新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究

孙鑫, 黄凌云, 胡博, 张梅, 李亚民. 新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究[J]. 矿产保护与利用, 2022, 42(1): 52-60. doi: 10.13779/j.cnki.issn1001-0076.2022.01.008
引用本文: 孙鑫, 黄凌云, 胡博, 张梅, 李亚民. 新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究[J]. 矿产保护与利用, 2022, 42(1): 52-60. doi: 10.13779/j.cnki.issn1001-0076.2022.01.008
SUN Xin, HUANG Lingyun, HU Bo, ZHANG Mei, LI Yaming. Synthesis of A New Hydroxamic Acid Collector and Its Collection Mechanism for Malachite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 52-60. doi: 10.13779/j.cnki.issn1001-0076.2022.01.008
Citation: SUN Xin, HUANG Lingyun, HU Bo, ZHANG Mei, LI Yaming. Synthesis of A New Hydroxamic Acid Collector and Its Collection Mechanism for Malachite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 52-60. doi: 10.13779/j.cnki.issn1001-0076.2022.01.008

新型羟肟酸捕收剂的合成及其对孔雀石的捕收机理研究

  • 基金项目:
    国家自然科学基金项目(51964024);云南省人培项目(KKSY201952020);昆明理工大学长江学者引进人才平台建设项目
详细信息
    作者简介: 孙鑫(1997-), 男, 江苏南通人, 硕士, 主要方向为氧化铜捕收剂的研究, E-mail: 3295070032@qq.com
    通讯作者: 黄凌云(1978-), 女, 湖北钟祥人, 博士, 讲师, 主要从事矿物综合利用研究, E-mail: hly@kust.eud.cn
  • 中图分类号: TD923+.13;TD952.1

Synthesis of A New Hydroxamic Acid Collector and Its Collection Mechanism for Malachite

More Information
  • 研究了一种新型螯合捕收剂邻苯二羟肟酸在孔雀石[Cu2CO3(OH)2]与石英(SiO2)浮选分离中的应用。通过微浮选试验, 评价了邻苯二羟肟酸对孔雀石和石英的浮选性能。结果表明, 邻苯二羟肟酸对孔雀石有较强的吸附和选择性, 能有效分离孔雀石和石英。以邻苯二羟肟酸为捕收剂, 在pH为9、药剂用量80 mg/L的条件下对人工混合矿物具有良好的分离效果, 孔雀石回收率70%, 石英回收率5%。通过接触角、SEM-EDS、Zeta电位、吸附量、傅里叶变换红外光谱(FT-IR)和X射线光电子能谱(XPS)分析研究了吸附机理, 结果表明邻苯二羟肟酸的与孔雀石表面的Cu2+离子发生强烈的化学吸附, 处理后孔雀石疏水性大大提高, 选择性较好, 可有效分离孔雀石与脉石矿物。

  • 加载中
  • 图 1  邻苯二羟肟酸的红外光谱

    Figure 1. 

    图 2  邻苯二羟肟酸的核磁氢谱

    Figure 2. 

    图 3  孔雀石纯矿物的X射线衍射图

    Figure 3. 

    图 4  邻苯二羟肟酸捕收剂对孔雀石和石英的浮选关系

    Figure 4. 

    图 5  pH值对人工混合矿物浮选分离效果的影响

    Figure 5. 

    图 6  邻苯二羟肟酸捕收剂处理前后孔雀石表面接触角

    Figure 6. 

    图 7  孔雀石表面接触角与邻苯二羟肟酸浓度关系

    Figure 7. 

    图 8  邻苯二羟肟酸处理前后孔雀石的SEM-EDS谱图

    Figure 8. 

    图 9  邻苯二羟肟酸捕收剂处理前后孔雀石和石英的Zeta电位与pH关系图

    Figure 9. 

    图 10  邻苯二羟肟酸处理前后孔雀石的红外光谱图

    Figure 10. 

