钙(镁)离子在菱锌矿表面吸附的量子化学研究

吴志强, 陈晔, 李宇浩, 施显赵. 钙(镁)离子在菱锌矿表面吸附的量子化学研究[J]. 矿产保护与利用, 2022, 42(1): 21-27. doi: 10.13779/j.cnki.issn1001-0076.2022.01.004
引用本文: 吴志强, 陈晔, 李宇浩, 施显赵. 钙(镁)离子在菱锌矿表面吸附的量子化学研究[J]. 矿产保护与利用, 2022, 42(1): 21-27. doi: 10.13779/j.cnki.issn1001-0076.2022.01.004
WU Zhiqiang, CHEN Ye, LI Yuhao, SHI Xianzhao. Quantum Chemical Study of Adsorption of Calcium (Magnesium) Ions on Smithsonite Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 21-27. doi: 10.13779/j.cnki.issn1001-0076.2022.01.004
Citation: WU Zhiqiang, CHEN Ye, LI Yuhao, SHI Xianzhao. Quantum Chemical Study of Adsorption of Calcium (Magnesium) Ions on Smithsonite Surface[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 21-27. doi: 10.13779/j.cnki.issn1001-0076.2022.01.004

钙(镁)离子在菱锌矿表面吸附的量子化学研究

  • 基金项目:
    国家自然科学基金(NSFC51864003)
详细信息
    作者简介: 吴志强(1998-), 男, 江西上饶人, 硕士研究生, 主要从事矿产资源综合利用研究, E-mail: 674994471@qq.com
    通讯作者: 陈晔(1981-), 女, 湖南湘潭人, 教授, 博士生导师, 主要从事浮选理论与工艺、矿物浮选量子化学、矿产资源综合利用等研究, E-mail: yechen@gxu.edu.cn
  • 中图分类号: TD91;TD952.3

Quantum Chemical Study of Adsorption of Calcium (Magnesium) Ions on Smithsonite Surface

More Information
  • 与菱锌矿伴生的高可溶性碳酸盐类矿物方解石、白云石会导致矿浆中含有大量钙(镁)离子, 从而影响菱锌矿的浮选。采用密度泛函理论对钙(镁)离子在菱锌矿(101)表面吸附进行模拟。计算结果表明, 钙离子和镁离子会与清洁菱锌矿(101)表面发生较强的化学吸附, 并且钙离子的吸附比镁离子更强。水化后的菱锌矿(101)表面也会与钙离子和镁离子发生吸附, 但是吸附强度明显减弱。另外, 钙离子在水化菱锌矿(101)表面的吸附会削弱菱锌矿(101)表面的水化作用。研究结果可为消除菱锌矿浮选过程中难免离子的影响提供理论指导。

  • 加载中
  • 图 1  清洁菱锌矿(101)表面层晶模型

    Figure 1. 

    图 2  钙离子在清洁菱锌矿(101) 表面的吸附构型

    Figure 2. 

    图 3  镁离子在清洁菱锌矿(101)表面的吸附构型

    Figure 3. 

    图 4  钙离子在清洁菱锌矿(101)表面吸附前后原子的态密度

    Figure 4. 

    图 5  镁离子在清洁菱锌矿(101)表面吸附前后原子的态密度

    Figure 5. 

    图 6  水化菱锌矿(101)表面

    Figure 6. 

    图 7(a)  钙离子与水化菱锌矿(101)表面吸附构型

    Figure 7(a). 

    图 7(b)  镁离子与水化菱锌矿(101)表面吸附构型

    Figure 7(b). 

    图 8  钙离子在水化菱锌矿(101)表面吸附前后原子的态密度

    Figure 8. 

    图 9  镁离子在水化菱锌矿(101)表面吸附前后原子的态密度

    Figure 9. 

    表 1  钙离子在清洁菱锌矿(101)表面吸附前后的电荷

    Table 1.  Mulliken charge of atoms before and after Ca2+ adsorption on clean smithsonite(101)surface

    原子序号 吸附状态 电子数 电荷/e
    s p
    Ca 吸附前 7.56 12.00 0.44
    吸附后 6.08 12.10 1.56
    O2f1 吸附前 3.91 4.68 -0.59
    吸附后 3.89 5.00 -0.89
    O2f2 吸附前 3.91 4.68 -0.59
    吸附后 3.88 5.06 -0.96
    O2f3 吸附前 3.83 4.72 -0.58
    吸附后 3.85 4.86 -0.75
    下载: 导出CSV

    表 2  镁离子在清洁菱锌矿(101)表面吸附的电荷

    Table 2.  Mulliken charge of atoms before and after Mg2+ adsorption on clean smithsonite(101)surface

