电极表面结构对电浮选中氢气气泡物理特征的影响

张洲朋, 赵伟, 李振, 屈进州, 周安宁. 电极表面结构对电浮选中氢气气泡物理特征的影响[J]. 矿产保护与利用, 2020, 40(5): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2020.05.012
引用本文: 张洲朋, 赵伟, 李振, 屈进州, 周安宁. 电极表面结构对电浮选中氢气气泡物理特征的影响[J]. 矿产保护与利用, 2020, 40(5): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2020.05.012
ZHANG Zhoupeng, ZHAO Wei, LI Zhen, QU Jinzhou, ZHOU Anning. Effect of Electrode Surface Structure and Wettability on the Physical Characteristics of Hydrogen Bubbles During Electroflotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2020.05.012
Citation: ZHANG Zhoupeng, ZHAO Wei, LI Zhen, QU Jinzhou, ZHOU Anning. Effect of Electrode Surface Structure and Wettability on the Physical Characteristics of Hydrogen Bubbles During Electroflotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(5): 96-102. doi: 10.13779/j.cnki.issn1001-0076.2020.05.012

电极表面结构对电浮选中氢气气泡物理特征的影响

  • 基金项目:
    陕西省自然科学基金项目(2017JM5002)陕西省煤炭联合基金项目(2019JLP-10)
详细信息
    作者简介: 张洲朋(1994-), 男, 陕西咸阳人, 硕士研究生, 主要研究方向为电浮选分离技术及应用。Email:1487515489@qq.com
    通讯作者: 周安宁(1962-), 男, 陕西蓝田人, 博士, 主要研究方向为煤炭分质加工与转化利用。Email:psu564@139.com
  • 中图分类号: TD91

Effect of Electrode Surface Structure and Wettability on the Physical Characteristics of Hydrogen Bubbles During Electroflotation

More Information
  • 研究了电浮选中多孔镍阴极的微观结构及润湿性变化对氢气泡特征的影响。通过酸法刻蚀及氟硅烷表面改性处理,考察处理前后多孔镍阴极表面微观结构及润湿性变化对氢气泡尺寸、浓度和上升速度的影响。结果表明,酸法刻蚀可提高多孔镍阴极材料表面的粗糙度,增加电极的裂纹、裂隙及溶出粒子间的孔隙;经酸法刻蚀处理后,电极的亲水性显著提高,并且随着刻蚀时间的增加,多孔镍阴极表面亲水性增强;氟硅烷改性可使多孔镍阴极表面疏水化,且其表面经刻蚀粗糙化处理后,氟硅烷的改性效果更显著;多孔镍阴极表面亲水性越强,电解产生的氢气泡尺寸越小,气泡浓度或气泡生成量越高,反之亦然;在电解氢气泡的尺度范围内,气泡上升速度与尺寸呈线性相关,气泡尺寸越大,上升速度越快。

  • 加载中
  • 图 1  电解气泡观察系统

    Figure 1. 

    图 2  气泡图像分析过程:(a)原图;(b)经分色后图像;(c)统计数据图像

    Figure 2. 

    图 3  不同刻蚀时间及氟硅烷改性前后镍电极表面SEM照片

    Figure 3. 

    图 4  强亲水电极材料表面的连续动态接触角测量图像

    Figure 4. 

    图 5  不同刻蚀时间及氟硅烷改性前后镍电极电解所产氢气泡尺寸

    Figure 5. 

    图 6  不同润湿性和气泡尺寸关系:(a)疏水性;(b)亲水性

    Figure 6. 

    图 7  不同刻蚀时间及氟硅烷改性前后镍电极电解所产氢气泡浓度(a)和上升速度(b)

    Figure 7. 

    图 8  电解氢气泡尺寸与气泡上升速度的关系

    Figure 8. 

    表 1  不同刻蚀时间及氟硅烷改性前后镍电极表面润湿性

    Table 1.  Surface wettability of nickel electrodes with etching treatment and fluorosilane modification

    Treatment type Acid etching Modified after etching
    Etching time 0 89° 135°
    10 t=8.0 147°
    15 t=5.4 148°
    20 t=1.0 148°
    25 t=0.5 154°
    30 t=0.2 155°
    Where, “°” is the equilibrium contact angle measured by static contact angle mode, and “t=” is the spreading time measured by dynamic contact angle measurement mode。
    下载: 导出CSV
  • [1]

    HACHA RR, MERMAAG, TOREM ML, et al. Measurement and analysis of H2 and O2 bubbles diameter produced by electroflotation processes in a modified Partridge-Smith cell[J]. Powder Technology, 2018, 342:208-320.

    [2]

    FUAT O, BUNYAMIN K.Treatment of pretreated coke wastewater by electrocoagulation and electrochemical per-oxidation processes[J].Separation and Purification Technology, 2015, 150:268-277.

