-
摘要:
低阶煤表面孔隙发达、含氧官能团含量高, 导致常规浮选效果不理想。超声波作为一种常用的煤泥浮选强化手段, 已开展了较多相关研究工作。首先介绍了超声波空化理论(空化阈值、瞬态和稳态空化)和声辐射力(初级和次级); 然后, 从颗粒破碎、表面清洗和物性改变、药剂乳化和分散、微纳米泡效应、浮选气泡大小和泡沫层的变化4个方面对超声波强化低阶煤浮选的研究现状进行了梳理; 最后, 对超声波强化低阶煤浮选研究的发展方向进行了展望, 建议从稳态空化强化低阶煤表面疏水性、声辐射力促进低阶煤颗粒-气泡气絮体的形成、瞬态空化效应强化浮选药剂的捕收性能、声辐射力强化气泡兼并抑制脉石夹带四个方面进一步研究超声波强化低阶煤浮选的机理。
Abstract:Low-rank coal has developed surface pores and high content of oxygen-containing functional groups, resulting in unsatisfactory conventional flotation results. Numerous studies demonstrated that ultrasound is a commonly used enhancement method for coal flotation. This article first introduces the theory of ultrasonic cavitation (cavitation threshold, transient and steady-state cavitation) and acoustic radiation force (primary and secondary). Then, the research status of ultrasound-assisted flotation of low-rank coal is reviewed from 4 aspects: particle breakage, removal of the surface coating, modification of surface properties, emulsification and dispersion of flotation collectors, micro-nano-bubble effect, and the changes of flotation bubble size and foam layer changes. Finally, the development direction of the research on ultrasonic-enhanced low-rank coal flotation is prospected. It is suggested that the mechanism of ultrasound-assisted flotation of low-rank coal should be further studied from four aspects: the enhancement of steady-state cavitation on the surface hydrophobicity of low-rank coal, the formation of flocs between low-rank coal particle and cavitation bubbles induced by acoustic radiation force, the enhancement of transient cavitation on the collection performance of flotation reagents, the enhancement of bubble coalescence and the inhabit of gangue entrainment induced by acoustic radiation force.
-
Key words:
- ultrasound /
- low-rank coal /
- flotation /
- cavitation theory /
- acoustic radiation force
-
图 2 瞬态空化气泡的长大和破裂过程(T是周期,气泡初始直径1 μm,超声波频率20 kHz,(a)的声压1 bar,(b)的声压2 bar)[13]
Figure 2.
图 4 初级Bjerknes力与次级Bjerknes力[24]
Figure 4.
图 5 不同超声处理时间下纯水中产生的体纳米气泡悬浮液:(a) 气泡浓度;(b) 气泡数和大小分布(数据来源:Nirmalkar et al.[55])
Figure 5.
图 6 两个碰撞气泡的聚结过程的示意图:接近[a-b],插入膜的扁平化[c],排水至临界厚度且膜上有凹坑[d],膜破裂[e],形成单个气泡[f](参考文献[60])
Figure 6.
图 7 超声功率对气泡聚集影响的图像超声处理的3 s(a,0 W、b,20 W、c,110 W、d,200 W)[63]
Figure 7.
图 8 煤颗粒(74~125 μm)和CFB(常规浮选气泡)的吸引矿化模型(a:在煤颗粒上形成的载体气泡;b:具有高捕集量的矿化CFB)[22]
Figure 8.
