-
摘要:
随着矿物浮选研究的深入发展以及计算机性能的不断提升,分子动力学模拟已逐渐成为研究矿物浮选的重要手段。经典分子动力学模拟可以从分子或原子层面展示矿物界面的相互作用,从微观角度研究浮选现象,深入分析矿物表面及界面相互作用,并为浮选药剂筛选和药剂分子设计提供理论依据。其在矿物浮选研究中的应用,主要包括在矿物表面结构、矿物与药剂相互作用,以及药剂筛选和药剂分子设计研究中的应用。
Abstract:With the increasing sophistication in flotation researches and the constant development in computer technology, molecular dynamics simulation has become an important tool for mechanism exploration of flotation. The classical molecular dynamics simulation can be used to reveal the interaction at mineral interface at molecular and atomic level. The phenomenon at mineral surface and interface could be illustrated thoroughly. As a result, deep studies in mineral flotation could be realized. Moreover, classical molecular dynamics simulation can provide theoretical bases for the selection and the molecular design of the flotation reagents. The main fields where molecular dynamics simulation plays its role include: the simulations in surface structure of the mineral, the interaction between mineral and flotation reagent, as well as the screening and the molecular design of the flotation reagents.
-
Key words:
- classical molecular dynamic simulation /
- flotation /
- minerals /
- reagents /
- interaction
-
图 1 理论方法与时间、空间尺度对应图[9]
Figure 1.
图 2 分子动力学的基本思想[9]
Figure 2.
图 3 分子力场的发展和分类[9]
Figure 3.
-
[1] 江建军, 缪灵, 梁培, 等.计算材料学-设计实践方法[M].北京:高等教育出版社, 2010.
[2] Daan Frenkel, Berend Smit, Mark A. Ratner. Understanding molecular simulation:from algorithms to applications[J]. Physics Today, 1997(7):66. http://dl.acm.org/citation.cfm?id=547952
[3] B. J. Alder, T. E. Wainwright. Phase transition for a hard sphere system[J]. The Journal of Chemical Physics, 1957, 27(5):1208-1209. doi: 10.1063/1.1743957
[4] Jacob D. Durrant, J. Andrew Mc Cammon. Molecular dynamics simulations and drug discovery[J]. BMC Biology, 2011, 9(1):71. doi: 10.1186/1741-7007-9-71
[5] Tao Feng, Mingming Li, Jingjie Zhou, et al. Application of molecular dynamics simulation in food carbohydrate research:a review[J]. Innovative Food Science & Emerging Technologies, 2015, 31:1-13. http://www.sciencedirect.com/science/article/pii/S1466856415001253
[6] Martin Karplus, J. Andrew Mc Cammon. Molecular dynamics simulations of biomolecules[J]. Nature Structural Biology, 2002, 9(9):646-652. doi: 10.1038/nsb0902-646
[7] Yuxiu Li, Jinliang Xu, Dongqing Li. Molecular dynamics simulation of nanoscale liquid flows[J]. Microfluidics and Nanofluidics, 2010, 9(6):1011-1031. doi: 10.1007/s10404-010-0612-5
[8] Erik Lindahl, Mark S. P. Sansom. Membrane proteins:molecular dynamics simulations[J]. Current Opinion in Structural Biology, 2008, 18(4):425-431. doi: 10.1016/j.sbi.2008.02.003
[9] 贾二广. In-Sn, Ga-Sn和Ge15Te85熔体结构的研究[D]. 合肥: 中国科学院合肥物质科学研究院, 2007.
http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1631857 [10] 单斌, 陈征征, 陈蓉.材料学的纳米尺度计算模拟:从基本原理到算法实现[M].武汉:华中科技大学出版社, 2015.
[11] 李琼光, 聂春红, 张红梅, 等.分子模拟在分子筛的结构优化及催化领域的研究[J].化学工程师, 2017, 31(3):51-55.
[12] Martin J. Field. A practical introduction to the simulation of molecular systems:2nd edition[M]. Cambridge:Cambridge University Press, 2007.
