重金属生物有效性在矿山环境评价中应用研究进展

孙晓艳, 罗立强. 重金属生物有效性在矿山环境评价中应用研究进展[J]. 矿产保护与利用, 2019, 39(1): 100-108. doi: 10.13779/j.cnki.issn1001-0076.2019.01.020
引用本文: 孙晓艳, 罗立强. 重金属生物有效性在矿山环境评价中应用研究进展[J]. 矿产保护与利用, 2019, 39(1): 100-108. doi: 10.13779/j.cnki.issn1001-0076.2019.01.020
SUN Xiaoyan, LUO Liqiang. Research Progress on the Application Bioavailability of Heavy Metals to Evaluate Ecological Risk in Mining Area[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 100-108. doi: 10.13779/j.cnki.issn1001-0076.2019.01.020
Citation: SUN Xiaoyan, LUO Liqiang. Research Progress on the Application Bioavailability of Heavy Metals to Evaluate Ecological Risk in Mining Area[J]. Conservation and Utilization of Mineral Resources, 2019, 39(1): 100-108. doi: 10.13779/j.cnki.issn1001-0076.2019.01.020

重金属生物有效性在矿山环境评价中应用研究进展

  • 基金项目:
    国家重点研发计划项目(2016YFC0600603);国家高新技术研究发展计划(863)项目(2007AA06Z124);中国地质调查项目(DD20160340);国家自然科学基金项目(20775018,41201527)
详细信息
    作者简介: 孙晓艳(1981-), 女, 博士研究生, 主要研究方向为生物地球化学和仪器分析, E-mail:sunxiaoyan2020@126.com
    通讯作者: 罗立强(1959-), 男, 研究员, 研究方向为生物地球化学, E-mail:luoliqiang@cags.ac.cn
  • 中图分类号: X822.5

Research Progress on the Application Bioavailability of Heavy Metals to Evaluate Ecological Risk in Mining Area

More Information
  • 重金属的生物有效性是决定重金属生态环境毒性的重要因素。生物有效性可为矿山土壤中重金属风险评价提供可靠的数据,提升评价质量。从厘清生物有效性概念入手,阐述了生物有效性研究方法的特性,评价了生物有效性在矿山环境评价中的应用,以重金属的生物有效性可以更好的评价重金属由土壤迁入植物的生态风险,更科学的确定重金属安全阈值,为矿山环境风险和人体健康风险评价提供新的方法和思路。

  • 加载中
  • 表 1  一步提取法的方法特性

    Table 1.  Examples of extractants for assessing phytoavailable trace element contents of soils

    提取剂 目标形态 分析元素 方法特性 文献
    NaNO3 离子交换态 Cr, Ni, Cu, Zn, Cd, Pb 能够反映土壤pH对生物有效性的影响 [22, 23]
    CaCl2 离子交换态 Cr, Ni, Cu, Zn, Cd, Pb 模拟当下进入孔隙水中重金属浓度,Ca2+是孔隙水中存在的主要离子,且离子强度与孔隙水中离子强度相近 [23, 26]
    NH4NO3 离子交换态 Al, Zn, Mo, Ba, Cd, Se, Sr, Cu, Pb, Ni, Hg, Cr, As, Tl, Ca, Mn, Y, La 提取以弱静电引力吸附于土壤组分表面的重金属,分析过程中pH有轻微降低,土壤溶液中离子强度增加。在酸性土壤评估中会出现过度评价,而中性和碱性土壤更为适用,对超富集植物适用性差 [23, 27]
    MgCl2 离子交换态 Cr, Ni, Cu, Zn, Cd, Pb Mg2+的交换容量较强和Cl-较弱的络合力结合在一起,不分解有机物质、硅酸盐和金属硫化物,有2%~3%的碳酸盐溶解,但是缩短提取时间可以避免,会导致pH降低,引起部分锰氧化物溶解 [21]
    NH4Ac 离子交换态和碳酸盐结合态 Cd, Pb, Cu, Zn, Cr, Ni, As, Cd, Zn, Pb 在非缓冲条件下易发生水解而使pH上升,提取离子交换态,而在pH=4.8的缓冲条件下提取酸溶态效果较好 [28, 29]
    HAc 离子交换态和碳酸盐结合态 Ni, Cu, Zn, Cd, Pb 有部分铁氧化物结合态会被释放,造成过度评估 [25]
    HCl 离子交换态和酸溶态 Cd, Cu, Cr, Ni, Zn, Pb 随酸浓度增加提取能力增强,0.1 M仅能提取可交换态,但有少量铁锰氧化物结合态被释放。1 M HCl可提取大部分的非残渣态 [26, 30]
    HNO3 酸溶态和部分可还原态 Cd, Cu, Cr, Ni, Zn, Pb 提取能力较强 [25, 26]
    LMWOAs 离子交换态 Cr, Cu, Zn, Cd 对酸性、中性和偏碱性新鲜根际土都适用 [31]
    EDTA 酸溶态和部分有机结合态 Cr, Ni, Cu, Zn, Cd, Pb 无需严格控制pH [25, 26]
    Mehlich3 酸溶态和部分有机结合态 Co, Ni, Cu, Pb 对酸性和碱性土壤均适用 [28, 32]
    下载: 导出CSV