-
[1] 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3): 382-388. doi: 10.3969/j.issn.1000-3045.2012.03.018
WANG J, ZHAO X. Demonstration of key technologies for clean and efficient utilization of low-rank coal [J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(3): 382-388. doi: 10.3969/j.issn.1000-3045.2012.03.018
[2] 安茂燕, 蒋荣立. 低阶煤浮选研究现状及分析[J]. 能源技术与管理, 2012(1): 117-119. doi: 10.3969/j.issn.1672-9943.2012.01.046
AN M, JIANG R. Status of research and analysis on low-rank coal flotation [J]. Energy Technology and Management, 2012(1): 117-119. doi: 10.3969/j.issn.1672-9943.2012.01.046
[3] 李振, 于伟, 杨超, 等. 低阶煤提质利用现状及展望[J]. 矿山机械, 2013, 41(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201307003.htm
LI Z, YU W, YANG C, et al. Actuality and expectation on upgrading utilization of low-rank coal [J]. Mining & Processing Equipment, 2013, 41(7): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KSJX201307003.htm
[4] 桂夏辉, 邢耀文, 王婷霞. 煤泥浮选过程强化之二——低阶/氧化煤难浮机理探讨篇[J]. 选煤技术, 2017(2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XMJS201702022.htm
GUI X, XING Y, WANG T. Coal flotation process intensification: part II-Study on mechnasim of difficulty in flotation of low-rank and oxidized coal [J]. Coal Preparation Technology, 2017, (2): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XMJS201702022.htm
[5] 杨阳. 低阶煤浮选的试验研究[J]. 煤炭工程, 2013, 45: 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201303037.htm
YANG Y. Experiment study on floatation of low rank coal [J]. Coal Engineering, 2013, 45: 105-107. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201303037.htm
[6] 朱银惠. 煤化学(第二版)[M]. 北京: 化学工业出版社, 2011.
ZHU Y. Coal chemistry (second edition) [M]. Beijing: Chemical Industry Press, 2011
[7] 段旭琴, 曲剑午, 王祖讷. 低变质烟煤有机显微煤岩组分的孔结构分析[J]. 中国矿业大学学报, 2009, 38: 224-228.
DUAN X, QU J, WANG Z. Pore structure of macerals from a low rank bituminous [J]. 2009, 38: 224-228.
[8] 桂夏辉, 邢耀文, 连露露, 等. 煤泥浮选过程强化之三——低阶/氧化煤浮选界面强化篇[J]. 选煤技术, 2017(3): 87-91, 96.
GUI X, XING Y, LIAN L, et al. Fine coal flotation process intensification-part Ⅲ: interface intensification of low-rank and oxidized coal [J]. 2017(3): 87-91, 96.
[9] 荣国强. 低阶煤浮选的界面特性及药剂捕收作用机理研究[D]. 徐州: 中国矿业大学, 2019.
RONG G. Study on interface characteristics and reagent collection mechanism of low rank coal flotation [D]. Xuzhou: China University of Mining and Technology, 2019.
[10] 郑云婷. 低阶煤表面性质研究与浮选药剂的筛选[D]. 北京: 煤炭科学研究总院, 2016.
ZHENG Y. Study on surface properties of low rank coal and screening of flotation reagents [D]. Beijing: China Coal Research Institute, 2016.
[11] MAO Y, XIA W, PENG Y, et al. Ultrasonic-assisted flotation of fine coal: A review [J]. Fuel Processing Technology, 2019, 195: 106150. doi: 10.1016/j.fuproc.2019.106150
[12] OZKAN S G. A review of simultaneous ultrasound-assisted coal flotation [J]. Journal of Mining & Environment, 2018, 9(3): 389-679.
[13] CHEN Y, TRUONG V N, BU X, et al. A review of effects and applications of ultrasound in mineral flotation [J]. Ultrasonics Sonochemistry, 2020, 60: 104739. doi: 10.1016/j.ultsonch.2019.104739
[14] 黄波, 徐宏祥, 李旭林. 微乳型捕收剂的稳定性和浮选性能的试验研究[J]. 煤炭学报, 2019, 44(9): 2878-2885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909029.htm
HUANG B, XU H, LI X. Experimental study on stability and flotation performance of micro-emulsion collector[J]. Journal of China Coal Society, 2019, 44(9): 2878-2885. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201909029.htm
[15] ZHOU S, WANG X, BU X, et al. Effects of emulsified kerosene nanodroplets on the entrainment of gangue materials and selectivity index in aphanitic graphite flotation[J]. Minerals Engineering, 2020, 158: 106592. doi: 10.1016/j.mineng.2020.106592
[16] 吴强, 姚澄, 朱昌平, 等. 超声清洗过程环境压力对声空化效应的影响[J]. 应用声学, 2015(5): 7.
