Au(100)表面亲/疏水性质的密度泛函理论研究

韦涛, 陈建华, 陈晔. Au(100)表面亲/疏水性质的密度泛函理论研究[J]. 矿产保护与利用, 2022, 42(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.01.001
引用本文: 韦涛, 陈建华, 陈晔. Au(100)表面亲/疏水性质的密度泛函理论研究[J]. 矿产保护与利用, 2022, 42(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.01.001
WEI Tao, CHEN Jianhua, CHEN Ye. Density Functional Theory Study on Hydrophilic/hydrophobic Properties of Au (100) Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.01.001
Citation: WEI Tao, CHEN Jianhua, CHEN Ye. Density Functional Theory Study on Hydrophilic/hydrophobic Properties of Au (100) Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 1-7. doi: 10.13779/j.cnki.issn1001-0076.2022.01.001

Au(100)表面亲/疏水性质的密度泛函理论研究

  • 基金项目:
    国家自然科学基金(NSFC 51864003)
详细信息
    作者简介: 韦涛(1997-), 男, 广西河池人, 硕士研究生, 主要从事矿物处理与加工研究, E-mail: 743277881@qq.com
    通讯作者: 陈建华(1971-), 男, 四川西昌人, 教授, 博士生导师, 主要从事浮选理论与工艺、矿物浮选量子化学、矿产资源综合利用等研究, E-mail: jhchen@gxu.edu.cn
  • 中图分类号: TD91;TD953+.1

Density Functional Theory Study on Hydrophilic/hydrophobic Properties of Au (100) Surface

More Information
  • 采用密度泛函理论, 研究了单个、一层、多层(两层、三层)水分子与Au(100)表面的相互作用, 从原子层面上分析Au(100)表面的亲/疏水性质。同时结合分子动力学模拟, 分析水滴在金表面的润湿过程, 进而从介观层面上揭示金表面的亲/疏水性质。结果表明, 单个水分子在Au(100)表面是物理吸附。与单个水分子吸附构型相比, 一层水分子吸附构型中存在层内氢键作用, 多层水分子吸附构型中存在层内氢键和层间氢键作用。随着水分子层数的增多, 多层水分子吸附构型的内层水分子与Au(100)表面原子的平均作用距离呈现逐渐减小的趋势。水滴在金表面的分子动力学模拟结果表明, 有机污染会对金表面的润湿性产生较大影响, 导致金表面呈现一定的疏水性, 而清洁金表面则为亲水性。

  • 加载中
  • 图 1  Au(100)面的吸附位点

    Figure 1. 

    图 2  单个水分子在Au(100)面顶位的吸附构型

    Figure 2. 

    图 3  单个水分子在Au(100)表面顶位吸附前后的态密度

    Figure 3. 

    图 4  单个水分子在Au(100)表面顶位吸附的电子密度

    Figure 4. 

    图 5  一层(a)、两层(b)、三层(c)水分子在Au(100)面的吸附构型(紫色虚线表示氢键)

    Figure 5. 

    图 6  水滴在Au(100)表面清洁及吸附少量甲醛状态下的润湿过程

    Figure 6. 

    表 1  单个水分子在Au(100)面的吸附能及作用距离

    Table 1.  Adsorption energy and action distance of a single water molecule on Au(100) surface

    吸附构型 吸附位点 Eads/(kJ·mol-1) dO-Au dH-Au
    单个水分子 顶位 -11.28 2.564 2.796
    单个水分子 桥位 -7.14 3.086 2.809
    单个水分子 穴位 -6.40 3.251 2.681
    下载: 导出CSV

    表 2  水分子的H、O原子和Au(100)表面的Au1原子吸附前后的Mulliken布居

    Table 2.  Mulliken populations of H and O atoms of water molecules and Au1 atoms before and after adsorption on Au (100) surface

    元素 吸附状态 s p d f total Charge/e
    H1 吸附前 0.48 0.00 0.00 0.00 0.48 0.52
    吸附后 0.56 0.00 0.00 0.00 0.56 0.44
    H2 吸附前 0.48 0.00 0.00 0.00 0.48 0.52
    吸附后 0.56 0.00 0.00 0.00 0.56 0.44
    O 吸附前 1.90 5.14 0.00 0.00 7.04 -1.04
    吸附后 1.87 4.96 0.00 0.00 6.83 -0.83
    Au1 吸附前 2.91 6.41 9.68 14.00 33.00 -0.00
    吸附后 2.82 6.48 9.66 14.00 32.96 0.04
    下载: 导出CSV

