含砷金矿微生物预氧化过程强化方法研究进展

邓莎, 刘兆悦, 杨玮, 龙涛, 肖巍. 含砷金矿微生物预氧化过程强化方法研究进展[J]. 矿产保护与利用, 2021, 41(6): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.06.019
引用本文: 邓莎, 刘兆悦, 杨玮, 龙涛, 肖巍. 含砷金矿微生物预氧化过程强化方法研究进展[J]. 矿产保护与利用, 2021, 41(6): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.06.019
DENG Sha, LIU Zhaoyue, YANG Wei, LONG Tao, XIAO Wei. Research Progress on the Methods Enhancing Biooxidation Pretreatment for Arsenic-Bearing Gold Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.06.019
Citation: DENG Sha, LIU Zhaoyue, YANG Wei, LONG Tao, XIAO Wei. Research Progress on the Methods Enhancing Biooxidation Pretreatment for Arsenic-Bearing Gold Ores[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 150-156. doi: 10.13779/j.cnki.issn1001-0076.2021.06.019

含砷金矿微生物预氧化过程强化方法研究进展

  • 基金项目:
    国家自然科学基金(52004198);陕西自然科学基础研究计划(2020JQ-666);陕西省重点研发计划一般项目(2020SF-362)
详细信息
    作者简介: 邓莎(1991-),女,陕西咸阳人,博士,副教授,主要从事微生物冶金及矿产资源综合利用研究,E-mail:dengshaxauat@126.com
    通讯作者: 杨玮(1972-),男,河南三门峡人,博士,教授,主要从事黄金选冶及矿产资源综合利用研究,E-mail:yangweixauat@126.com
  • 中图分类号: TD953+.1;TD925+.5

Research Progress on the Methods Enhancing Biooxidation Pretreatment for Arsenic-Bearing Gold Ores

More Information
  • 微生物预氧化技术具有成本低、设备简单、环境友好等优点,在难处理金矿资源的开发利用中得到了巨大发展和广泛认可。然而,由于原料来源复杂、浸矿菌种耐砷性差、浸矿过程容易生成钝化产物等问题,微生物预氧化在实际生产中依然受到一定程度的制约。目前如何强化含砷金矿微生物浸出已成为该领域的研究热点和难点。综述了目前国内外含砷金矿微生物预氧化强化方法的研究现状,其中详细阐述了应用氧化剂、金属离子、原电池效应、表面活性剂、腐殖酸和磁化水等强化方法的研究进展及作用机理。在此基础上,展望了该领域未来研究的主要发展方向,为含砷金矿微生物预氧化工艺的进一步开发及应用提供参考。

  • 加载中
  • 图 1  Fe(Ⅲ)存在条件下S. thermosulfidooxidans菌浸出砷黄铁矿的机理[17](当加入Fe(Ⅲ)时,M为NH4+,而不加入Fe(Ⅲ)时,M为K+)

    Figure 1. 

    图 2  砷黄铁矿细菌浸出机理示意图[30] (a)不含Cu2+;(b)含Cu2+

    Figure 2. 

    图 3  Ag+对砷黄铁矿电化学氧化溶解的催化机理[33]

    Figure 3. 

    图 4  黄铁矿对砷黄铁矿生物氧化的强化作用机制[49]

    Figure 4. 

    图 5  腐殖酸强化砷黄铁矿微生物浸出机理[60]

    Figure 5. 

  • [1]

    MUDD G M. Global trends in gold mining: towards quantifying environmental and resource sustainability[J]. Resources Policy, 2007, 32(1/2): 42-56. https://www.sciencedirect.com/science/article/pii/S0301420707000359

    [2]

    刘汉钊. 难处理金矿石难浸的原因及预处理方法[J]. 黄金, 1997(9): 44-48. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ709.009.htm

    [3]

    MADDOX L M, BANCROFT G M, SCAINI M J, et al. Invisible gold: Comparison of Au deposition on pyrite and arsenopyrite[J]. American Mineralogist, 1998, 83: 1240-1245. doi: 10.2138/am-1998-11-1212