[13] 陈翔, 侯廷政, 彭翃杰, 等.第一性原理计算在锂硫电池中的应用进展评述[J].储能科学与技术, 2017, 6(3):500-521. doi: 10.12028/j.issn.2095-4239.2017.0031
[14] 蓝建慧, 卢贵武, 黄乔松, 等.从头计算分子动力学方法及其应用[J].石油大学学报(自然科学版), 2005, 29(4):143-146. http://www.cnki.com.cn/Article/CJFDTotal-SYDX200504033.htm
[15] 胡岳华, 王淀佐.现代浮选化学研究进展与展望[J].中国科学基金, 2001(2):78-83. http://mall.cnki.net/magazine/Article/ZKJJ200102008.htm
[16] 崔守鑫, 胡海泉, 肖效光, 等.分子动力学模拟基本原理和主要技术[J].聊城大学学报(自然科学版), 2005, 18(1):30-34. http://www.cqvip.com/QK/91577X/200601/21533652.html
[17] 申海兰, 赵靖松.分子动力学模拟方法概述[J].装备制造技术, 2007(10):29-30, 34. doi: 10.3969/j.issn.1672-545X.2007.10.012
[18] 杨频, 张士国.分子力学的基本原理[J].大学化学, 1990, 5(4):9-13. doi: 10.3866/PKU.DXHX19900402
[19] 周晓平, 田壮壮, 忽晓伟.分子动力学模拟方法概述[J].硅谷, 2012, (23):40-41. doi: 10.3969/j.issn.1671-7597.2012.23.050
[20] Binder Kurt, Horbach Jürgen, Kob Walter, et al. Molecular dynamics simulations[J]. Journal of Physics:Condensed Matter, 2004, 16(5):S429. doi: 10.1088/0953-8984/16/5/006
[21] Hans C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4):2384-2393. doi: 10.1063/1.439486
[22] 高加力.新一代高精度生物大分子力场[J].中国科学基金, 2018(1):103-106. http://www.nsfc.gov.cn/nsfc/cen/bzgh_135/11.html
[23] Yunling Liu, Lan Tao, Jianjun Lu, et al. A novel force field parameter optimization method based on LSSVR for ECEPP[J]. FEBS Letters, 2011, 585(6):888-892. doi: 10.1016/j.febslet.2011.02.019
[24] 周晓平, 田壮壮, 薛迪杰.力场在分子动力学模拟中的应用[J].科学导报, 2016(9):280-281. http://www.doc88.com/p-9292322293411.html
[25] Nevena Todorova, F. Sue Legge, Herbert Treutlein, et al. Systematic comparison of empirical forcefields for molecular dynamic simulation of insulin[J]. The Journal of Physical Chemistry B, 2008, 112(35):11137-11146. doi: 10.1021/jp076825d
[26] George A. Khoury, Jeff P. Thompson, James Smadbeck, et al. Forcefield_PTM:Ab initio charge and AMBER forcefield parameters for frequently occurring post-translational modifications[J]. Journal of Chemical Theory and Computation, 2013, 9(12):5653-5674. doi: 10.1021/ct400556v
[27] Michael F. Crowley, Mark J. Williamson, Ross C. Walker. CHAMBER:Comprehensive support for CHARMM force fields within the AMBER software[J]. International Journal of Quantum Chemistry, 2009, 109(15):3767-3772. doi: 10.1002/qua.v109:15
[28] Norman L. Allinger, Young H. Yuh, Jenn Huei Lii. Molecular mechanics. the MM3 force field for hydrocarbons. 1[J]. Journal of the American Chemical Society, 1989, 111(23):8551-8566. doi: 10.1021/ja00205a001
[29] Jurgen Lange, Fernando Gomes de Souza junior, Marcio Nele, et al. Molecular dynamic simulation of oxaliplatin diffusion in poly(lactic acid-co-glycolic acid). Part A:parameterization and validation of the force field CVFF[J]. Macromolecular Theory and Simulations, 2016, 25(1):45-62. doi: 10.1002/mats.v25.1
[30] A. Verma, S. M. Gopal, A. Schug, et al. All atom protein folding with free-energy forcefields[J]. Progress in Molecular Biology and Translational Sciences, 2008, 83:181-253. doi: 10.1016/S0079-6603(08)00605-3
[31] Huai Sun, Zhao Jin, Chunwei Yang, et al. COMPASS Ⅱ:extended coverage for polymer and drug-like molecule databases[J]. Journal of Molecular Modeling, 2016, 22(2):47. doi: 10.1007/s00894-016-2909-0
[32] Peter James Dyer. Molecular modeling of aqueous solutions: the effects of molecular polarization on classical forcefield development[D]. Ann Arbor: Vanderbilt University, 2008.
