A, et al. Application of deep learning for semantic segmentation of sandstone thin sections[J]. Computers & Geosciences, 2021, 152: 104778.

    [8]

    徐圣嘉, 苏程, 朱孔阳, 等. 基于深度学习的岩石薄片矿物自动识别方法[J]. 浙江大学学报(理学版), 2022, 49(6): 743-752.

    Xu S J, Su C, Zhu K Y, et al. Automatic identification of mineral in petrographic thin sections based on images using a deep learning method[J]. Journal of Zhejiang University (Science Edition), 2022, 49(6): 743-752.

    [9]

    Koh E J Y, Amini E, McLachlan G J, et al. Utilising convolutional neural networks to perform fast automated modal mineralogy analysis for thin-section optical microscopy[J]. Minerals Engineering, 2021, 173: 107230.

    [10]

    陈宗铭, 唐玄, 梁国栋, 等. 基于深度学习的页岩扫描电镜图像有机质孔隙识别与比较[J]. 地学前缘, 2023, 30(3): 208-220.

    Chen Z M, Tang X, Liang G D, et al. Identification and comparison of organic matter-hosted pores in shale by SEM image analysis: A deep learning-based approach[J]. Earth Science Frontiers, 2023, 30(3): 208-220.

    [11]

    Liu H, Ren Y L, Li X, et al. Rock thin-section analysis and identification based on artificial intelligent technique[J]. Petroleum Science, 2022, 19(4): 1605-1621.

    [12]

    Zou C N, Zhu R K, Liu K Y, et al. Tight gas sandstone reservoirs in China: Characteristics and recognition criteria[J]. Journal of Petroleum Science and Engineering, 2012, 88-89: 82-91.

    [13]

    林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4): 25-30, 64.

    Lin S H, Zou C N, Yuan X J, et al. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 2011, 23(4): 25-30, 64.

    [14]

    贾承造, 邹才能, 李建忠, 等. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 2012, 33(3): 343-350.

    Jia C Z, Zou C N, Li J Z, et al. Assessment criteria, main types, basic features and resource prospects of the tight oil in China[J]. Acta Petrolei Sinica, 2012, 33(3): 343-350.

    [15]

    Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C] //Proceedings of the 18th International Conference on Medical Image Computing and Computer- Assisted Intervention. Munich: Springer, 2015: 234-241.

    [16]

    王媛媛, 董芳, 尚丽娜, 等. 基于改进TransUnet网络的血管内超声图像边界提取方法研究[J]. 中国生物医学工程学报, 2023, 42(1): 41-50.

    Wang Y Y, Dong F, Shang L N, et al. Research on the IVUS border detection method based on improved TransUnet[J]. Chinese Journal of Biomedical Engineering, 2023, 42(1): 41-50.

    [17]

    Shorten C, Khoshgoftaar T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60.

    [18]

    Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc. 2017: 6000-6010.

    [19]

    王金祥, 付立军, 尹鹏滨, 等. 基于CNN与Transformer的医学图像分割[J]. 计算机系统应用, 2023, 32(4): 141-148.

    Wang J X, Fu L J, Yin P B, et al. Medical image segmentation based on CNN and transformer[J]. Computer Systems & Applications, 2023, 32(4): 141-148.

    [20]

    于营, 王春平, 付强, 等. 语义分割评价指标和评价方法综述[J]. 计算机工程与应用, 2023, 59(6): 57-69.

    Yu Y, Wang C P, Fu Q, et al. Survey of evaluation metrics and methods for semantic segmentation[J]. Computer Engineering and Applications, 2023, 59(6): 57-69.

    [21]

    王茂桢, 王冰洁, 郝轶伟, 等. 辽中凹陷南洼中深层储层孔隙度分布特征及影响因素分析[J]. 长江大学学报(自然科学版), 2023, 20(3): 23-32.

    Wang M Z, Wang B J, Hao Y W, et al. Analysis of porosity distribution characteristics and influencing factors of middle-deep reservoirs in the southern subsag of Liaozhong Sag[J]. Journal of Yangtze University (Natural Science Edition), 2023, 20(3): 23-32.

    [22]

    刘毅, 林承焰, 林建力, 等. 东海盆地西湖凹陷深层低渗-致密砂岩孔隙结构特征及成因分析[J]. 天然气地球科学, 2024, 35(3): 405-422.

    Liu Y, Lin C Y, Lin J L, et al. Pore structure characteristics and genesis analysis of deep tight sandstone in Xihu Depression, East China Sea Basin[J]. Natural Gas Geoscience, 2024, 35(3): 405-422.

    [23]

    龚建涛, 白艳军. 致密砂岩储层微观孔隙结构表征研究——以鄂尔多斯盆地东南部地区延长组为例[J]. 地质与资源, 2024, 33(5): 662-670. DOI: 10.13686/j.cnki.dzyzy.2024.05.006shu

    Gong J T, Bai Y J. Characterization of microscopic pore structure in tight sandstone reservoir: A case study of Yanchang Formation in southeastern Ordos Basin[J]. Geology and Resources, 2024, 33(5): 662-670. DOI: 10.13686/j.cnki.dzyzy.2024.05.006

    [24]

    方梦阳, 何建宁, 王万虎, 等. 一种基于MATLAB的碎屑岩粒度分析方法[J]. 岩石矿物学杂志, 2020, 39(4): 504-510.

    Fang M Y, He J N, Wang W H, et al. A particle size analysis method for clastic rock based on MATLAB[J]. Acta Petrologica et Mineralogica, 2020, 39(4): 504-510.

  • 加载中

(8)

(3)

计量
  • 文章访问数:  68
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2023-11-13
修回日期:  2023-11-29
刊出日期:  2025-02-25

目录