    表 2  化学提取法评估重金属迁移到植物的风险

    Table 2.  Applications of chemical extraction methods for evaluation of the risk of heavy metals in soils migration to plant

    元素 土壤和植物 研究方法 研究结果 文献
    Cd, Pb, Zn 湖南4个矿区和冶炼厂,大豆 MgCl2 MgCl2可提取态Pb和Zn与大豆根茎叶中累积的Pb和Zn存在显著的相关关系(P < 0.01),Cd与根茎叶种皮和豆子中的Cd均存在显著的相关关系(P < 0.05) [42]
    Pb, Zn 意大利撒丁岛西南矿区和未污染区,3种优势植物 BCR 植物累积的Zn与30~60 cm土壤BCRF1, F2, F3可提取态Zn和Zn总量存在显著的正相关关系,而与表层土壤Zn的各态和Zn总量均不相关,仅一个植物内Pb与30~60 cm土壤BCRF3和残渣态存在相关关系 [4]
    As, Cd, Cu, Pb, Zn 广东省南部大宝山矿区,芥菜、水稻、甘蔗 BCR BCRF1可提取态的Cd、Zn,与水稻谷粒中Cd、Zn的相关系数r2分别为0.78、0.82,与甘蔗茎中相关系数分别为0.35、0.68,与芥菜中相关系数分别为0.69、0.87 [2]
    Cd, Cr, Cu, Ni, Pb, Zn 科索沃地区受铅锌矿影响的农田土壤,玉米和西红柿 BCR BCRF1与玉米中Pb、Ni和Cu的相关系数为0.47、0.75和0.62;与西红柿中Cd相关系数r=0.51。BCRF2与玉米中Cd相关系数r=0.49,与西红柿中的Ni、Cr和Cu的相关系数分别为0.69、0.43和0.46。BCRF3与玉米中的Zn和Cd存在显著相关性,与西红柿中Pb、Ni和Cu存在相关性 [43]
    As 石门雄黄矿区,苋菜(盆栽) Tessier, BCR, Shiowatana 苋菜吸收As的浓度,与对应土壤中As的有效态有显著的相关性,相关系数R2分别为Shiowatana(FS1+FS2):0.93,BCRF1:0.94,Tessier:0.85 [44]
    Cd, Cu, Pb, Zn 浙江北部铅锌矿区尾矿污染的水稻田,水稻 Mehlich1, Mehlich3, EDTA, DTPA-TEA, NH4Ac, CaCl2 水稻茎叶和水稻谷粒吸收的重金属均存在显著的正相关关系性,其中NH4Ac(r:0.74~0.96)和CaCl2(r:0.70~0.89)相关系数最高 [45]
    As, Pb 韩国废弃锡、铜和金矿区,印度芥菜(栽培) CaCl2, HCl, NH4H2PO4, 王水 CaCl2, HCl, NH4H2PO4提取的有效态和王水提取的总量与印度芥菜中As的相关系数r2分别为0.71, 0.67, 0.24和0.23;与Pb的相关系数r2分别为0.56, 0.60, 0.20和0.18 [40]
    Al, Mn, Pb, Zn 葡萄牙废弃铅矿,8种植物 H2O, CaCl2, Ca(NO3)2, NH4Ac, DTPA 多种元素生物有效性研究结果表明CaCl2可提取态反映了更多的植物种类和元素种类的植物有效性 [46]
    Co, Cr, K, Mn, Na, Ni, Pb, Zn 锡矿,印度芥菜 DTPA, EDTA, NH4NO3, CaCl2, NaNO3 印度芥菜中Pb、Cr与各个提取法提取的土壤中Pb和Cr之间存在显著的相关关系 [47]
    As, Cd, Pb, Zn, Sb 冶炼厂和矿山,菜豆苗(栽培) EDTA, DTPA, NH4NO3, CaCl2, NaNO3 菜豆苗中累积重金属与CaCl2, NH4NO3和Ca(NO3)2存在显著正相关关系,Pb与提取能力更强的EDTA、DTPA和HAc等提取剂的可提取态存在显著的相关性 [41]
    As, Sb 澳大利亚尤郎佳废弃Sb冶炼厂,萝卜 DGT, Wenzel, H2O 萝卜根和茎叶中累积的As和Sb与3种提取法可提取态As和Sb的量存在极显著的相关关系,线性回归方程r2=0.96~0.99 [48]
    下载: 导出CSV
  • [1]