WU. Q, YAO C, ZHU C, et al. The influence of ambient pressure on acoustic cavitation during the process of ultrasonic cleaning [J]. 2015, 34: 391-397.
[17] YASUI K. Acoustic cavitation and bubble dynamics [M]. Cham, Switzerland: Springer, 2018: 1-35.
[18] FISHER J C. The fracture of liquids [J]. Journal of Applied Physics, 1948, 19(11): 1062-1067. doi: 10.1063/1.1698012
[19] GALLOWAY W J. An experimental study of acoustically induced cavitation in liquids [J]. The Journal of the Acoustical Society of America, 1954, 26(5): 849-857. doi: 10.1121/1.1907428
[20] PROSPERETTI A. Bubble phenomena in sould fields: part two [J]. Ultrasonics, 1984, 22(3): 115-124. doi: 10.1016/0041-624X(84)90006-4
[21] PROSPERETTI A. Bubble phenomena in sound fields: part one [J]. Ultrasonics, 1984, 22(2): 69-77. doi: 10.1016/0041-624X(84)90024-6
[22] CHEN Y, CHELGANI S C, BU X, et al. Effect of the ultrasonic standing wave frequency on the attractive mineralization for fine coal particle flotation [J]. Ultrasonics Sonochemistry, 2021, 77: 105682. doi: 10.1016/j.ultsonch.2021.105682
[23] ZHOU S, WANG X, BU X, et al. A novel flotation technique combining carrier flotation and cavitation bubbles to enhance separation efficiency of ultra-fine particles [J]. Ultrasonics Sonochemistry, 2020, 64: 105005. doi: 10.1016/j.ultsonch.2020.105005
[24] 陈昱冉. 超声驻波场中疏水颗粒稳态声团聚机理[D]. 徐州: 中国矿业大学, 2020.
CHEN Y. Mechanism of steady-state acoustic agglomeration of hydrophobic particles in ultrasonic standing wave field [D]. Xuzhou: China University of Mining and Technology, 2020.
[25] LUO X, CAO J, GONG H, et al. Phase separation technology based on ultrasonic standing waves: A review [J]. Ultrasonics Sonochemistry, 2018, 48: 287-298. doi: 10.1016/j.ultsonch.2018.06.006
[26] MASON T J. Ultrasonic cleaning: an historical perspective [J]. Ultrasonics Sonochemistry, 2016, 29: 519-523. doi: 10.1016/j.ultsonch.2015.05.004
[27] MA Y, CHEN H. Dynamic research of a translational bubble in a strong acoustic field [J]. Applied Acoustics, 2019, 146: 76-80. doi: 10.1016/j.apacoust.2018.10.024
[28] TRUJILLO F J, JULIANO P, BARBOSA-CáNOVAS G, et al. Separation of suspensions and emulsions via ultrasonic standing waves - a review[J]. Ultrasonics Sonochemistry, 2014, 21(6): 2151-2164. doi: 10.1016/j.ultsonch.2014.02.016
[29] MIZUSHIMA Y, NAGAMI Y, NAKAMURA Y, et al. Interaction between acoustic cavitation bubbles and dispersed particles in a kHz-order-ultrasound-irradiated water[J]. Chemical Engineering Science, 2013, 93: 395-400. doi: 10.1016/j.ces.2013.02.028
[30] KNüPFER P, DITSCHERLEIN L, PEUKER U A. Nanobubble enhanced agglomeration of hydrophobic powders[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 117-123.