    表 3  一层、两层、三层水分子在Au(100)面的作用距离范围及平均作用距离

    Table 3.  Action distance range and average action distance of water molecules in the first, second and third layers on Au(100) surface

    吸附构型 分层 内层水分子的氧与金原子作用距离
    范围dO-Au
    内层水分子的氧与金原子平均作用
    距离dO-Au
    一层水分子 一层 3.265~3.692 3.472
    两层水分子 内层 2.534~3.668 3.203
    三层水分子 内层 2.649~3.675 3.083
    下载: 导出CSV
  • [1]

    王燕东. 2009—2019年我国金矿资源勘查形势分析与对策[J]. 中国矿业, 2020, 29(11): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202011002.htm

    WANG Y D. Analysis and suggestions of gold resources prospecting situation in China from 2009 to 2019[J]. China Mining Magazine, 2020, 29(11): 7-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA202011002.htm

    [2]

    任慧, 刘杰, 王勋, 等. 内蒙古某金矿阶段磨矿—阶段浮选试验研究[J]. 矿产保护与利用, 2021, 41(2): 106-111. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=50867c4c-d6e5-48f6-9dca-7fa984ca7a68

    REN H, LIU J, WANG X, et al. Experimental study on stage grinding and stepwise flotation of a gold ore in inner mongolia[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 106-111. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=50867c4c-d6e5-48f6-9dca-7fa984ca7a68

    [3]

    倪青青, 高志, 宋祖光. 提高河南某低品位金矿金回收率试验研究[J]. 金属矿山, 2020(9): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202009018.htm

    NI Q Q, GAO Z, SONG Z G. Experiment on improving the gold recovery rate of a low-grade gold mine in Henan[J]. Metal Mine, 2020(9): 125-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202009018.htm

    [4]

    陈桥, 杨洪英, 佟琳琳. 海南某金矿尼尔森重选-浮选试验[J]. 东北大学学报(自然科学版), 2020, 41(3): 413-417. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202003020.htm

    CHEN Q, YANG H Y, TONG L L. Processing a gold ore from Hainan province using knelson gravity concentration-flotation[J]. Journal of Northeastern University (Natural Science), 2020, 41(3): 413-417. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX202003020.htm

    [5]

    R G J. The hydrophilic nature of gold and platinum[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1977, 81(2): 285-290.

    [6]

    林斯, 马树江. 金矿浮选中某些化学状态[J]. 国外金属矿选矿, 1994, 31(9): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199409003.htm

    LIN S, MA S J. Some chemical states in gold flotation[J]. Metallic Ore Dressing Abroad, 1994, 31(9): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199409003.htm

    [7]

    WHITE M L. The wetting of gold surfaces by water [J]. Journal of Physical Chemistry, 2002, 68(10): 3083-3085.

    [8]

    Erb, Robert A. Wettability of metals under continuous condensing conditions[J]. The Journal of Physical Chemistry, 1965, 69(4): 1306-1309. doi: 10.1021/j100888a035

    [9]

    江文峰, 陈建新, 吁松瑞, 等. 光响应"线性-超支化"超分子嵌段共聚物的制备及其对金表面的可逆亲疏水修饰[J]. 高分子学报, 2014(10): 1398-1407. doi: 10.11777/j.issn1000-3304.2014.14039

    JIANG W F, CHEN J X, YU S R, et al. An amphiphilic linear-hyperbranched supramolecular block copolymer and its application in rendering phototuning wettability to gold surface[J]. Acta Polymerica Sinica, 2014(10): 1398-1407. doi: 10.11777/j.issn1000-3304.2014.14039

    [10]

    FOWKES F M. Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion[J]. Advances in Chemistry, 1964, 43(6): 99-111.

    [11]

    FOWKES F M. Attractive forces at interfaces[J]. Industrial & Engineering Chemistry, 1964, 56(12): 40-52.