    图 11  邻苯二羟肟酸在孔雀石表面吸附量与邻苯二羟肟酸浓度关系

    Figure 11. 

    图 12  邻苯二羟肟酸处理孔雀石前后XPS总谱图

    Figure 12. 

    图 13  邻苯二羟肟酸处理孔雀石前后Cu 2p、O1s和N1s分谱图

    Figure 13. 

    表 1  孔雀石纯矿物X射线荧光光谱分析

    Table 1.  X-ray fluorescence spectrum analysis of pure malachite /%

    元素 Cu Al Zn P S Si Fe Mn Cl 其他
    含量 55.83 0.07 0.05 0.04 0.003 0.06 0.01 0.02 0.01 43.91
    下载: 导出CSV

    表 2  邻苯二羟肟酸处理前后孔雀石的元素含量

    Table 2.  Atomic concentrations of elements before and after treatment of Malachite with o-dihydroxamic acid

    Species Atomic concentration/%
    C 1s N 1s O 1s Cu 2p
    孔雀石 33.37 0.00 52.67 13.96
    孔雀石+邻苯二羟肟酸 36.33 2.13 50.78 10.76
    下载: 导出CSV
  • [1]

    SUN Q Y, YIN W Z, LI D, et al. Improving the sulfidation flotation of fine cuprite by hydrophobic flocculation pretreatment[J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25: 1256-1262. doi: 10.1007/s12613-018-1678-4

    [2]

    BAI X, WEN S, FENG Q, et al. Utilization of high-gradient magnetic separation-secondary grinding-leaching to improve the copper recovery from refractory copper oxide ores[J]. Minerals Engineering, 2019, 136: 77-80. doi: 10.1016/j.mineng.2019.03.009

    [3]

    CHEN X M, PENG Y J, et al. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding[J]. Minerals Engineering, 2014, 58: 64-72. doi: 10.1016/j.mineng.2014.01.010

    [4]

    LIU R Z, LIU D W, et al. Sulfidization mechanism in malachite flotation: A heterogeneous solid-liquid reaction that yields CuxSy phases grown on malachite[J]. Minerals Engineering, 2020, 154: 106420. doi: 10.1016/j.mineng.2020.106420

    [5]

    YIN W Z, SUN Q Y, et al. Mechanism and application on sulphidizing flotation of copper oxide with combined collectors[J]. Transactions of Nonferrous Metals Society of China, 2019, 29: 178-185. doi: 10.1016/S1003-6326(18)64926-X

    [6]

    MARION C, JORDENS A, LI R H, et al. An evaluation of hydroxamate collectors for malachite flotation[J]. Separation and Purification Technology, 2017, 183: 258-269. doi: 10.1016/j.seppur.2017.02.056

    [7]

    DENG J S, WEN S M, QIONG Y, et al. Leaching of malachite using 5-sulfosalicylic acid[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 20-27. doi: 10.1016/j.jtice.2016.11.013

    [8]

    ZHOING C, FENG B, WANG H, et al. The depression behavior and mechanism of tragacanth gum on chalcopyrite during Cu-Mo flotation separation[J]. Advanced Powder Technology, 2021, 32: 2712-2719. doi: 10.1016/j.apt.2021.05.032

    [9]

    CHEN Y, FENG B, GUO Y, et al. The role of oxidizer in the flotation separation of chalcopyrite and galena using sodium lignosulfonate as a depressant[J]. Minerals Engineering, 2021, 172: 107160. doi: 10.1016/j.mineng.2021.107160

    [10]

    ZHANG X R, LU L, ZHU Y G, et al. Research on the separation of malachite from quartz with S-carboxymethyl-O, O-dibutyl dithiophosphate chelating collector and its insights into flotation mechanism[J]. Powder Technology, 2020, 366: 130-136. doi: 10.1016/j.powtec.2020.02.071

    [11]

