基于密度泛函理论的铁含量对含铁闪锌矿浮选影响的研究

冯瑶, 刘小妹, 陈晔, 谭泽凌, 黄婧. 基于密度泛函理论的铁含量对含铁闪锌矿浮选影响的研究[J]. 矿产保护与利用, 2022, 42(1): 15-20. doi: 10.13779/j.cnki.issn1001-0076.2022.01.003
引用本文: 冯瑶, 刘小妹, 陈晔, 谭泽凌, 黄婧. 基于密度泛函理论的铁含量对含铁闪锌矿浮选影响的研究[J]. 矿产保护与利用, 2022, 42(1): 15-20. doi: 10.13779/j.cnki.issn1001-0076.2022.01.003
FENG Yao, LIU Xiaomei, CHEN Ye, TAN Zeling, HUANG Jing. Study on the Effect of Iron Content on the Flotation of Iron-bearing Sphalerite Based on Density Functional Theory[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 15-20. doi: 10.13779/j.cnki.issn1001-0076.2022.01.003
Citation: FENG Yao, LIU Xiaomei, CHEN Ye, TAN Zeling, HUANG Jing. Study on the Effect of Iron Content on the Flotation of Iron-bearing Sphalerite Based on Density Functional Theory[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 15-20. doi: 10.13779/j.cnki.issn1001-0076.2022.01.003

基于密度泛函理论的铁含量对含铁闪锌矿浮选影响的研究

  • 基金项目:
    国家自然科学基金(NSFC 51864003)
详细信息
    作者简介: 冯瑶(1996-), 女, 黑龙江哈尔滨人, 博士研究生, 主要从事矿物浮选量子化学、矿产资源综合利用等研究, E-mail: 1127668102@qq.com
    通讯作者: 陈晔(1981-), 女, 湖南湘潭人, 教授, 博士生导师, 主要从事浮选理论与工艺、矿物浮选量子化学、矿产资源综合利用等研究, E-mail: yechen@gxu.edu.cn
  • 中图分类号: TD91;TD952.3

Study on the Effect of Iron Content on the Flotation of Iron-bearing Sphalerite Based on Density Functional Theory

More Information
  • 采用密度泛函理论, 研究了铁含量对闪锌矿(110)表面的表面弛豫、电子性质及铜活化的影响。研究结果表明, 对于低铁含量的闪锌矿, 闪锌矿(110)表面的锌原子和铁原子向表面内部的弛豫均变小, 减小了空间位阻; 电子态密度及能带结构表明, 铁电子活性较强, 且无自旋极化, 即低铁有利于闪锌矿浮选。对于高铁含量的闪锌矿, 其表面的铁原子向内部弛豫较大, 增大了空间位阻; 电子态密度及能带结构表明铁的活性不高, 出现自旋极化, 不利于浮选。而闪锌矿(110)表面上铁不易被铜替换, 且铁的含量越多越不利于铜的替换。该研究从原子层面上解释了铁含量对闪锌矿(110)表面性质和铜活化的影响, 为含铁闪锌矿的浮选提供理论指导。

  • 加载中
  • 图 1  闪锌矿晶体示意图:(a)优化前闪锌矿表面;(b)理想闪锌矿表面;(c)低铁闪锌矿表面;(d)高铁闪锌矿表面

    Figure 1. 

    图 2  不同铁含量的闪锌矿表面态密度: (a)理想闪锌矿表面态密度(b)低铁闪锌矿表面态密度(c)高铁闪锌矿表面态密度

    Figure 2. 

    图 3  不同含铁量的闪锌矿表面能带

    Figure 3. 

    图 4  铜活化闪锌矿表面原子态密度

    Figure 4. 

    表 1  理想闪锌矿、低铁闪锌矿和高铁闪锌矿表面弛豫

    Table 1.  Atoms displacement of ideal sphalerite、low iron and high iron surface

    矿物 原子 弛豫距离/Å
    Δx Δy Δz
    理想闪锌矿 S -0.036 0.000 0.121
    Zn1 -0.317 0.000 -0.459
    Zn2 -0.317 0.000 -0.459
    低铁闪锌矿 S 0.083 0.066 0.028
    Zn -0.289 -0.018 -0.457
    Fe -0.127 -0.001 -0.246
    高铁闪锌矿 S 0.001 0.000 0.119
    Fe1 -0.345 -0.012 -0.512
    Fe2 -0.345 0.012 -0.512
    Zn -0.293 0.000 -0.452
    下载: 导出CSV