    徐佩, 吴超, 邱冠豪.我国铅锌矿山土壤重金属污染规律研究[J].土壤通报, 2015, 46(3):739-744. http://d.old.wanfangdata.com.cn/Periodical/trtb201503037

    [2]

    Liao J, Wen Z, Ru X, et al. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage:Public health implications in Guangdong Province, China[J]. Ecotoxicology and environmental safety, 2016, 124:460-469. doi: 10.1016/j.ecoenv.2015.11.023

    [3]

    蔡锦辉, 吴明光, 汪雄武, 等.广东大宝山多金属矿山环境污染问题及启示[J].华南地质与矿产, 2005(4):50-54. doi: 10.3969/j.issn.1007-3701.2005.04.009

    [4]

    Fernández-Ondoño E, Bacchetta G, Lallena A M, et al. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia[J]. Journal of geochemical exploration, 2017, 172:133-141. doi: 10.1016/j.gexplo.2016.09.013

    [5]

    Kumpiene J, Bert V, Dimitriou I, et al. Selecting chemical and ecotoxicological test batteries for risk assessment of trace element-contaminated soils (phyto)managed by gentle remediation options (GRO)[J]. Science of the total environment, 2014, 496:510-522. doi: 10.1016/j.scitotenv.2014.06.130

    [6]

    Ehlers L J, Luthy R G. Contaminant bioavailability in soil and sediment[J]. Environmental science & technology, 2003, 37(15):295-302. http://europepmc.org/abstract/MED/12966964

    [7]

    周国华.土壤重金属生物有效性研究进展[J].物探与化探, 2014, 38(6):1097-1106. http://d.old.wanfangdata.com.cn/Periodical/wtyht201406001

    [8]

    Hamelink J L. Bioavailability:physical, chemical, and biological interaction[M]. Bocaraton:Lewis publishers, 1994.

    [9]

    Kim R Y, Yoon J K, Kim T S, et al. Bioavailability of heavy metals in soils:definitions and practical implementation a critical review[J]. Environmental geochemistry and health, 2015, 37(6):1041-1061. doi: 10.1007/s10653-015-9695-y

    [10]

    Harmsen J. Measuring bioavailability:from a scientific approach to standard methods[J]. Journal of environmental quality, 2007, 36(5):1420-1428. doi: 10.2134/jeq2006.0492

    [11]

    Fedotov P S, Kördel W, Miró M, et al. Extraction and fractionation methods for exposure assessment of trace metals, metalloids, and hazardous organic compounds in terrestrial environments[J]. Critical reviews in environmental science & technology, 2012, 42(11):1117-1171. http://www.tandfonline.com/doi/full/10.1080/10643389.2011.556544

    [12]

    Sánchezmarín P, Lorenzo J I, Blust R, et al. Humic acids increase dissolved lead bioavailability for marine invertebrates[J]. Environmental science & technology, 2007, 41(16):5679-5684. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e923746b01e8d967b75f006ae1fbadef

    [13]

    Luo L, Shen Y, Liu J, et al. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry[J]. Spectrochimica acta part B atomic spectroscopy, 2016, 122:40-45. doi: 10.1016/j.sab.2016.05.017

