闪锌矿银活化及对黄药吸附影响的第一性原理研究

刘小妹, 陈晔, 冯瑶, 陈建华. 闪锌矿银活化及对黄药吸附影响的第一性原理研究[J]. 矿产保护与利用, 2021, 41(2): 7-12. doi: 10.13779/j.cnki.issn1001-0076.2021.02.002
引用本文: 刘小妹, 陈晔, 冯瑶, 陈建华. 闪锌矿银活化及对黄药吸附影响的第一性原理研究[J]. 矿产保护与利用, 2021, 41(2): 7-12. doi: 10.13779/j.cnki.issn1001-0076.2021.02.002
LIU Xiaomei, CHEN Ye, FENG Yao, CHEN Jianhua. The First-principle Study of Silver Activation and Xanthate Adsorption on Sphalerite Surface[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 7-12. doi: 10.13779/j.cnki.issn1001-0076.2021.02.002
Citation: LIU Xiaomei, CHEN Ye, FENG Yao, CHEN Jianhua. The First-principle Study of Silver Activation and Xanthate Adsorption on Sphalerite Surface[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 7-12. doi: 10.13779/j.cnki.issn1001-0076.2021.02.002

闪锌矿银活化及对黄药吸附影响的第一性原理研究

  • 基金项目:
    广西自然科学基金(2018GXNSFAA050127)
详细信息
    作者简介: 刘小妹(1996-), 女, 安徽淮南人, 硕士研究生, 主要从事选矿工艺理论研究, E-mail: 614854633@qq.com
  • 中图分类号: TD91

The First-principle Study of Silver Activation and Xanthate Adsorption on Sphalerite Surface

  • 为深入研究银离子对闪锌矿的活化机理,采用第一性原理对闪锌矿表面Ag+替换活化和吸附活化分别开展了模拟研究,同时研究了银活化对闪锌矿表面黄药吸附的影响。计算结果表明,未活化的闪锌矿表面不与乙基黄药发生相互作用,银活化的闪锌矿表面能够与乙基黄药发生相互作用。在两种银活化模型中,Ag+吸附活化比替换活化在能量上更容易发生。Ag+替换活化的闪锌矿表面,黄药的S与表面Ag相互作用较弱;而在Ag+吸附活化的闪锌矿表面,黄药的S与表面Ag相互作用较强。态密度分析表明,在Ag+吸附活化的闪锌矿表面,黄药S原子的3p态和Ag原子的4 d态具有较多成键轨道电子云重叠区域,说明表面吸附的Ag+与黄药的S原子发生了较强的相互作用。Mulliken电荷分析表明,与替换活化相比,黄药和Ag+吸附活化的闪锌矿表面有更多的电荷转移,进一步说明Ag+吸附活化更有可能发生。

  • 加载中
  • 图 1  闪锌矿(110)表面模型

    Figure 1. 

    图 2  乙基黄药在未活化闪锌矿表面的吸附

    Figure 2. 

    图 3  闪锌矿(110)表面银活化模型: (a) Ag+替换活化模型;(b) Ag+吸附活化模型

    Figure 3. 

    图 4  乙基黄药在两种银活化闪锌矿(110)表面吸附构型:(a) Ag+替换活化模型;(b) Ag+吸附活化模型

    Figure 4. 

    图 5  乙基黄药在闪锌矿Ag+替换活化表面吸附前后的态密度

    Figure 5. 

    图 6  乙基黄药在Ag+吸附活化闪锌矿表面吸附前后的态密度

    Figure 6. 

    图 7  乙基黄药在银活化闪锌矿表面吸附后的电子密度图:(a) Ag+替换活化模型;(b) Ag+吸附活化模型

    Figure 7. 

    表 1  乙基黄药在银活化闪锌矿表面吸附前后的Mulliken电荷

    Table 1.  Mulliken charge of ethyl xanthate before and after adsorption on Ag+-activated sphalerite surface

    项目 Mulliken电荷/e
    吸附前 吸附后
    Ag+ (Ag+替换活化模型) 0.37 0.39
    乙基黄药S2(Ag+替换活化模型) -0.28 -0.23
    Zn(Ag+替换活化模型) 0.47 0.48
    S1(Ag+替换活化模型) -0.19 -0.25
    Ag+(Ag+吸附活化模型) 0.48 0.33
    乙基黄药S1(Ag+吸附活化模型) -0.19 -0.29
    下载: 导出CSV
  • [1]

    曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109-117. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1637e6f6-98aa-476f-b4a7-92b9e8d1e394

    [2]

    胡德勇. 铅锌冶炼科技进步现状与"十五"发展方向[J]. 有色金属工业, 2001(8): 11-13. https://www.cnki.com.cn/Article/CJFDTOTAL-YSGY200108001.htm

    [3]

    刘建. 闪锌矿表面原子构型及铜吸附活化浮选理论研究[D]. 昆明: 昆明理工大学, 2013.