    [4]

    CABRI L J, CHRYSSOULIS S L, De VILLIERS J P R, et al. The nature of "invisible" gold in arsenopyrite[J]. The Canadian Mineralogist, 1989, 27: 353-362. https://www.researchgate.net/publication/258209241_The_nature_of_invisible_gold_in_arsenopyrite

    [5]

    CORKHILL C L, WINCOTT P L, LLOYD J R, et al. The oxidative dissolution of arsenopyrite (FeAsS) and enargite (Cu3AsS4) by Leptospirillum ferrooxidans[J]. Geochimica et Cosmochimica Acta, 2008, 72(23): 5616-5633. doi: 10.1016/j.gca.2008.09.008

    [6]

    HENAO D M O, GODOY M A M. Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2010, 104(2): 162-168. doi: 10.1016/j.hydromet.2010.05.012

    [7]

    ZHU T, LU X, LIU H, et al. Quantitative X-ray photoelectron spectroscopy-based depth profiling of bioleached arsenopyrite surface by Acidithiobacillus ferrooxidans[J]. Geochimica et Cosmochimica Acta, 2014, 127: 120-139. doi: 10.1016/j.gca.2013.11.025

    [8]

    MURAVYOV M I, BULAEV A G. Two-step oxidation of a refractory gold-bearing sulfidic concentrate and the effect of organic nutrients on its biooxidation[J]. Minerals Engineering, 2013, 45: 108-114. doi: 10.1016/j.mineng.2013.02.007

    [9]

    MÁRQUEZ M A, OSPINA J D, MORALES A L. New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope[J]. Minerals Engineering, 2012, 39: 248-254. doi: 10.1016/j.mineng.2012.06.012

    [10]

    FOMCHENKO N V, MURAVYOV M I. Thermodynamic and XRD analysis of arsenopyrite biooxidation and enhancement of oxidation efficiency of gold-bearing concentrates[J]. International Journal of Mineral Processing, 2014, 133: 112-118. doi: 10.1016/j.minpro.2014.10.009

    [11]

    FANTAUZZI M, LICHERI C, ATZEI D, et al. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques[J]. Analytical and Bioanalytical Chemistry, 2011, 401(7): 2237-2248. doi: 10.1007/s00216-011-5300-0

    [12]

    EDWARDS K J, HU B, HAMERS R J, et al. A new look at microbial leaching patterns on sulfide minerals[J]. FEMS microbiology ecology, 2001, 34(3): 197-206. doi: 10.1111/j.1574-6941.2001.tb00770.x

    [13]

    MIN X B, CHAI L Y, CHEN W L, et al. Bioleaching of refractory gold ore (Ⅱ)-Mechanism on bioleaching of arsenopyrite by Thiobacillus ferrooxidans[J]. Transactions of Nonferrous Metals Society of China, 2002, 12(1): 142-146.

    [14]

    YUNMEI Y, YONGXUAN Z, WILLIAMS-JONES A E, et al. A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment[J]. Applied Geochemistry, 2004, 19(3): 435-444. doi: 10.1016/S0883-2927(03)00133-1

    [15]

    MIKHLIN Y L, ROMANCHENKO A S, ASANOV I P. Oxidation of arsenopyrite and deposition of gold on the oxidized surfaces: A scanning probe microscopy, tunneling spectroscopy and XPS study[J]. Geochimica et Cosmochimica Acta, 2006, 70(19): 4874-4888. doi: 10.1016/j.gca.2006.07.021

    [16]

    ZHANG D, XIA J, NIE Z, et al. Mechanism by which ferric iron promotes the bioleaching of arsenopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans[J]. Process Biochemistry, 2019, 81: 11-21. doi: 10.1016/j.procbio.2019.03.004

    [17]

    DENG Y, ZHANG D, XIA J, et al. Enhancement of arsenopyrite bioleaching by different Fe(Ⅲ) compounds through changing composition and structure of passivation layer[J]. Journal of Materials Research and Technology, 2020, 9(6): 12364-12377. doi: 10.1016/j.jmrt.2020.08.088