    [3]

    ZAIDI S, CHAABANE T, SIVASANKAR V, et al. Electro-coagulation coupled electro-floatation process:Feasible choice in Doxycycline removal from Pharmaceutical effluents[J]. Arabian Journal of Chemistry, 2015, 171(8):2798-2809.

    [4]

    RAJESWARI S, MANIKANDAN S, VIDHYA S, et al. A membrane electroflotation process for recovery of recyclable chromium (III) from tannery spent liquor effluent[J]. Journal of Hazardous Materials, 2018, 346:133-139.

    [5]

    孟凡春.石化工业污水中有机污染物的分析与治理[D].北京: 北京化工大学, 2006.

    [6]

    刘彬.钢厂废水电化学处理研究[J].化学工程师, 2000, 79(4):42-44.

    [7]

    FIDELEM, BOGALE T, BORIS A, et al. Electroflotation of ultrafine chalcopyrite particles with sodium oleate collector[J]. MineralsEngineering, 2018, 120:44-46.

    [8]

    HACHA RR, TOREM ML, MERMA AG, et al. Electroflotation of fine hematite particles with Rhodococcusopacus as a biocollector in a modified Partridge-Smith cell[J]. Minerals Engineering, 2018, 126:105-115.

    [9]

    刘荆文.铅锌矿石的通电浮选[J].有色金属, 1981, 2:31-36.

    [10]

    戴智飞, 黄红军, 孙伟, 等.电解浮选中气泡性质对细粒萤石回收的影响[J].化工矿物与加工, 2017, 46(5):9-12.

    [11]

    覃文庆, 王佩佩, 任浏祎, 等.颗粒气泡的匹配关系对细粒锡石浮选的影响[J].中国矿业大学学报, 2012, 41(3):420-424, 438.

    [12]

    魏以和, 李防, 贺金文.油酸浮选白云石的试验研究[J].化工矿物与加工, 2012, 41(6):1-3.

    [13]

    KETK DR, 李坊穗.细粒石英的电浮选[J].江西冶金, 1992, 1:62-64.

    [14]

    刘颖洲, 董宪姝, 代娟.电解浮选中气泡尺寸对精煤产率的影响[J].煤炭技术, 2014, 33(4):244-246.

    [15]

    KHOSLANK, VENKATACHALAM S, SOMASUNDARAN P.Pulsed electrogenerated of bubbles for electroflatation[J]. Journal of Applied Eletrochemistry, 1991, 21:986-990.

    [16]

    MANSOUR LB, CHALBI S, KESENTINI I. Experimental study of hydrodynamic and bubble size distributions in electroflotation process[J]. Indian Journal of Chemical Technology, 2007, 14:253-257.

    [17]

    SUN W, MA L, HU Y, et al. Hydrogen bubble flotation of fine minerals containing calcium[J]. Mining Science and Technology (China), 2011, 21:591-597.

    [18]

    JIMÉNEZ C, TALAVERA B, SAEZ C, et al. Study of the production of hydrogen bubbles at low current densities for electroflotation processes[J].Journal of Chemical Technology &Biotechnology, 2010, 85:1368-1373.

    [19]

    TADESSE, ALBIJANIC, MAKUEI, et al. Recovery of fine and ultrafine mineral particles by electroflotation-a review[J]. Mineral Processing & Extractive Metallurgy Review, 2018, 108-122.

    [20]

    ALBIJANIC B, SUBASINGHE GKN, BRADSHAW DJ, et al. Influence of liberation on bubble-particle attachment time inflotation[J]. Minerals Engineering, 2015, 74:156-162.

    [21]

    VERRELLI DI, KOH PTL, NGUYEN AV. Particle-bubble interactionand attachment in flotation[J]. Chemical Engineering Science, 2011, 66(23):5910-5921.

    [22]

    史洺宇, 齐梅, 易成高, 等.静水中气泡上升运动及阻力系数研究[J].计算力学学报, 2019, 36(3):422-428.

    [23]

    徐炯, 王彤, 杨波, 等.静止水下气泡运动特性的测试与分析[J].水动力学研究与进展A辑, 2008, 6:709-714.

    [24]

    赵伟, 李振, 周安宁, 等.铝电极电浮选阴极的气泡特征及其影响因素研究[J].矿产保护与利用, 2018(3):87-92.

    [25]

    赵丕阳, 王岩伟, 任青文, 等.化学刻蚀制备亲水性铝及润湿性变化规律[J].表面技术, 2017, 46(5):171-176.

    [26]

    SHIBUICHI S, ONDA T, SATOH N, et al. Super water-repellent surfaces resulting from fractal structure[J]. Journal of Physical Chemistry, 1996, 100(50):19512-19517.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  1613
  • PDF下载数:  36
  • 施引文献:  0
出版历程
收稿日期:  2020-08-21
刊出日期:  2020-10-25

目录