    [14]

    Suthar V, Memon K S, Mahmood-Ul-Hassan M. EDTA-enhanced phytoremediation of contaminated calcareous soils:heavy metal bioavailability, extractability, and uptake by maize and sesbania[J]. Environmental monitoring & assessment, 2014, 186(6):3957-3968. http://europepmc.org/abstract/med/24515546

    [15]

    Ashraf U, Kanu A S, Mo Z, et al. Lead toxicity in rice:effects, mechanisms, and mitigation strategies——a mini review[J]. Environmental science and pollution research international, 2015, 22(23):18318-18332. doi: 10.1007/s11356-015-5463-x

    [16]

    Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental science & technology, 2004, 38(12):228-231. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=64c0fae64c48df3d83f548d5e54f285f

    [17]

    刘俊华, 张天红, 薛澄泽.黑麦幼苗法对污泥中元素生物有效性的研究[J].陕西环境, 1994(1):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400445108

    [18]

    薛澄泽, 刘俊华, 李宗利, 等.用黑麦幼苗法测定土壤中污染元素的生物有效性[J].环境化学, 1995(1):32-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000588801

    [19]

    周永章, 宋书巧, 杨志军, 等.河流沿岸土壤对上游矿山及矿山开发的环境地球化学响应——以广西刁江流域为例[J].地质通报, 2005, 24(10):945-951. doi: 10.3969/j.issn.1671-2552.2005.10.012

    [20]

    孟昭福, 张增强, 薛澄泽, 等.替代黑麦幼苗测定土壤中重金属生物有效性的研究[J].农业环境科学学报, 2001, 20(5):337-340. doi: 10.3321/j.issn:1672-2043.2001.05.014

    [21]

    Tessier A, Campbell P G, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical chemistry, 1979, 51(7):844-851. doi: 10.1021/ac50043a017

    [22]

    Feng M H, Shan X Q, Zhang S, et al. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley[J]. Environmental pollution, 2005, 137(2):231-240. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08aeba5c4a57cd4c6bddc4561720cf64

    [23]

    Pueyo M, López-Sánchez J F, Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J]. Analytica chimica acta, 2004, 504(2):217-226. doi: 10.1016/j.aca.2003.10.047

    [24]

    Ladonin D V. Heavy metal compounds in soils:problems and methods of study[J]. Eurasian soil science, 2002, 35(6):605-613.

    [25]

    Garforth J M, Bailey E H, Tye A M, et al. Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils[J]. Chemosphere, 2016, 155:534-541. doi: 10.1016/j.chemosphere.2016.04.096

    [26]

    Römkens P F, Guo H Y, Chu C L, et al. Characterization of soil heavy metal pools in paddy fields in Taiwan:Chemical extraction and solid-solution partitioning[J]. Journal of soils and sediments, 2009, 9(3):216-228. doi: 10.1007/s11368-009-0075-z

    [27]

    Gryschko R, Kuhnle R, Terytze K, et al. Soil extraction of readily soluble heavy metals and as with 1 M NH4NO3-solution evaluation of DIN 19730[J]. Journal of soils and sediments, 2004, 5(2):101-106.

    [28]

    Zhang M, Liu Z, Wang H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. Communications in soil science & plant analysis, 2010, 41(7):820-831. http://www.tandfonline.com/doi/full/10.1080/00103621003592341

    [29]

    Castilho P D, Rix I. Ammonium acetate extraction for soil heavy metal speciation; model aided soil test interpretation[J]. International journal of environmental analytical chemistry, 1993, 51(1-4):59-64. doi: 10.1080/03067319308027611

    [30]

    Bakircioglu D, Kurtulus Y B, Hilmi, et al. Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains[J]. Clean soil air water, 2011, 39(8):728-734. doi: 10.1002/clen.v39.8

    [31]

    Feng M H, Shan X Q, Zhang S Z, et al. Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat[J]. Chemosphere, 2005, 59(7):939-949. doi: 10.1016/j.chemosphere.2004.11.056

    [32]

    Qian J, Shan X Q, Wang Z J, et al. Distribution and plant availability of heavy metals in different particle size fractions of soil[J]. Science of the total environment, 1996, 187(2):131-141. doi: 10.1016/0048-9697(96)05134-0