    [18]

    SANTINI J M, KAPPLER U, WARD S A, et al. The NT-26 cytochrome c552 and its role in arsenite oxidation[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 2007, 1767(2): 189-196. doi: 10.1016/j.bbabio.2007.01.009

    [19]

    富瑶, 高鹭, 杨洪英, 等. As(Ⅲ)和As(Ⅴ)胁迫下浸矿细菌胞外多糖的变化特征[J]. 金属矿山, 2016(5): 81-84. doi: 10.3969/j.issn.1001-1250.2016.05.018

    [20]

    向兰, 柯家骏, 裘荣庆. As3+和As5+对细菌生长及含金银的毒砂矿石浸出的影响[J]. 矿产综合利用, 1991(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL199104000.htm

    [21]

    杨松荣, 邱冠周, 胡岳华. As3+及As5+对生物氧化过程的影响及其转化过程的探讨[J]. 国外金属矿选矿, 2003, 40(1): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200301000.htm

    [22]

    BARRETT J, EWART D K, HUGHES M N, et al. Chemical and biological pathways in the bacterial oxidation of arsenopyrite[J]. FEMS Microbiology Reviews, 1993, 11(1): 57-62. https://www.sciencedirect.com/science/article/pii/0168644593900244

    [23]

    WIERTZ J V, MATEO M, ESCOBAR B. Mechanism of pyrite catalysis of As(Ⅲ) oxidation in bioleaching solutions at 30℃ and 70℃[J]. Hydrometallurgy, 2006, 83(1-4): 35-39. doi: 10.1016/j.hydromet.2006.03.035

    [24]

    李骞. 含砷金矿生物预氧化提金基础研究[D]. 长沙: 中南大学, 2007.

    [25]

    李骞, 姜涛, 杨永斌, 等. 一种添加剂在强化细菌氧化含砷金矿上的应用: CN102634661A[P]. 20120815.

    [26]

    CUI R C, YANG H Y, CHEN S, et al. Valence variation of arsenic in bioleaching process of arsenic-bearing gold ore[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(6): 1171-1176. doi: 10.1016/S1003-6326(09)60274-0

    [27]

    PATHAK A, MORRISON L, HEALY M G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: A critical review[J]. Bioresource Technology, 2017, 229: 211-221. doi: 10.1016/j.biortech.2017.01.001

    [28]

    苑洪晶. 协同强化含砷金矿生物预氧化的研究[D]. 长沙: 中南大学, 2013.

    [29]

    李骞, 齐伟, 张雁, 等. Cu2+催化砷黄铁矿生物氧化试验研究[J]. 黄金, 2019, 40(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201902012.htm

    [30]

    ZHANG Y, LI Q, LIU X, et al. The catalytic effect of copper ion in the bioleaching of arsenopyrite by Acidithiobacillus ferrooxidans in 9K culture medium[J]. Journal of Cleaner Production, 2020, 256: 120391. doi: 10.1016/j.jclepro.2020.120391

    [31]

    FANG F. Catalytic effect of silver on bioleaching of arsenopyrite[J]. International Journal of Chemical Engineering and Applications, 2014(5): 474-478. http://www.ijcea.org/papers/431-C0004.pdf

    [32]

    张明, 杨巧文, 张广积, 等. Ag+对含砷金精矿生物浸出的影响[J]. 过程工程学报, 2012, 12(5): 781-784. https://www.cnki.com.cn/Article/CJFDTOTAL-HGYJ201205014.htm

    [33]

    ZHANG Y, LI Q, SUN S, et al. Electrochemical behaviour of the oxidative dissolution of arsenopyrite catalysed by Ag+ in 9K culture medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126169. doi: 10.1016/j.colsurfa.2021.126169

    [34]

    CUN-XIONG L I, HONG-SHENG X U, DENG Z G, et al. Pressure leaching of zinc silicate ore in sulfuric acid medium[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(5): 918-923. doi: 10.1016/S1003-6326(09)60236-3