[33] Liaoran Cao, Chunyu Zhang, Dinglin Zhang, et al. Recent developments in using molecular dynamics simulation techniques to study biomolecules[J]. Wuli huaxue xuebao, 2017, 33(7):1354-1365.
[34] 佟志芳, 肖成, 魏战龙.分子动力学模拟及其在冶金炉渣中的应用研究[J].有色金属科学与工程, 2016, 7(3):15-20. http://www.cqvip.com/QK/92984A/201603/669300926.html
[35] 陈正隆, 徐为人, 汤立达.分子模拟的理论与实践[M].北京:化学工业出版社, 2007.
[36] Satoru G. Itoh, Hisashi Okumura, Yuko Okamoto. Generalized-ensemble algorithms for molecular dynamics simulations[J]. Molecular Simulation, 2007, 33(1-2):47-56. doi: 10.1080/08927020601096812
[37] A. M. Stoneham, J. H. Harding. Computer simulation of interfaces:what do we need to know?[J]. Acta Materialia, 1998, 46(7):2255-2261. doi: 10.1016/S1359-6454(98)80006-2
[38] 罗思岗, 王福良.分子力学在研究浮选药剂与矿物表面作用中的应用[J].矿冶, 2009, 18(1):1-4. https://www.wenkuxiazai.com/doc/55c4aa7302768e9951e738cf.html
[39] 闵凡飞, 陈军, 彭陈亮.煤泥水中微细高岭石/蒙脱石颗粒表面水化分子动力学模拟研究[J].煤炭学报, 2018, 43(1):242-249. http://www.cnki.com.cn/Article/CJFDTotal-MTXB201412028.htm
[40] 徐龙华, 田佳, 董发勤, 等.油酸钠浮选锂辉石的表面晶体化学及各向异性[J].中国有色金属学报, 2016, 26(10):2214-2221. https://www.wenkuxiazai.com/doc/13f03231b90d6c85ec3ac6e7-2.html
[41] Hendrik Heinz, Hilmar Koerner, Kelly L. Anderson, et al. Force field for mica-type silicates and dynamics of octadecylammonium chains grafted to montmorillonite[J]. Chemistry of Materials, 2005, 17(23):5658-5669. doi: 10.1021/cm0509328
[42] Zeinab Naderi Khorshid, Xiaoli Tan, Qi Liu, et al. Influence of structural Al and Si vacancies on the interaction of kaolinite basal surfaces with alkali cations:a molecular dynamics study[J]. Computational Materials Science, 2017, 140:267-274. doi: 10.1016/j.commatsci.2017.09.004
[43] Kaustubh Shrimali, Jiaqi Jin, Behzad Vaziri Hassas, et al. The surface state of hematite and its wetting characteristics[J]. Journal of Colloid and Interface Science, 2016, 477:16-24. doi: 10.1016/j.jcis.2016.05.030
[44] Dimitrios Argyris, David R. Cole, Alberto Striolo. Dynamic behavior of interfacial water at the silica surface[J]. The Journal of Physical Chemistry C, 2009, 113(45):19591-19600. doi: 10.1021/jp906150n
[45] 刘安, 樊民强.水相环境中十二胺在石英及磁铁矿表面吸附的分子动力学模拟[J].中国有色金属学报, 2015, 25(8):2226-2235. http://www.ysxbcn.com/down/down_2056513.html
[46] 陈智杰, 高惠民, 任子杰, 等.柠檬酸对蓝晶石浮选行为的影响研究[J].中国矿业, 2016, 25(7):125-129. http://www.cqvip.com/QK/92932X/201508/665746136.html
[47] 刘建东, 王振, 刘润清, 等.捕收剂CSU-Y在钼酸钙表面的吸附机理研究[J].矿冶工程, 2015, 35(5):42-45. http://industry.wanfangdata.com.cn/hk/Magazine?magazineId=kygc&yearIssue=2015_5