    原子序号 吸附状态 电子数 电荷/e
    s p
    Mg 吸附前 5.69 6.00 0.31
    吸附后 4.25 6.39 1.13
    O2f1 吸附前 3.91 4.68 -0.59
    吸附后 3.85 5.02 -0.89
    O2f2 吸附前 3.91 4.68 -0.59
    吸附后 3.82 4.84 -0.68
    O3f1 吸附前 3.83 4.72 -0.49
    吸附后 3.84 4.83 -0.70
    下载: 导出CSV
  • [1]

    尚衍波, 陈经华, 何发钰. 中国铅锌选矿技术新进展[J]. 世界有色金属, 2016(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201606001.htm

    SHANG Y B, CHEN J H, HE F Y. The new progress of China's lead-zinc mineral processing technology[J]. World Nonferrous Metal, 2016(6): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201606001.htm

    [2]

    田尤, 刘廷, 曾祥婷, 等. 我国锌资源产业形势及对策建议[J]. 现代矿业, 2015, 31(4): 5-9. doi: 10.3969/j.issn.1674-6082.2015.04.002

    TIAN Y, LIU T, ZENG X T, et al. Situation and suggestion of China's zinc resources industry[J]. Express Information of Mining Industry, 2015, 31(4): 5-9. doi: 10.3969/j.issn.1674-6082.2015.04.002

    [3]

    刘红召, 杨卉芃, 冯安生. 全球锌矿资源分布及开发利用[J]. 矿产保护与利用, 2017(1): 113-118. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8c635d74-95a7-4338-bd4b-7df9f58a90ec

    LIU H Z, YANG H P, FENG A S. The distribution and utilization of global zinc resource[J]. Conservation and Utilization of Mineral Resources, 2017(1): 113-118. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8c635d74-95a7-4338-bd4b-7df9f58a90ec

    [4]

    杜五星, 戴惠新, 何东祥, 等. 氧化铅锌矿的选矿研究现状及进展[J]. 矿产综合利用, 2016(4): 11-15. doi: 10.3969/j.issn.1000-6532.2016.04.003

    DU W X, DAI H X, HE D X, et al. Research status and progress of beneficiation for a lead-zinc oxide ore[J]. Multipurpose Utilization of Mineral Resources, 2016(4): 11-15. doi: 10.3969/j.issn.1000-6532.2016.04.003

    [5]

    LIU C, ZHANG W, SONG S, et al. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant[J]. Powder Technology, 2019, 352: 11-15. doi: 10.1016/j.powtec.2019.04.036

    [6]

    罗利萍, 徐龙华, 巫侯琴, 等. 氧化锌矿物的表面性质与浮选关系研究综述[J]. 金属矿山, 2020(6): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006005.htm

    LUO L P, XU L H, WU H Q, et al. A review on the relationship between surface properties and flotation of zinc oxide ore[J]. Metal Mine, 2020(6): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006005.htm

    [7]

    李想, 林诗鸿, 陈佳, 等. 氧化锌矿石浮选研究进展[J]. 金属矿山, 2018(10): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201810019.htm

    LI X, LIN S H, CHEN J, et al. Research status of zinc oxide ore flotation[J]. Metal Mine, 2018(10): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201810019.htm

    [8]

    沈智豪, 张谦, 方健, 等. 菱锌矿表面硫化研究进展[J]. 有色金属(选矿部分), 2021(1): 37-46+59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202101007.htm

    SHEN Z H, ZHANG Q, FANG J, et al. Research progress in surface sulfidization of smithsonite[J]. Nonferrous Metals(Mineral processing section), 2021(1): 37-46+59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202101007.htm

    [9]

    刘小奇, 张鑫. 菱锌矿浮选基础理论研究[J]. 金属材料与冶金工程, 2013, 41(6): 30-35. doi: 10.3969/j.issn.1005-6084.2013.06.007

    LIU X Q, ZHANG X. Flotation basic theory research of smithsonite[J]. Metal Materials and Metallurgy Engineering, 2013, 41(6): 30-35. doi: 10.3969/j.issn.1005-6084.2013.06.007

    [10]

    冯程, 祁忠旭, 孙大勇, 等. 氧化锌矿选矿技术现状与进展[J]. 矿业研究与开发, 2019, 39(9): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201909023.htm

    FENG C, QI Z X, SUN D Y, et al. Current status and overview of zinc oxide ore beneficiation technology[J]. Mining Research and Development, 2019, 39(9): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201909023.htm

    [11]

