-
摘要:
辉钼矿的晶面各向异性导致其"表面"和"棱面"具有截然不同的性质,进而影响到辉钼矿的浮选效果。通过密度泛函理论,从原子级别直观地阐释了辉钼矿"表面"和"棱面"性质差异的原因,并分别讨论了水、煤油和黄药在辉钼矿表面的作用。结果表明辉钼矿的"表面"为强疏水面,"棱面"为强亲水面。此外,煤油主要是通过静电作用吸附在辉钼矿的含S原子面,而黄药则是通过其C-S单键中S原子与辉钼矿"棱面"Mo原子的成键作用吸附于辉钼矿的"棱面"。
Abstract:The crystal anisotropy of molybdenite makes its "surface" and "edge" have very different properties, which further affects the flotation behavior of molybdenite. Through density functional theory, the reasons for the differences in the properties of molybdenite "surface" and "edge" are demonstrated from the atomic level, and the effects of water, kerosene, and xanthate on the surface of molybdenite are discussed. The results show that the "surface" of the molybdenite is strongly hydrophobic and the "edge" is strongly hydrophilic. In addition, kerosene is mainly adsorbed on the S-containing atomic face of molybdenite by electrostatic interactions, whereas xanthate is adsorbed on molybdenum "edge" by the bonding interaction of the S atom in its C-S single bond with Mo atom at the molybdenite "edge".
-
Key words:
- molybdenite /
- density functional theory /
- surfaces properties /
- adsorption
-
表 1 辉钼矿单胞的晶胞参数 /Å
Table 1. Geometrical parameters of molybdenite cell
表 2 辉钼矿(0001)面和(1010)面弛豫前后的参数 /Å
Table 2. Parameters of molybdenite (0001) and (1010) surfaces before and after relaxation
参数 0001 (1010) 弛豫前 弛豫后 弛豫前 弛豫后S面 弛豫后Mo面 Mo-S 2.411 2.411 2.411 2.370 2.548 2.291 S-S(1010) 3.119 3.119 3.119 1.975 - S-S((0110)) 3.185 3.185 3.185 3.184 - Mo-Mo(表面) 3.185 3.185 3.185 - 2.264 Mo-Mo(层间) 3.185 3.185 3.185 - 3.068 表面能/(J·m-2) - 0.004 - 3.577 3.577 表 3 体相与弛豫后辉钼矿(0001)面和(1010)面的Mulliken电荷布居值
Table 3. Mulliken charge populations of molybdenite bulk and relaxed molybdenite (0001) and (1010) surfaces
表面 原子 电荷布居/e 电荷/e s p d 体相 S 1.86 4.16 0.00 -0.02 Mo 2.48 6.45 5.03 0.04 (0001)面 S 1.86 4.16 0.00 -0.02 Mo 2.48 6.45 5.03 0.04 (1010)面 S1 1.91 4.20 0.00 -0.11 S2 1.90 4.10 0.00 0.00 Mo4 2.44 6.32 5.08 0.16 Mo1/2 2.59 6.16 5.16 0.09 Mo3 2.46 6.42 5.01 0.11 S3/4/5/6 1.86 4.20 0.00 -0.06 表 4 水和浮选药剂在辉钼矿(0001)面和(1010)面的吸附能 /(kcal·mol-1)
Table 4. Adsorption energies of water and flotation reagents on molybdenite (0001) and (1010)
种类 (0001)面 (1010)面 水 106.96 -165.58 直链烷烃(C12H26) -24.05 -44.06 直链芳香烃(C12H18) -76.51 -104.80 甲基黄原酸钠 87.62 -227.02 丁基黄原酸钠 49.42 -299.69 -
[1] 王资.辉钼矿的浮选[J].昆明冶金高等专科学校学报, 1996(Z1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=conference&id=141043
[2] 陈建华, 冯其明.钼矿的选矿现状[J].矿产保护与利用, 1994(6):26-28. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=586aef4e-1d9a-4c1f-b88f-cdbd4b58eb69
[3] Liu G Y, Lu Y P, Zhong H, et al. A novel approach for preferential flotation recovery of molybdenite from a porphyry copper-molybdenum ore[J]. Minerals Engineering, 2012, 36:37-44.
[4] 张克难. 二硫化钼二维材料及其异质结的制备和光电特性研究[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2016.