[48] Lixia Li, Haiqing Hao, Zhitao Yuan, et al. Molecular dynamics simulation of siderite-hematite-quartz flotation with sodium oleate[J]. Applied Surface Science, 2017, 419:557-563. doi: 10.1016/j.apsusc.2017.05.069
[49] Haiqing Hao, Lixia Li, Zhitao Yuan, et al. Molecular arrangement of starch, Ca2+ and oleate ions in the siderite-hematite-quartz flotation system[J]. Journal of Molecular Liquids, 2018, 254:349-356. doi: 10.1016/j.molliq.2018.01.117
[50] Beena Rai, P. Sathish, Jyotsna Tanwar, et al. A molecular dynamics study of the interaction of oleate and dodecylammonium chloride surfactants with complex aluminosilicate minerals[J]. Journal of Colloid and Interface Science, 2011, 362(2):510-516. doi: 10.1016/j.jcis.2011.06.069
[51] Hao Du, J. D. Miller. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces[J]. International Journal of Mineral Processing, 2007, 84(1):172-184. http://www.sciencedirect.com/science/article/pii/S0301751606002171
[52] Kaustubh Shrimali, Xihui Yin, Xuming Wang, et al. Fundamental issues on the influence of starch in amine adsorption by quartz[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 522:642-651. doi: 10.1016/j.colsurfa.2017.03.031
[53] 张行荣, 刘龙利, 吴桂叶, 等.浮选药剂分子结构设计原理概述[J].矿冶, 2013, 22(3):25-29. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ky201303006
[54] 吴桂叶, 刘龙利, 张行荣, 等.计算机辅助研究黄铜矿抑制剂的分子结构特征[J].有色金属(选矿部分), 2013, (S1):268-271, 274. http://www.cqvip.com/QK/93597X/2013B12/48080144.html
[55] 郭丽娜, 李志红, 朱张磊, 等.阳离子捕收剂对高岭石的捕收性能及动力学模拟[J].中国矿业, 2017, 26(5):112-116, 121. http://cdmd.cnki.com.cn/Article/CDMD-10056-2010090522.htm
[56] 刘臻, 孙泽, 于建国.醇胺药剂与石英界面作用的分子动力学模拟[J].华东理工大学学报(自然科学版), 2015, 41(1):9-14. http://www.cqvip.com/QK/90601A/201501/663836001.html
[57] Hendrik Heinz, R. A. Vaia, B. L. Farmer. Relation between packing density and thermal transitions of alkyl chains on layered silicate and metal surfaces[J]. Langmuir, 2008, 24(8):3727-3733. doi: 10.1021/la703019e
[58] Hrushikesh Sahoo, Nishant Sinha, Swagat S. Rath, et al. Ionic liquids as novel quartz collectors:insights from experiments and theory[J]. Chemical Engineering Journal, 2015, 273:46-54. doi: 10.1016/j.cej.2015.03.050
[59] Ivan Moncayo-Riascos, Bibian A. Hoyos. Effect of collector molecular structure on the wettability of gold for froth flotation[J]. Applied Surface Science, 2017, 420:691-699. doi: 10.1016/j.apsusc.2017.05.197