    表 2  闪锌矿表面铜、铁的替换能

    Table 2.  Substitution energy of copper and iron atoms on the surface of sphalerite ΔEsub/(kJ·mol-1)

    替换原子 Cu替换Zn Fe替换Zn Cu替换Fe
    1个 -152.27 -188.8 36.53
    2个 -206.98 -520.99 314.01
    下载: 导出CSV
  • [1]

    U.S. Geological Survey. Mineral commodity summaries 2021 [R]. Saint Louis: U.S. Geological Survey, 2021: 191.

    [2]

    刘建. 闪锌矿表面原子构型及铜吸附活化浮选理论研究[D]. 昆明: 昆明理工大学, 2013.

    LIU J. Atomic configuration of sphalerite surface and theory of copper adsorption activated flotation[D]. Kunming: Kunming University of Science and Technology, 2013.

    [3]

    International Lead and Zinc Study Group(ILZSG). Lead and zinc new mine and smelter projects [Z]. 2019: 1-65.

    [4]

    CHEN Y, LIU X M, CHEN J H. Steric hindrance effect on adsorption of xanthate on sphalerite surface: A DFT study[J]. Minerals Engineering, 2021, 165: 106834. doi: 10.1016/j.mineng.2021.106834

    [5]

    刘小妹, 陈晔, 冯瑶, 等. 闪锌矿银活化及对黄药吸附影响的第一性原理研究[J]. 矿产保护与利用, 2021, 41(2): 7-12. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2a8489a2-a5ec-463e-83eb-dd216535b65a

    LIU X M, CHEN Y, FENG Y, et al. The first-principle study of silver activation and xanthate adsorption on sphalerite surface[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 7-12. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2a8489a2-a5ec-463e-83eb-dd216535b65a

    [6]

    何名飞, 卜浩, 高玉德, 等. 铁闪锌矿中稀有金属铟的高效提取应用研究[J]. 有色金属(选矿部分), 2021(6): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202106012.htm

    HE M F, BU H, GAO Y D, et al. Study on high efficiency extraction of indium from marmatite[J]. Nonferrous Metals(Mineral Processing Section), 2021(6): 102-106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK202106012.htm

    [7]

    刘红召, 杨卉芃, 冯安生. 全球锌矿资源分布及开发利用[J]. 矿产保护与利用, 2017(01): 113-118. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8c635d74-95a7-4338-bd4b-7df9f58a90ec

    LIU H Z, YANG H P, FENG A S. The Distribution and Utilization of Global Zinc Resource[J]. Conservation and Utilization of Mineral Resources, 2017(01): 113-118. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=8c635d74-95a7-4338-bd4b-7df9f58a90ec

    [8]

    曾爱花. 结晶学及矿物学实习教程[M]. 北京: 中国原子能出版社, 2012.

    ZENG A H. Crystallography and mineralogy internship course[M]. Beijing: China Atomic Energy Press, 2012.

    [9]

    叶霖, 高伟, 杨玉龙, 等. 云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成[J]. 岩石学报, 2012, 28(5): 1362-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm

    YE L, GAO W, YANG Y L, et al. Trace elements in sphalerite in Laochang Pb-Zn polymetallic deposit, Lancang, Yunnan Province [J]. Acta Petrologica Sinica, 2012, 28(5): 1362-1372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205004.htm

    [10]

    陈晔. 晶格缺陷对闪锌矿半导体性质及浮选行为影响的第一性原理研究[D]. 南宁: 广西大学, 2009.

    CHEN Y. A first-principles study on the effect of lattice defects on the semiconductor properties and flotation behavior of sphalerite[D]. Nanning: Guangxi University, 2009.

    [11]

    张芹, 胡岳华, 顾帼华, 等. 铁闪锌矿的浮选行为及其表面吸附机理[J]. 中国有色金属学报, 2004(4): 676-680. doi: 10.3321/j.issn:1004-0609.2004.04.027

    ZHANG Q, HU Y H, GU G H, et al. Mechanism of Cu2+ ion activation flotation of marmatite in absence and presence of ethyl xanthate[J]. The Chinese Journal of Nonferrous Metals, 2004(4): 676-680. doi: 10.3321/j.issn:1004-0609.2004.04.027

    [12]

    林隆述, 张志兰, 章正刚. 闪锌矿系列的物理性质研究[J]. 成都地质学院学报, 1989(2): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198902006.htm

    LIN L S, ZHANG Z L, ZHANG Z G. The physical properties study of sphalerite series[J]. Journal of Chengdu University of Technology(Science & Technology Edition), 1989(2): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG198902006.htm

    [13]

    黎维中. 难处理铅锌银硫化矿物资源综合回收的研究与实践[D]. 长沙: 中南大学, 2007: 1-3.