    [35]

    PICH OTERO A, CURUTCHET G, DONATI E, et al. Action of Thiobacillus thiooxidans on sulphur in the presence of a surfactant agent and its application in the indirect dissolution of phosphorus[J]. Process Biochemistry, 1995, 30(8): 747-750. doi: 10.1016/0032-9592(95)00003-E

    [36]

    SIEBERT H M, MARMULLA R, STAHMANN K P. Effect of SDS on planctonic Acidithiobacillus thiooxidans and bioleaching of sand samples[J]. Minerals Engineering, 2011, 24(11): 1128-1131. doi: 10.1016/j.mineng.2011.03.003

    [37]

    吴爱祥, 艾纯明, 王贻明, 等. 表面活性剂强化铜矿石浸出[J]. 北京科技大学学报, 2013, 35(6): 709-713. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201306001.htm

    [38]

    LI L, LV Z, YUAN X. Effect of l-glycine on bioleaching of collophanite by Acidithiobacillus ferrooxidans[J]. International Biodeterioration & Biodegradation, 2013, 85: 156-165.

    [39]

    L T D, AND, X M L, et al. Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores[J]. Minerals Engineering, 2000, 13(14/15): 1543-1553. https://www.sciencedirect.com/science/article/pii/S0892687500001370

    [40]

    FANG, FANG, HONG, et al. Influence of calcium lignosulfonate on bioleaching of arsenic-containing gold concentrate: 2014 International Conference on Environment and Sustainability (ICES 2014)[C].

    [41]

    李宏煦. 硫化矿细菌浸出过程的电化学机理及工艺研究[D]. 长沙: 中南大学, 2001.

    [42]

    XU J, SHI W, MA P, et al. Corrosion behavior of a pyrite and arsenopyrite galvanic pair in the presence of sulfuric acid, ferric ions and HQ0211 bacterial strain[J]. Minerals, 2019, 9(3): 169. doi: 10.3390/min9030169

    [43]

    TAXIARCHOU M, ADAM K, KONTOPOULOS A. Bacterial oxidation conditions for gold extraction from Olympias refractory arsenical pyrite concentrate[J]. Hydrometallurgy, 1994, 36(2): 169-185. doi: 10.1016/0304-386X(94)90004-3

    [44]

    KOMNITSAS K, XENIDIS A, ADAM K. Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion[J]. Minerals Engineering, 1995(NO. 12): 1443-1454. https://www.sciencedirect.com/science/article/pii/0892687595001093

    [45]

    杨洪英, 杨立, 赵玉山, 等. 难处理金矿石中硫化物细菌氧化的活性序列[J]. 有色金属工程, 2002, 54(2): 42-44. doi: 10.3969/j.issn.2095-1744.2002.02.011

    [46]

    崔日成, 杨洪英, 张谷平, 等. 毒砂型高砷金精矿的细菌氧化[J]. 化工学报, 2008(12): 3090-3094. doi: 10.3321/j.issn:0438-1157.2008.12.020

    [47]

    方芳, 钟宏, 江放明, 等. 黄铁矿对砷黄铁矿生物浸出的影响[J]. 中国有色金属学报, 2013, 23(10): 2970-2976. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201310031.htm

    [48]

    SHA D, GUO H. Catalytic effect of pyrite on the leaching of arsenopyrite in sulfuric acid and acid culture medium[J]. Electrochimica Acta, 2018, 263: 8-16. doi: 10.1016/j.electacta.2018.01.043

    [49]

    SHA D, HE G, WU B, et al. Pyrite-promoted dissolution of arsenopyrite in the presence of Sulfobacillus thermosulfidooxidans[J]. Journal of Materials Research and Technology, 2020, 9(4): 9362-9371. doi: 10.1016/j.jmrt.2020.05.068

    [50]