    [33]

    Li H B, Zhao D, Li J, et al. Using the SBRC assay to predict lead relative bioavailability in urban soils:contaminant source and correlation model[J]. Environmental science & technology, 2016, 50(10):4989-4966. http://www.ncbi.nlm.nih.gov/pubmed/27093348

    [34]

    Li H B, Cui X Y, Li K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental science & technology, 2014, 48(15):8548-8555. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1bf5aa57cb1fce444bd86e93690efcf3

    [35]

    And R R R, Nicholas T B, And S W C, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental science & technology easton Pa, 1999, 33(4):642-649. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0d86b77260f8db841f8ad7e6f9faf1c

    [36]

    Denys S, Caboche J, Tack K, et al. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils[J]. Environmental science & technology, 2012, 46(11):6252-6260. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0b2a1d08fe4b07c64e265497cf3c367

    [37]

    Ruby M V, Andy D, Rosalind S, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental science & technology, 1996, 30(2):422-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db4aa1f5476796e1c58c24f4f896fb83

    [38]

    Alvarenga P, Simoes I, Palma P, et al. Field study on the accumulation of trace elements by vegetables produced in the vicinity of abandoned pyrite mines[J]. Science of the total environment, 2014, 470-471:1233-1242. doi: 10.1016/j.scitotenv.2013.10.087

    [39]

    Houba V J G, Lexmond T M, Novozamsky I, et al. State of the art and future developments in soil analysis for bioavailability assessment[J]. Science of the total environment, 1996, 178(1-3):21-28. doi: 10.1016/0048-9697(95)04793-X

    [40]

    Han J, Kim J, Kim M, et al. Chemical extractability of As and Pb from soils across long-term abandoned metallic mine sites in Korea and their phytoavailability assessed by brassica juncea[J]. Environmental science and pollution research international, 2015, 22(2):1270-1278. doi: 10.1007/s11356-014-3441-3

    [41]

    Qasim B, Motelica-heino M, Joussein E, et al. Potentially toxic element phytoavailability assessment in technosols from former smelting and mining areas[J]. Environmental science and pollution research international, 2015, 22(8):5961-5974. doi: 10.1007/s11356-014-3768-9

    [42]

    Zhou H, Zeng M, Zhou X, et al. Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China[J]. Environmental toxicology & chemistry, 2013, 32(12):2719-2727. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90ffa18a336690f0630dadc0d36bb7ef

    [43]

    Barać N, Škrivanj S, Mutić J, et al. Heavy metals fractionation in agricultural soils of Pb/Zn mining region and their transfer to selected vegetables[J]. Water air soil pollution, 2016, 227(12):481-494. doi: 10.1007/s11270-016-3177-4

    [44]

    Wan X, Dong H, Feng L, et al. Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites[J]. Chemosphere, 2017, 178:402-410. doi: 10.1016/j.chemosphere.2017.03.078

    [45]

    Zhang M K, Liu Z Y, Huo W. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice[J]. Communications in soil science & plant analysis, 2010, 41(7):820-831. http://www.tandfonline.com/doi/full/10.1080/00103621003592341

    [46]

    Anjos C, Magalhāes M C F, Abreu M M. Metal (Al, Mn, Pb and Zn) soils extractable reagents for available fraction assessment:comparison using plants, and dry and moist soils from the Braçal abandoned lead mine area, portugal[J]. Journal of geochemical exploration, 2012, 113:45-55. doi: 10.1016/j.gexplo.2011.07.004

    [47]

    Gupta A K, Sinha S. Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. czern. (var. vaibhav) grown on tannery waste contaminated soil[J]. Journal of hazardous materials, 2007, 149(1):144-150. doi: 10.1016/j.jhazmat.2007.03.062

    [48]

    Ngo L K, Pinch B M, Bennett W W, et al. Assessing the uptake of arsenic and antimony from contaminated soil by radish (raphanus sativus) using DGT and selective extractions[J]. Environmental pollution, 2016, 216:104-114. doi: 10.1016/j.envpol.2016.05.027

    [49]

    Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of environmental monitoring, 1999, 1(1):57-61. http://www.ncbi.nlm.nih.gov/pubmed/11529080

    [50]