[31] CHEN Y, XIE G, CHANG J, et al. A study of coal aggregation by standing-wave ultrasound [J]. Fuel, 2019, 248: 38-46. doi: 10.1016/j.fuel.2019.03.030
[32] CHEN Y, ZHENG H, TRUONG V N, et al. Selective aggregation by ultrasonic standing waves through gas nuclei on the particle surface [J]. Ultrasonics Sonochemistry, 2020, 63: 104924. doi: 10.1016/j.ultsonch.2019.104924
[33] CHEN Y, NI C, XIE G, et al. Toward efficient interactions of bubbles and coal particles induced by stable cavitation bubbles under 600 kHz ultrasonic standing waves[J]. Ultrasonics Sonochemistry, 2020, 64: 105003. doi: 10.1016/j.ultsonch.2020.105003
[34] 史英祥, 程宏志. 利用超声波强化煤泥浮选效果的研究[J]. 选煤技术, 2007(2): 8-10. doi: 10.3969/j.issn.1001-3571.2007.02.003
SHI Y, CHENG H. Research on enhancement of coal slime flotation performance by use of ultrasonic wave [J]. Coal Preparation Technology, 2007 (2): 8-10. doi: 10.3969/j.issn.1001-3571.2007.02.003
[35] 唐超. 超声预处理对煤泥浮选过程的强化作用研究[D]. 徐州: 中国矿业大学, 2014.
TANG C. Study on strengthening effect of ultrasonic pretreatment on coal slime flotation process [D]. Xuzhou: China University of Mining and Technology.
[36] XU M, XING Y, GUI X, et al. Effect of ultrasonic pretreatment on oxidized coal flotation [J]. Energy & Fuels, 2017, 31(12): 14367-14373.
[37] 石焕, 史英祥. 超声处理对粉煤表面性质及浮选效果的影响[J]. 选煤技术, 2007(5): 21-23. doi: 10.3969/j.issn.1001-3571.2007.05.007
SHI H, SHI Y. Effect of supersonic treatment on surface property of fine coal and performance of flotation [J]. Coal Preparation Technology, 2007(5): 21-23. doi: 10.3969/j.issn.1001-3571.2007.05.007
[38] 康文泽, 吕玉庭. 超声波处理对煤泥特性的影响研究[J]. 中国矿业大学学报, 2006, 35(6): 783-786. doi: 10.3321/j.issn:1000-1964.2006.06.017
KANG W, LU Y. Effect of Ultrasonic Treatment on Slime Characteristics [J]. Journal of China University of Mining & Technology, 2006, 35(6): 783-786. doi: 10.3321/j.issn:1000-1964.2006.06.017
[39] 张红喜, 董宪姝, 王志忠. 超声波在煤浮选中的应用研究[J]. 选煤技术, 2008(2): 17-20. doi: 10.3969/j.issn.1001-3571.2008.02.007
ZHANG H, DONG X, WANG Z. Application research of ultrasoud in flotation [J]. Coal Preparation Technology, 2008(2): 17-20. doi: 10.3969/j.issn.1001-3571.2008.02.007
[40] 郑长龙, 茹毅. 超声预处理对低阶煤浮选的影响[J]. 煤炭工程, 2017, 49(5): 125-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201705038.htm
ZHENG Z, RU Y. Effect of ultrasonic pretreatment on low rank coal flotation [J]. Coal Engineering, 2017, 49(5): 125-127. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201705038.htm
[41] 毛玉强, 夏文成, 卜祥宁, 等. 超声波强化褐煤浮选及其作用机制探讨[J]. 煤炭学报, 2017, 42(11): 3006-3013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711028.htm
MAO Y, XIA W, BU X, et al. Discussion on ultrasonic enhanced lignite flotation and its action mechanism[J]. Journal of China Coal Society, 2017, 42(11): 3006-3013. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201711028.htm
[42] 李琳, 崔广文, 刘惠杰, 等. 超声微乳捕收剂的制备及煤泥浮选性能研究[J]. 洁净煤技术, 2016, 22(4): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201604015.htm
LI L, CUI G, LIU H, et al. Preparation and flotation performance of ultrasonic microemulsified collector for slime [J]. Clean Coal Technology, 2016, 22(4): 68-72. https://www.cnki.com.cn/Article/CJFDTOTAL-JJMS201604015.htm