    CECILE J L, CRUZ M I, BARBERY G, et al. Infrared spectral study of species formed on malachite surface by adsorption from aqueous salicylaldoxime solution[J]. Journal of Colloid and Interface Science. 1981, 80: 589-597. doi: 10.1016/0021-9797(81)90215-0

    [12]

    LI F, ZHOU X T, LIN R X. Flotation performance and adsorption mechanism of novel1-(2-hydroxyphenyl)hex-2-en-1-one oxime flotation collector tomalachite[J]. Transactions of Nonferrous Metals Society of China. 2020, 30: 2792-2801. doi: 10.1016/S1003-6326(20)65421-8

    [13]

    LI Z L, RAO F, SONG S X, et al. Effects of commonions on adsorption and flotation of malachite with salicylaldoxime[J]. Colloid Surface A. 2019, 577: 421-428. doi: 10.1016/j.colsurfa.2019.06.004

    [14]

    LI L Q, ZHAO J H, XIAO Y Y, et al. Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime[J]. Separation and Purification Technology, 2019, 210: 843-849. doi: 10.1016/j.seppur.2018.08.073

    [15]

    HUANG K, CAO Z, WANG S, et al. Flotation performance and adsorption mechanism of styryl phosphonate mono-iso-octyl ester to malachite[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 579: 123698. doi: 10.1016/j.colsurfa.2019.123698

    [16]

    FENG, Q C, ZHAO W J, et al. Ammonia modification for enhancing adsorption of sulfide species onto malachite surfaces and implications for flotation[J]. Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics, 2018, 744: 301-309.

    [17]

    杨绵延, 马英强, 于岩, 等. 孔雀石分段硫化的浮选行为及机理研究[J]. 矿产保护与利用, 2021, 41(2): 80-88. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b73512f0-70d6-4062-80b6-c0880224398c

    YANG M Y, MA Y Q, YU Y, et al. Malachite segmented flotation behavior of sulfide and mechanism research[J]. Conservation and Utilization of Mineral Resources, 2021, 41(2): 80-88. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=b73512f0-70d6-4062-80b6-c0880224398c

    [18]

    WANG H, WEN S, HAN G, et al. Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation[J]. Applied Surface Science, 2021, 550: 149350. doi: 10.1016/j.apsusc.2021.149350

    [19]

    PARK K, PARK S, CHOI J, et al. Influence of excess sulfide ions on the malachite-bubble interaction in the presence of thiol-collector[J]. Separation & Purification Technology, 2016, 168: 1-7.

    [20]

    LIU C, SONG S, LI H, et al. Sulfidization flotation performance of malachite in the presence of calcite[J]. Minerals Engineering, 2019, 132: 293-296. doi: 10.1016/j.mineng.2018.11.051

    [21]

    CHOI J, CHOI S, PARK K, et al. Flotation behaviour of malachite in mono- and di valent salt solutions using sodium oleate as a collector[J]. International Journal of Mineral Processing, 2016, 146: 38-45. doi: 10.1016/j.minpro.2015.11.011

    [22]

    FAN H, OIN J, LIU G, et al. Investigation into the flotation of malachite calcite and quartz with three phosphate surfactants[J]. Journal of Materials Research and Technology, 2019, 8: 5140-5148. doi: 10.1016/j.jmrt.2019.08.037

    [23]

    LI F X, ZHOU X T, ZHAO G. A novel decylsalicylhydroxamic acid flotation collector: Its synthesis and flotation separation of malachite against quartz[J]. PowderTechnology. 2020, 374: 522-526.