    Adamo P, Iavazzo P, Albanese S, et al. Bioavailability and soil-to-plant transfer factors as indicators of potentially toxic element contamination in agricultural soils[J]. Science of the total environment, 2014, 500-501:11-22. doi: 10.1016/j.scitotenv.2014.08.085

    [51]

    Anawar H M, Garcia-Sanchez A, Santa R I. Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils[J]. Chemosphere, 2008, 70(8):1459-1467. doi: 10.1016/j.chemosphere.2007.08.058

    [52]

    Vázquez S, Moreno E, Carpena R O. Bioavailability of metals and As from acidified multicontaminated soils:use of white lupin to validate several extraction methods[J]. Environmental geochemistry and health, 2008, 30(2):193-198. doi: 10.1007/s10653-008-9143-3

    [53]

    Reiley M C. Science, policy, and trends of metals risk assessment at EPA:how understanding metals bioavailability has changed metals risk assessment at US EPA[J]. Aquatic toxicology, 2007, 84(2):292-298. doi: 10.1016/j.aquatox.2007.05.014

    [54]

    韦东普, 马义兵.科技部"十三五"农业面源和重金属污染农田综合防治与修复技术研发重点专项"农田系统重金属迁移转化和安全阈值研究"项目正式启动[J].中国生态农业学报, 2016, 24(11):1577-1578. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj201611017

    [55]

    Liu X, Song Q, Tang Y, et al. Human health risk assessment of heavy metals in soil-vegetable system:a multi-medium analysis[J]. Science of the total environment, 2013, 463-464:530-540. doi: 10.1016/j.scitotenv.2013.06.064

    [56]

    Zhang S, Song J, Cheng Y, et al. Derivation of reliable empirical models describing lead transfer from metal-polluted soils to radish (raphanus sativa L.):determining factors and soil criteria[J]. Science of the total environment, 2017, 613-614:72-80. http://europepmc.org/abstract/MED/28903078

    [57]

    李富荣, 文典, 王富华, 等.广东地区芸薹类叶菜-土壤镉污染相关性分析及土壤镉限量值研究[J].生态环境学报, 2016, 25(4):705-710. http://d.old.wanfangdata.com.cn/Periodical/tryhj201604021

    [58]

    Liu G, Tao L, Liu X, et al. Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China[J]. Journal of geochemical exploration, 2013, 132:156-163. doi: 10.1016/j.gexplo.2013.06.017

    [59]

    Rodriguez L, Ruiz E, Alonso-Azcarate J, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain[J]. Journal of environmental management, 2009, 90(2):1106-1116. doi: 10.1016/j.jenvman.2008.04.007

    [60]

    陆泗进, 王业耀, 何立环.会泽某铅锌矿周边农田土壤重金属生态风险评价[J].生态环境学报, 2014(11):1832-1838. doi: 10.3969/j.issn.1674-5906.2014.11.017

    [61]

    马亚梦, 谭秀民, 毛香菊, 等.典型铁尾矿库重金属污染评价及生态修复建议[J].矿产保护与利用, 2016(3):49-56. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=275fbc8a-5168-4af0-a725-67b63b5913ce

    [62]

    毛香菊, 肖芳, 马亚梦, 等.内蒙古草原某铜钼矿区土壤重金属污染潜在生态危害评价[J].矿产保护与利用, 2016(2):54-57. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6b427b05-5e21-4b46-a103-f600768972f3

    [63]

    Liu Y, Bello O, Rahman M M, et al. Investigating the relationship between lead speciation and bioaccessibility of mining impacted soils and dusts[J]. Environmental science & pollution research international, 2017, 24(20):17056-17067. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d230919b846027590daceadba257d3fb

    [64]

    姜林, 彭超, 钟茂生, 等.基于污染场地土壤中重金属人体可给性的健康风险评价[J].环境科学研究, 2014, 27(4):406-414. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=49265265

    [65]

    李继宁, 侯红, 魏源, 等.株洲市农田土壤重金属生物可给性及其人体健康风险评估[J].环境科学研究, 2013, 26(10):1139-1146. http://d.wanfangdata.com.cn/Periodical/hjkxyj201310015

  • 加载中

(2)

计量
  • 文章访问数:  1705
  • PDF下载数:  494
  • 施引文献:  0
出版历程
收稿日期:  2018-04-25
刊出日期:  2019-02-25

目录