    [12]

    BARTELL F E, SMITH J T. Alteration of surface properties of gold and silver as indicated by contact angle measurements[J]. The Journal of Physical Chemistry, 1953, 57(2): 165-172. doi: 10.1021/j150503a008

    [13]

    BEWIG K W, ZISMAN W A. The wetting of gold and platinum by water. [J]. Journal of Physical Chemistry, 1965, 69(12): 4238-4242. doi: 10.1021/j100782a029

    [14]

    BERNETT M K, ZISMAN W A. Confirmation of spontaneous spreading by water on pure gold[J]. The Journal of Physical Chemistry, 1970, 74(11): 2309-2312. doi: 10.1021/j100705a012

    [15]

    SCHRADER, MALCOLM E. Ultrahigh-vacuum techniques in the measurement of contact angles. Ⅱ. water on gold[J]. The Journal of Physical Chemistry, 1970, 74(11): 2313-2317. doi: 10.1021/j100705a013

    [16]

    SMITH T. The hydrophilic nature of a clean gold surface[J]. Journal of Colloid & Interface Science, 1980, 75(1): 51-55.

    [17]

    GARDNER J R. The hydrophilic nature of gold and platinum[J]. Journal of Electroanalytical Chemistry & Interfacial Electrochemistry, 1977, 81(2): 285-290.

    [18]

    NEVES R S, MOTHEO A J, RUI P, et al. Modelling water adsorption on Au(210) surfaces. I. A force field for water-Au interactions by DFT[J]. Journal of Electroanalytical Chemistry, 2007, 609(2): 140-146.

    [19]

    LIU R. Adsorption and dissociation of H2O on Au(111) surface: A DFT study[J]. Computational and Theoretical Chemistry, 2013, 1019: 141-145. doi: 10.1016/j.comptc.2013.07.009

    [20]

    JIANG Z, LI M, YAN T, et al. Decomposition of H2O on clean and oxygen-covered Au (100) surface: A DFT study[J]. Applied Surface Science, 2014, 315: 16-21. doi: 10.1016/j.apsusc.2014.07.076

    [21]

    VERTEGEL A A, SHUMSKY M G, SWITZER J A. Epitaxial electrodeposition of thallic oxide on single crystal gold[J]. Electrochimica Acta, 2000, 45(20): 3233-3239. doi: 10.1016/S0013-4686(00)00427-8

    [22]

    SUH I K, OHTA H, WASEDA Y. High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction[J]. Journal of Materials Science, 1988, 23(2): 757-760. doi: 10.1007/BF01174717

    [23]

    MARZARI N, VANDERBILT D, PAYNE M C. Ensemble density-functional theory for ab-initio molecular dynamics of metals and finite-temperature insulators[J]. Physical Review Letters, 1997, 79(7): 1337-1340. doi: 10.1103/PhysRevLett.79.1337

    [24]

    XIAO C, XUE Q, LI X, et al. Inherent wettability of different rock surfaces at nanoscale: a theoretical study[J]. Applied Surface Science, 2018, 434: 73-81. doi: 10.1016/j.apsusc.2017.10.173

    [25]

    GAO Y, ZHANG Y, YANG Y, et al. Molecular dynamics investigation of interfacial adhesion between oxidised bitumen and mineral surfaces[J]. Applied Surface Science, 2019, 479: 449-462. doi: 10.1016/j.apsusc.2019.02.121

    [26]

    GUO J, ZHANG L, LIU S, et al. Effects of hydrophilic groups of nonionic surfactants on the wettability of lignite surface: Molecular dynamics simulation and experimental study[J]. Fuel, 2018, 231: 449-457. doi: 10.1016/j.fuel.2018.05.106

    [27]

    YI H, JIA F, ZHAO Y, et al. Surface wettability of montmorillonite (001) surface as affected by surface charge and exchangeable cations: A molecular dynamic study[J]. Applied Surface Science, 2018, 459: 148-154. doi: 10.1016/j.apsusc.2018.07.216

    [28]

    MICHAELIDES A. Density functional theory simulations of water-metal interfaces: waltzing waters, a novel 2D ice phase, and more[J]. Applied Physics A, 2006, 85(4): 415-425. doi: 10.1007/s00339-006-3695-9

    [29]

    SCHNUR S, GRO A. Properties of metal-water interfaces studied from first principles[J]. New Journal of Physics, 2009, 11(12): 125003. doi: 10.1088/1367-2630/11/12/125003

  • 加载中

(6)

(3)

计量
  • 文章访问数:  1709
  • PDF下载数:  30
  • 施引文献:  0
出版历程
收稿日期:  2022-02-25
刊出日期:  2022-02-25

目录