    LI W Z. Research on floation sepaeation of complex lead-zinc-sliver sulfide ore and its practice[D]. Changsha: Central South University, 2007: 1-3.

    [14]

    王濮, 潘兆橹, 翁玲宝. 系统矿物学: 上册[M]. 北京: 地质出版社, 1982.

    WANG P, PAN Z L, WENG L B. System mineralogy: volume 1[M]. Beijing: Geological Press, 1982.

    [15]

    黎全. 大厂100(105)号锡石多金属矿选矿关键技术研究及应用[D]. 长沙: 中南大学, 2002.

    LI Q. Research and practice of key benefication on No. 100 and No. 105 ore body of dachang tin-polymetallic deposit. Changsha: Central South University, 2002.

    [16]

    曾勇, 刘建, 王瑜, 等. 典型金属离子对闪锌矿浮选行为的影响及作用机制的研究进展[J]. 矿产保护与利用, 2019, 39(2): 109-117. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1637e6f6-98aa-476f-b4a7-92b9e8d1e394

    ZENG Y, LIU J, WANG Y, et al. Research progress on the interaction mechanism of typical metal ions with sphalerite and its effect on flotation[J]. Conservation and Utilization of Mineral, 2019, 39(2): 109-117. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1637e6f6-98aa-476f-b4a7-92b9e8d1e394

    [17]

    Gerson A R, Lange A G, Prince K E, et al. The mechanism of copper activation of sphalerite[J]. Applied surface science, 1999, 137(1/2/3/4): 207-223.

    [18]

    SARVARAMINI A, LARACHI F, HART B. Collector attachment to lead-activated sphalerite - experiments and DFT study on pH and solvent effects [J]. Applied surface science, 2016, 367: 459-472. doi: 10.1016/j.apsusc.2016.01.213

    [19]

    STEELE H N, WRIGHT K, HILLIER I H. A quantum- mechanical study of the (110) surface of sphalerite (ZnS) and its interaction with Pb2+ species[J]. Physics and chemistry of minerals, 2003, 30(2): 69-75. doi: 10.1007/s00269-002-0296-9

    [20]

    陈薇, 童雄. 浮选闪锌矿和铁闪锌矿的捕收剂研究现状及进展[J]. 国外金属矿选矿, 2007(8): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200708005.htm

    CHEN W, TONG X. Research status and progress of collectors for flotation of sphalerite and sphalerite[J]. Metallic Ore Dressing Abroad, 2007(8): 25-27. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200708005.htm

    [21]

    BOULTON A, FORNASIERO D, RALSTON J. Effect of iron content in sphalerite on flotation[J]. Minerals Engineering, 2005, 18(11): 1120-1122. doi: 10.1016/j.mineng.2005.03.008

    [22]

    HARMER S L, MIERCZYNSKA-VASILEV A, BEATTIE D A, et al. The effect of bulk iron concentration and heterogeneities on the copper activation of sphalerite[J]. Minerals engineering, 2008, 21(12): 1005-1012.

    [23]

    谢贤. 难选铁闪锌矿多金属矿石的浮选试验与机理探讨[D]. 昆明: 昆明理工大学, 2011.

    XIE X. Flotation test and mechanism discussion of refractory sphalerite polymetallic ore[D]. Kunming: Kunming University of Science and Technology, 2011.

    [24]

    VANDERBILT, DAVID. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Physical Review B Condensed Matter, 1990, 41(11): 7892. doi: 10.1103/PhysRevB.41.7892

    [25]

    PERDEW JP, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, Condensed matter, 1992, 45(23): 13244-13249. doi: 10.1103/PhysRevB.45.13244

  • 加载中

(4)

(2)

计量
  • 文章访问数:  1694
  • PDF下载数:  65
  • 施引文献:  0
出版历程
收稿日期:  2022-02-23
刊出日期:  2022-02-25

目录