    杨柳毅, 黄光耀, 曹玉川, 等. 菱锌矿和异极矿的晶体结构差异对其分选性的影响[J]. 矿冶, 2018, 27(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201806005.htm

    YANG L Y, HUANG G Y, CAO Y C, et al. Influence of crystal sctructure of hemimorphite and smithsonite on their floatability[J]. Mining and Metallurgy, 2018, 27(6): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201806005.htm

    [12]

    蒋世鹏, 张国范, 常永强, 等. 金属离子对菱锌矿硫化浮选影响研究[J]. 有色金属(选矿部分), 2016(2): 23-28. doi: 10.3969/j.issn.1671-9492.2016.02.005

    JIANG S P, ZHANG G F, CHANG Y Q, et al. Effect of metal ions on sulfiding flotation of smithsonite[J]. Nonferrous Metals(Mineral processing section), 2016(2): 23-28. doi: 10.3969/j.issn.1671-9492.2016.02.005

    [13]

    ANA CAROLINA ARANTES ARAúJO, ROSA MALENA FERNANDES LIMA. Influence of cations Ca2+, Mg2+ and Zn2+ on the flotation and surface charge of smithsonite and dolomite with sodium oleate and sodium silicate[J]. International Journal of Mineral Processing, 2017: 35-41

    [14]

    韩玉光. 菱锌矿与方解石浮选分离试验研究及机理探讨[D]. 昆明: 昆明理工大学, 2018.

    HAN Y G. Experimental study and mechanism of flotation separation of calcite from zinc ore[D]. Kunming: Kunming University of Science and Technology, 2018.

    [15]

    SHI Q, ZHANG G, FENG Q, et al. Effect of solution chemistry on the flotation system of smithsonite and calcite[J]. International Journal of Mineral Processing, 2013, 119: 34-39. doi: 10.1016/j.minpro.2012.12.011

    [16]

    何晓太, 王杰, 崔伟勇, 等. 胶磷矿-白云石体系中离子的溶液化学行为研究[J]. 矿冶工程, 2015, 35(3): 55-57+62. doi: 10.3969/j.issn.0253-6099.2015.03.015

    HE X T, WANG J, CUI W Y, et al. Solution chemistry of dissolved ions in collophane-dolomite system[J]. Mining and Metallurgical Engineering, 2015, 35(3): 55-57+62. doi: 10.3969/j.issn.0253-6099.2015.03.015

    [17]

    刘忠义. 金属离子对菱锌矿和方解石分散行为的影响研究[D]. 徐州: 中国矿业大学, 2019.

    LIU Z Y. Study on the influence of metal ions on dispersion of smithsonite and calcite[D]. Xuzhou: China University of Mining and Technology, 2019.

    [18]

    崔萌萌. 菱锌矿与石英浮选分离中难免离子的影响及消除[D]. 长沙: 中南大学, 2012.

    CUI M M. Effect and elimination of inevitable ions in selective flotation between smithsonite and quartz[D]. Changsha: Central South University, 2012.

    [19]

    杨少燕. 菱锌矿浮选的理论与工艺研究[D]. 长沙: 中南大学, 2010.

    YANG S Y. Study on theory and process of flotation of calamine[D]. Changsha: Central South University, 2010.

    [20]

    刘长青. 氧化锌矿浮选体系金属离子对矿物浮选行为影响[D]. 徐州: 中国矿业大学, 2017.

    LIU C Q. Effect of ions on mineral flotation behavior in zinc oxide mineral flotation system[D]. Xuzhou: China University of Mining and Technology, 2017.

    [21]

    邓荣东. 氧化锌矿矿浆中离子存在行为及吸附机理研究[D]. 昆明: 昆明理工大学, 2015.

    DENG R D. Study on the existence behavior and adsorption mechanism of ions in zinc oxide ore pulp[D]. Kunming: Kunming University of Science and Technology, 2015.

    [22]

    POPOV SR, VUINI DR, KAANIK JV. Floatability and adsorption of ethyl xanthate on sphalerite in an alkaline medium in the presence of dissolved lead ions[J]. International Journal of Mineral Processing, 1989, 27(3/4): 205-219.

    [23]

    A. HUNG, J. MUSCAT, I. YAROVSKY, et al. Density functional theory studies of pyrite FeS2(100) and(110) surfaces[J]. Surf. Sci., 2002, 520: 111-119. doi: 10.1016/S0039-6028(02)02294-X

    [24]

    C.H. ZHAO, J.H. CHEN, Y.Q. Li, et al. DFT study of interactions between calcium hydroxyl ions and pyrite, marcasite, pyrrhotite surfaces, Appl. Surf. Sci., 2015, 355: 577-581. doi: 10.1016/j.apsusc.2015.07.081

    [25]

    Y. CHEN, J.H. CHEN. The first-principle study of the effect of lattice impurity on adsorption of CN on sphalerite surface[J]. Miner. Eng., 2010: 23 676-684. doi: 10.1016/j.mineng.2010.04.002

    [26]

    REICH M, Becker U. First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite[J]. Chemical Geology, 2006, 225(3/4): 278-290.

