-
摘要:
通过矿物浮选试验、动电位测试及Zeta电位分布、扫描电镜观测等研究手段,考察了六偏磷酸钠在蛇纹石/镍黄铁矿浮选分离体系中的作用,分析了六偏磷酸钠对矿物颗粒间的分散作用机理。结果表明,在镍黄铁矿/蛇纹石浮选体系中,蛇纹石的存在降低了镍黄铁矿的回收率,而加入六偏磷酸钠使镍黄铁矿的浮选环境得到改善,回收率上升。机理研究表明:在一定pH值范围内,蛇纹石与镍矿铁矿表面荷电相反,蛇纹石可通过静电作用与镍矿铁矿发生"异相凝聚"而罩盖在其表面,从而降低镍矿铁矿表面的疏水性能,导致其可浮性下降;六偏磷酸钠可以使蛇纹石的表面电位由正变负。此时,蛇纹石和镍矿铁矿之间的电性相同,两者之间由静电吸引变为静电排斥,从而减弱蛇纹石在镍矿铁矿表面的附着,消除蛇纹石对镍黄铁矿的抑制作用,提高镍黄铁矿的浮选回收率。
Abstract:The dispersion effect of sodium hexametaphosphate(SHMP) on flotation system of serpentine-pentlandite was investigated and the mechanism was studied by flotation experiments, Zeta potential, and SEM measurement.The results showed that the hetero-aggregation between serpentine and pentlandite results in the attachment of serpentine slimes on pentlandite surface and changed the surface characteristics of pentlandite, thus decreased the pentlandite flotation recovery.However, the pentlandite flotation recovery was increased by adding SHMP. The mechanism studies demonstrate that the serpentine particles coat on the pentlandite surface by hetero-aggregation because the surface electrical properties of serpentine and pentlandite are same in a certain pH range.It reduces the hydrophobicity of pentlandite surface and decreases the flotation recovery of pentlandite. The hetero-aggregation between pentlandite and the particles of serpentine can be eliminated by adding SHMP. Because the addition of SHMP significantly changes the surface electrical properties of serpentine, and makes electrostatic attraction convert into electrostatic repulsion between pentlandite and the particles of serpentine, thereby improving the flotation recovery of pentlandite.
-
Key words:
- serpentine /
- pentlandite /
- hetero-coagulation /
- sodium hexametaphosphate
-
表 1 单矿物化学多元素分析结果
Table 1. Results of single mineral chemical multielement analysis
矿物 元素质量分数/% MgO SiO2 CaO Al2O3 Fe Ni Cu S 镍黄铁矿 0.21 1.19 - 0.21 35.36 28.29 0.86 33.21 蛇纹石 38.79 39.27 0.32 0.71 3.86 - - - 表 2 单矿物样品的粒度组成
Table 2. Particle size composition of mineral samples
矿样 d10/μm d50/μm d90/μm 平均粒径/μm 镍黄铁矿 3.87 30.8 116.8 51.49 蛇纹石 1.89 12.67 48.12 20.89 -
[1] 何浩, 邵延海, 吴海祥, 等. 我国硫化铜镍矿浮选工艺及药剂研究现状[J]. 矿产保护与利用, 2020, 40(2): 100-104. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=4cf102e6-170c-4e7c-bd9b-bcb883056c58
[2] 娄德波, 孙艳, 山成栋, 等. 中国镍矿床地质特征与矿产预测[J]. 地学前缘. 2018(3): 67-81. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201803008.htm
[3] 余良晖. 国内外镍资源供需格局分析[J]. 矿产保护与利用, 2019(1): 155-162. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=94d8086c-4b61-4bfa-bbd6-599df45db475
[4] KUCK P. H. Nickel. U.S. geological survey[M]. Washington, 2009.
[5] 宓奎峰, 王建平, 柳振江, 等. 我国镍矿资源形势与对策[J]. 中国矿业, 2013(6): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201306003.htm
[6] 程少逸, 赵礼兵, 袁致涛, 等. 金川三矿区低品位铜镍矿石工艺矿物学研究[J]. 金属矿山, 2011(2): 85-89. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201102025.htm
[7] DAVID A. BEATTIE, LE HUYNH, GILLIAN B. N. KAGGWA, JOHN RALSTON. The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals[J]. Minerals Engineering, 2005, 19(6): 598-608 http://www.sciencedirect.com/science/article/pii/S0892687505003225
[8] 马建青, 刘星. 甘肃金川铜镍矿石中MgO对浮选的影响[J]. 云南地质, 2005, 24(4): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200504009.htm
[9] FORNASIERO D, RALSTON J. Cu(Ⅱ) and Ni(Ⅱ) activation in the flotation of quartz, serpentine and chlorite[J]. International Journal of Mineral Processing, 2005, 76(1/2): 75-81. http://www.sciencedirect.com/science/article/pii/S0301751604001814
[10] 王德燕, 戈保梁. 硫化铜镍矿浮选中蛇纹石脉石矿物的行为研究[J]. 有色矿冶, 2003, 19(4): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200304006.htm
[11] 胡显智, 张文彬. 铜镍矿浮选精矿降镁研究与实践进展[J]. 有色矿冶, 2003: 19(1): 21-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200301005.htm
[12] 夏启斌, 李忠, 邱显扬, 等. 六偏磷酸钠对蛇纹石的分散机理研究[J]. 矿冶工程, 2002, 22(2): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200202015.htm
[13] 王德燕, 戈保梁. 硫化铜镍矿浮选中蛇纹石脉石矿物的行为研究[J]. 有色矿冶, 2003(4): 17-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKY200304006.htm
[14] 陈伟, 吴越. 六偏磷酸钠对低品位硫化铜镍矿浮选降镁的影响[J]. 矿冶, 2020(2): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ202002007.htm
[15] 张汉泉, 许鑫, 陈官华, 周峰. 六偏磷酸钠在磷矿浮选中的应用及作用机理[J]. 矿产保护与利用, 2019(1): 155-162. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=342d8a4d-a944-49c2-a9cb-c55ac114929c
[16] YI PING LU, MING QIANG ZHANG, QI MING FENG, et al. Effect of sodium hexametaphosphate on separation of serpentine from pyrite[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(1): 208-213. http://www.sciencedirect.com/science/article/pii/S1003632611607012
[17] LIU J, ZHOU Z. XU Z, et al. Bitumen-clay interactions in aqueous media studied by zeta potential distribution measurement[J]. Journal of Colloid and Interface Science, 2002, 252(2): 409-418. http://europepmc.org/abstract/MED/16290806
[18] ZHAO H, LONG J, MASLIYAH J, et al. Effect of divalent cations and surfactants on silica-bitumen interactions[J]. Industrial & Engineering Chemistry Research, 2006, 45(22): 7482-7490. http://pubs.acs.org/doi/abs/10.1021/ie060348o
[19] LIU J, XU Z, MASLIYAH J. Studies on bitumen-silica interaction in aqueous solutions by atomic force microscopy[J]. Langmuir, 2003, 19(9): 3911-3920. http://www.researchgate.net/publication/231675026_Studies_on_BitumenSilica_Interaction_in_Aqueous_Solutions_by_Atomic_Force_Microscopy
[20] LONG J, LI H, XU Z, et al. Role of colloidal interactions in oils and tailings treatment[J]. AIChE Journal, 2006, 52(1): 371-383. http://onlinelibrary.wiley.com/doi/10.1002/aic.10603/abstract