http://cdmd.cnki.com.cn/Article/CDMD-80143-1016728581.htm [5] 吕建业, 沈耀平, 张洪恩.辉钼矿表面特性及其可浮性的研究[J].有色金属(选矿部分), 1992(4):4-8, 41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmy201305006
[6] 袁致涛, 张其东, 刘炯天.金属离子对辉钼矿浮选的影响及机理研究[J].东北大学学报(自然科学版), 2016, 37(7):1013-1016. doi: 10.12068/j.issn.1005-3026.2016.07.022
[7] Lu Z Z, Liu Q X, Xu Z H, et al. Probing anisotropic surface properties of molybdenite by direct force measurements[J]. Langmuir, 2015, 31(42):11409-11418. doi: 10.1021/acs.langmuir.5b02678
[8] 张宝元, 钟宏.辉钼矿的浮选及其捕收剂的研究进展[J].矿产保护与利用, 2010(3):51-54. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=0814971c-801f-4e16-984a-d8dc24aff2de
[9] Giannozzi P, Baroni S, Bonini N, et al. Quantum ESPRESSO:a modular and open-source software project for quantum simulations of materials[J]. Journal of Physics:Condensed Matter, 2009, 21(39):395-502. http://www.tandfonline.com/servlet/linkout?suffix=CIT0026&dbid=8&doi=10.1080%2F14786435.2017.1418096&key=21832390
[10] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B Condensed Matter, 1992, 45(23):13244-13249. doi: 10.1103/PhysRevB.45.13244
[11] Laasonen K, Pasquarello A, Car R, et al. Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials[J]. Physical Review B Condensed Matter, 1993, 47(16):10142-10153. doi: 10.1103/PhysRevB.47.10142
[12] Arya A, Carter E A. Structure, bonding and adhesion at the ZrC(100)/Fe(110) interface from first principles[J]. Surface Science, 2004, 560(1-3):103-120. doi: 10.1016/j.susc.2004.04.022
[13] Lima G F D, Oliveira C D, Abreu H A D, et al. Sulfuric and hydrochloric acid adsorption on the reconstructed sulfur terminated(001) chalcopyrite surface[J]. International Journal of Quantum Chemistry, 2012, 112(19):3216-3222. doi: 10.1002/qua.24145
[14] Dickinson R G, Pauling L. The crystal structure of molybdenite[J]. J Am Chem Soc, 1923, 45(6):1466-1471. doi: 10.1021/ja01659a020
[15] Kadantsev E S, Hawrylak P. Electronic structure of a single MoS2 monolayer[J]. Solid State Communications, 2012, 152(10):909-913. doi: 10.1016/j.ssc.2012.02.005
[16] 王晖, 陈立, 符剑刚, 等.辉钼矿浮选体系中的界面热力学[J].中南大学学报(自然科学版), 2007, 38(5):893-899. http://www.zndxzk.com.cn/down/paperDown.aspx?id=49274
[17] Oliveira C D, Duarte H A. Disulphide and metal sulphide formation on the reconstructed(001) surface of chalcopyrite:A DFT study[J]. Applied Surface Science, 2010, 257(4):1319-1324. doi: 10.1016/j.apsusc.2010.08.059
[18] Oliveira C D, Lima G F D, Abreu H A D, et al. Reconstruction of the chalcopyrite surfaces-A DFT study[J]. The Journal of Physical Chemistry C, 2012, 116(10):6357-6366. doi: 10.1021/jp300713z
[19] Chander S, Fuerstenau D W. The effect of potassium diethyldithiophosphate on the electrochemical properties of platinum, copper and copper sulfide in aqueous solutions[J]. Journal of Electroanalytical Chemistry, 1974, 56(2):217-247. doi: 10.1016/S0022-0728(74)80330-X
[20] 张艳娇, 赵平, 郭珍旭, 等.极性捕收剂在难选辉钼矿浮选中的应用[J].矿产保护与利用, 2014(6):25-27. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=c93ad89f-d359-4648-8cf7-1c45aeb46d3f
[21] 张文钲.辉钼矿浮选捕收剂的寻觅[J].中国钼业, 2006, 30(2):3-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgmy200602001
[22] 孙丽娟, 曹亦俊, 孙利青, 等.煤油在辉钼矿表面吸附和解吸特性研究[J].矿产保护与利用, 2017(3):37-41. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=d24b89f1-4095-486b-84d3-f02fdb0bf11b
[23] 谢小燕. 新型辉钼矿捕收剂的浮选作用及机理研究[D]. 长沙: 中南大学, 2014.
http://cdmd.cnki.com.cn/Article/CDMD-10533-1014408178.htm [24] Lissitsyna K, Huertas S, Quintero L C, et al. Piona analysis of kerosene by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry[J]. Fuel, 2014, 116(1):716-722. http://www.sciencedirect.com/science/article/pii/S0016236113006765
[25] 郭丽敏. 高灰细粒难浮煤泥浮选工艺研究[D]. 太原: 太原理工大学, 2017.
http://cdmd.cnki.com.cn/Article/CDMD-10112-1017832822.htm [26] 任骊东.选钼捕收剂的应用研究与实践[J].中国钼业, 2006, 30(3):18-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGMY200603004.htm
[27] 刘尚清.黄药在单一辉钼矿浮选中的应用[J].有色矿冶, 1988(3):20-23. http://www.cnki.com.cn/Article/CJFDTotal-SXHG201311035.htm
[28] 王福良, 孙传尧.利用分子力学分析黄药捕收剂浮选未活化白铅矿的浮选行为[J].国外金属矿选矿, 2008, 44(6):25-27, 31. http://www.cnki.com.cn/Article/CJFDTotal-YSXK201503005.htm
[29] 曹飞, 孙传尧, 王化军, 等.烃基结构对黄药捕收剂浮选性能的影响[J].北京科技大学学报, 2014, 36(12):1589-1594. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1611002