    PARAMGURU R K, MISHRA K G, KANUNGO S B. Electrochemical phenomena in MnO2-FeS2 leaching in dilute HCl. part 2: studies on polarization measurements[J]. Canadian Metallurgical Quarterly, 1998, 37(5): 395-403. https://www.researchgate.net/publication/222404645_Electro-generative_mechanism_for_simultaneous_leaching_of_pyrite_and_MnO2_in_presence_of_A_ferrooxidans

    [51]

    GANTAYAT B P, RATH P C, PARAMGURU R K, et al. Galvanic interaction between chalcopyrite and manganese dioxide in sulfuric acid medium[J]. Metallurgical and Materials Transactions B, 2000, 31(1): 55-61. doi: 10.1007/s11663-000-0130-z

    [52]

    PARAMGURU R K, NAYAK B B. Galvanic interaction between manganese dioxide and pyrite[J]. Journal of the Electrochemical Society, 1996, 143(12): 3987-3991. doi: 10.1149/1.1837325

    [53]

    MADHUCHHANDA M, DEVI N B, SRINIVASA RAO K, et al. Galvanic interaction between sulfide minerals and pyrolusite[J]. Journal of Solid State Electrochemistry, 2000, 4(4): 189-198. doi: 10.1007/s100080050194

    [54]

    白云龙, 谢锋, 王伟, 等. 二氧化锰对黄铜矿浸出行为的影响[J]. 有色金属(冶炼部分), 2019(11): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201911001.htm

    [55]

    符剑刚. 采用软锰矿强化辉钼矿的氧化分解及联产钼酸铵与硫酸锰[D]. 长沙: 中南大学, 2009.

    [56]

    龙怀中. 方铅矿—软锰矿协同浸出直接制备铅、锰氧化物的研究[D]. 长沙: 中南大学, 2013.

    [57]

    ZHAN J, WANG Z, ZHANG C, et al. Separation and extraction of bismuth and manganese from roasted low-grade bismuthinite and pyrolusite: thermodynamic analysis and sulfur fixing[J]. JOM, 2015, 67(5): 1114-1122. doi: 10.1007/s11837-015-1391-y

    [58]

    ZHANG X, FENG Y L, HAO-RAN L I. Enhancement of bio-oxidation of refractory arsenopyritic gold ore by adding pyrolusite in bioleaching system[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(9): 2479-2484. doi: 10.1016/S1003-6326(16)64339-X

    [59]

    RASHID, MAMUN, STERBINSKY, et al. Kinetic and mechanistic evaluation of inorganic arsenic species adsorption onto humic acid grafted magnetite nanoparticles[J]. The journal of physical chemistry, C. Nanomaterials and interfaces, 2018: 7b-12438b. https://par.nsf.gov/servlets/purl/10073740

    [60]

    ZHANG D R, CHEN H R, XIA J L, et al. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization[J]. Journal of Hazardous Materials, 2019, 384: 121359. https://www.sciencedirect.com/science/article/pii/S0304389419313135

    [61]

    汪模辉, 邓天龙, 廖梦霞. 含砷金矿的磁场强化生物预氧化[J]. 应用化学, 2000(4): 362-365. doi: 10.3969/j.issn.1000-0518.2000.04.004

    [62]

    YANG B, LIN M, FANG J, et al. Combined effects of jarosite and visible light on chalcopyrite dissolution mediated by Acidithiobacillus ferrooxidans[J]. Science of The Total Environment, 2020, 698: 134175. doi: 10.1016/j.scitotenv.2019.134175

    [63]

    ZHOU S, GAN M, ZHU J, et al. Catalytic effect of light illumination on bioleaching of chalcopyrite[J]. Bioresour Technol, 2015, 182: 345-352. doi: 10.1016/j.biortech.2015.02.010

    [64]

    李伟洁. 光及原电池反应对闪锌矿微生物氧化作用的影响[D]. 南京: 南京大学, 2020.

    [65]

    YANG B J, LUO W, LIAO Q, et al. Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200-211. doi: 10.1016/S1003-6326(19)65192-7

  • 加载中

(5)

计量
  • 文章访问数:  1853
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2021-09-22
刊出日期:  2021-12-25

目录