    [24]

    黄凌云, 孙鑫, 杨思原, 等. 氧化铜矿浮选捕收剂研究进展[J]. 矿产保护与利用, 2020, 40(2): 88-92. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2dc30c77-219a-427a-91e2-898b98154727

    HUANG L Y, SUN X, YANG S Y, et al. Application and Research Progress of Flotation Collectors for Copper Oxide Ore[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 88-92. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=2dc30c77-219a-427a-91e2-898b98154727

    [25]

    陈代雄, 严宇扬, 肖骏, 等. 苯甲羟肟酸和丁基黄药协同浮选氧化铜矿石试验[J]. 现代矿业, 2015(8): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201508025.htm

    CHEN D X, YAN Y Y, XIAO J, et al. Copper Oxide Ore Flotation Test by Synergy of Benzohydroxamic Acid and Butyl Xanthate[J]. Modern Mining, 2015(8): 4. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB201508025.htm

    [26]

    孟庆波, 徐晓萍, 高玉德, 等. 辛基羟肟酸钠和丁基黄药混合使用对孔雀石浮选行为的影响[J]. 金属矿山, 2018(6): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201806015.htm

    MENG Q B, XU X P, GAO Y D, et al. Influence of Combined Use of Sodium Octyl Hydroxamate Acid and Butyl Xanthate on Flotation Behavior of Malachite[J]. METAL MINE, 2018(6): 5. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201806015.htm

    [27]

    LU Y, WU K, WANG S, et al. Structural modification of hydroxamic acid collectors to enhance the flotation performance of malachite and associated mechanism[J]. Journal of Molecular Liquids, 2021, 344: 117959. doi: 10.1016/j.molliq.2021.117959

    [28]

    YU X, ZHANG R, ZENG Y, et al. The effect and mechanism of cinnamic hydroxamic acid as a collector in flotation separation of malachite and calcite[J]. Minerals Engineering, 2021, 164: 106847. doi: 10.1016/j.mineng.2021.106847

    [29]

    HUANG K, CAO Z, WANG S, et al. Flotation performance and adsorption mechanism of styryl phosphonate mono-iso-octyl ester to malachite[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2019, 579: 123698. doi: 10.1016/j.colsurfa.2019.123698

    [30]

    CHOI J, CHOI S Q, PARK K, e tal. Flotation behaviour of malachite in mono- and di-valent salt solutions using sodium oleate as a collector[J]. International Journal of Mineral Processing, 2016, 146: 38-45. doi: 10.1016/j.minpro.2015.11.011

    [31]

    LI L Q, ZHAO J H, XIAO Y Y, et al. Flotation performance and adsorption mechanism of malachite with tert-butylsalicylaldoxime[J]. Separation and Purification Technology, 2019, 210: 843-849.

    [32]

    王浩林. 新型羟肟酸捕收剂制备及其对氟碳铈矿浮选特性与机理研究[D]. 赣州: 江西理工大学, 2019: 1.

    [33]

    WANG H, WEN S, HAN G, et al. Modification of malachite surfaces with lead ions and its contribution to the sulfidization flotation[J]. Applied Surface Science, 2021, 550: 149350.

    [34]

    WANG H, WEN S, HAN G, et al. Adsorption characteristics of Pb (Ⅱ)species on the sulfidized malachite surface and its response to flotation[J]. Separation and Purification Technology, 2021, 264: 118-126.

    [35]

    LENORMAND J, SALMAN T, YOON R H. Hydroxamate flotation of malachite[J]. Canadian Metallurgical Quarterly, 1979, 18: 125-129.

    [36]

    YU X, ZANG R, ZENG Y, et al. The effect and mechanism of cinnamichydroxamic acid as a collector in flotation separation of malachite and calcite[J]. Minerals Engineering, 2021, 164: 106847.

    [37]

    QIAN Z A, YW B, QF A, et al. Identification of sulfidization products formed on azurite surfaces and its correlations with xanthate adsorption and flotation - ScienceDirect[J]. Applied Surface Science, 2020, 511: 145594.

    [38]

    FENG Q, ZHAO W, WEN S, et al. Copper sulfide species formed on malachite surfaces in relation to flotation[J]. Journal of Industrial & Engineering Chemistry, 2017, 48: 125-132.

  • 加载中

(13)

(2)

计量
  • 文章访问数:  1115
  • PDF下载数:  21
  • 施引文献:  0
出版历程
收稿日期:  2022-01-14
刊出日期:  2022-02-25

目录