    [27]

    周泳. 量子化学方法在矿物表面研究中的应用[D]. 北京: 中国地质大学, 2006.

    ZHOU Y. Applicafion of mineral surface studying by quantum chemistry method[D]. Beijing: China University of Geosciences, 2006.

    [28]

    DANIEL JOUBERT. Density functionals: theory and applications[M]. Springer Berlin Heidelberg; Springer, Berlin, Heidelberg: 2007-05-01.

    [29]

    HOSSEINI S H, FORSSBERG E. Smithsonite flotation using potassium amyl xanthate and hexylmercaptan[J]. Mineral Processing and Extractive Metallurgy, 2006, 115(2): 107-112. doi: 10.1179/174328506X109077

    [30]

    NUNES A P L, PERES A E C, DE ARAUJO A C, et al. Electrokinetic properties of wavellite and its floatability with cationic and anionic collectors[J]. Journal of Colloid and Interface Science, 2011, 361(2): 632-638. doi: 10.1016/j.jcis.2011.06.014

    [31]

    L. ROTTMANNOVá, J. RIMARík, T. VESELY, et al. Applicability of DFTB+ method for the calculations of O-H bond dissociation enthalpies of phenols[J]. Acta Chimica Slovaca, 2010, 3: 12-19.

    [32]

    SUN F, ZHANG J X, TIAN Y. Calculation of alloying effect of ruthenium in Ni-based single-crystal super alloys[J]. Computational Mate-rials Science, 2012, 60(10): 163-167.

    [33]

    XU SHUN, WANG GANG, LIU HONGMIN, et al. A DMol3 study on the reaction between trans-resveratrol and hydroperoxyl radical: dissimilarity of antioxidant activity among O-H groups of trans-resveratrol[J]. Journal of Molecular Structure: Theochem, 2007, 809(1): 79-85.

    [34]

    PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B, 1992, 46(11): 6671-6687. doi: 10.1103/PhysRevB.46.6671

    [35]

    MONKHORST H J, PACK J D. Special points for brillouin-zone integrations[J]. Physical Review B, 1976, 13(12): 5188-5192. doi: 10.1103/PhysRevB.13.5188

    [36]

    Z. WANG, L.H. XU, J.M. WANG, et al. A comparison study of adsorption of benzohydroxamic acid and amyl xanthate on smithsonite with dodecylamine as co-collector[J]. Appl. Surf. Sci., 2017, 426: 1141-1147. doi: 10.1016/j.apsusc.2017.07.271

    [37]

    HAN C, LI T, ZHANG W, et al. Density functional theory study on the surface properties and floatability of hemimorphite and smith sonite[J]. Minerals, 2018, 8(12): 56-60.

    [38]

    N.H. MOREIRA, G. DOLGONOS, B. ARADI, A.L. DA ROSA. Frauenheim Th. Toward an accurate density-functional tight-binding description of zinc-containing compounds, J. Chem. Theory Comput., 2009(5): 605-614. doi: 10.1021/ct800455a

    [39]

    H.J. MONKHORST, J.D. PACK. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976, 13: 5188-5192. doi: 10.1103/PhysRevB.13.5188

    [40]

    沈智豪, 张谦, 方健, 等. 菱锌矿表面硫化研究进展[J]. 有色金属(选矿部分), 2021(1): 37-46+59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202101007.htm

    SHEN Z H, ZHANG Q, FANG J, et al. Research progress in surface sulfidization of smithsonite[J]. Nonferrous Metals(Mineral processing section), 2021(1): 37-46+59. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202101007.htm

    [41]

    LIU M, CHEN J H, CHEN Y, et al. Interaction between smithsonite and carboxyl collectors with different molecular structure in the presence of water: a theoretical and experimental study[J]. Applied Surface Science, 2020, 510: 145410.1-145410.10.

    [42]

    CHEN Y, LIU M, CHEN J H, et al. A density functional based tight binding(DFTB+) study on the sulfidization-amine flotation mechanism of smithsonite[J]. Applied Surface Science, 2018, 458: 454-463.

  • 加载中

(10)

(2)

计量
  • 文章访问数:  964
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2022-01-20
刊出日期:  2022-02-25

目录