    [4]

    黎维中. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D]. 长沙: 中南大学, 2007.

    [5]

    谢贤. 难选铁闪锌矿多金属矿石的浮选试验与机理探讨[D]. 昆明: 昆明理工大学, 2011.

    [6]

    KARTIO IJ, BASILIO CI, YOONn R-H. An XPS Study of Sphalerite Activation by Copper[J]. American Chemical Society, 1998, 14(18): 0743-7463. http://pubs.acs.org/doi/10.1021/la970440c

    [7]

    CHEN JH, Chen Y, and LI YQ. Quantum-mechanical study of effect of lattice defects on surface properties and copper activation of sphalerite surface[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1121-1130. doi: 10.1016/S1003-6326(09)60266-1

    [8]

    GERSON AR, LANGE AG, PRINCE KE, SMART RC. The mechanism of copper activation of sphalerite[J]. Applied Surface science, 1999, 137(1): 207-223. http://www.sciencedirect.com/science/article/pii/S0169433298004991

    [9]

    F·拉什齐. 闪锌矿的活化及表面Pb离子浓度[J]. 国外金属矿选矿, 2003, 40(6): 31-36. http://d.wanfangdata.com.cn/Periodical/gwjskxk200306006

    [10]

    FUERSTENAU DW, METZGER PH. Activation of sphalerite with lead ions in the presence of zinc salts[J]. Minerals engineering, 1960, 217: 119-123. http://www.researchgate.net/publication/281198980_Activation_of_sphalerite_with_lead_ions_in_the_presence_of_zinc_salts

    [11]

    POPOV SR, VUINI DR, KAANIK JV. Floatability and adsorption of ethyl xanthate on sphalerite in an alkaline medium in the presence of dissolved lead ions[J]. International Journal of Mineral Processing, 1989, 27(3/4): 205-219. http://www.sciencedirect.com/science/article/pii/0301751689900653

    [12]

    CHEN Y, CHEN JH, and GUO J. A DFT study on the effect of lattice impurities on the electronic structures and floatability of sphalerite[J]. Minerals engineering, 2010, 23(14): 1120-1130. doi: 10.1016/j.mineng.2010.07.005

    [13]

    REICH M, Becker U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite[J]. Chemical Geology, 2006, 225(3/4): 278-290. http://www.sciencedirect.com/science/article/pii/S0009254105003608

    [14]

    CHEN JH, WANG L, CHEN Y, et al. A DFT study of the effect of natural impurities on the electronic structure of galena[J]. International Journal of Mineral Processing, 2011, 98: 132-136. doi: 10.1016/j.minpro.2010.11.001

    [15]

    LONG XH, CHEN JH, and Chen Y. Adsorption of ethyl xanthate on ZnS(110) surface in the presence of water molecules: A DFT study[J]. Applied Surface Science, 2016, 370(5): 11-18.

    [16]

    VANDERBILT, DAVID. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B Condensed Matter, 1990, 41(11): 7892. doi: 10.1103/PhysRevB.41.7892

    [17]

    PERDEW JP, Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy[J]. Physical Review B, Condensed matter, 1992, 45(23): 13244-13249. doi: 10.1103/PhysRevB.45.13244

    [18]

    NISHIDATE K, YOSHIZAWA M, HASEGAWA M. Energetics of Mg and B adsorption on polar zinc oxide surfaces from first principles[J]. Physical Review B, Condensed matter, 2008, 77(3): 35330-35336. doi: 10.1103/PhysRevB.77.035330

    [19]

    LEPPINEN JO. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. International Journal of Mineral Processing, 1990, 30(3): 245-263. http://www.sciencedirect.com/science/article/pii/030175169090018T

  • 加载中

(7)

(1)

计量
  • 文章访问数:  1261
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2021-02-05
刊出日期:  2021-04-25

目录