[43] 王卫东, 张楠, 靳立章. 超声波同步处理强化煤泥浮选的试验研究[J]. 矿业科学学报, 2019, 4(4): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904010.htm
WANG W, ZHANG N, JIN L. Experiment study on fine coal slime flotation with simultaneous ultrasonic treatment [J]. Journal of Mining Science and Technology, 2019, 4(4): 357-364. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201904010.htm
[44] 郭伟, 刘生玉, 栗褒, 等. 超声条件下表面活性剂的选择性脱除对低阶煤泥浮选的影响[J]. 煤炭转化, 2019, 42(2): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201902012.htm
GUO W, LIU S, LI B, et al. Effects of selective desorption of surfactant on low rank coal flotation under ultrasound [J]. Coal Conversion, 2019, 42(2): 78-83. https://www.cnki.com.cn/Article/CJFDTOTAL-MTZH201902012.htm
[45] 孙小乐, 郭建英, 谢炙轩, 等. 超声条件下离子与表面活性剂对低阶煤泥浮选的影响[J]. 日用化学工业, 2020, 50(8): 523-528. doi: 10.3969/j.issn.1001-1803.2020.08.003
SUN X, GUO J, XIE Z, et al. Effects of ions and surfactant on low-rank coal slime flotation under ultrasonic conditions [J]. China Surfactant Detergent & Cosmetics, 2020, 50(8): 523-528. doi: 10.3969/j.issn.1001-1803.2020.08.003
[46] ALHESHIBRI M, QIAN J, JEHANNIN M, et al. A History of Nanobubbles [J]. Langmuir, 2016, 32(43): 11086-11100. doi: 10.1021/acs.langmuir.6b02489
[47] 王卫东, 靳立章. 细粒煤超声同步浮选的试验研究[J]. 煤炭学报, 2020, 45(8): 2949-2955. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008027.htm
WANG W, JIN L. Ultrasonic simoltaneous flotation of coal fines[J]. Journal of China Coal Society, 2020, 45(8): 2949-2955. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202008027.htm
[48] ZHANG F, SUN L, YANG H, et al. Recent advances for understanding the role of nanobubbles in particles flotation [J]. Advances in Colloid and Interface Science, 2021, 291: 102403.
[49] TAO D, WU Z, SOBHY A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms [J]. Powder Technology, 2021, 379: 12-25. doi: 10.1016/j.powtec.2020.10.040
[50] NAZARI S, SHAFAEI S Z, GHARABAGHI M, et al. Effects of nanobubble and hydrodynamic parameters on coarse quartz flotation [J]. International Journal of Mining Science and Technology, 2019, 29(2): 289-295. doi: 10.1016/j.ijmst.2018.08.011
[51] OZKAN S G. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes [J]. Fuel, 2012, 93: 576-580. doi: 10.1016/j.fuel.2011.10.032
[52] PENG Y, MAO Y, XIA W, et al. Ultrasonic flotation cleaning of high-ash lignite and its mechanism [J]. Fuel, 2018, 220(15): 558-566.
[53] JADHAV A J, BARIGOU M. Response to "Comment on bulk nanobubbles or not nanobubbles: that is the question?" [J]. Langmuir, 2021, 37(1): 596-601. doi: 10.1021/acs.langmuir.0c03165
[54] NIRMALKAR N, PACEK A W, BARIGOU M. Bulk nanobubbles from acoustically cavitated aqueous organic solvent mixtures [J]. Langmuir, 2019, 35(6): 2188-2195. doi: 10.1021/acs.langmuir.8b03113
[55] NIRMALKAR N, PACEK A W, BARIGOU M. On the existence and stability of bulk nanobubbles[J]. Langmuir, 2018, 34(37): 10964-10973.
[56] CHO S, KIM J, CHUN J, et al. Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269(1): 28-34.
[57] MO C, WANG J, FANG Z, et al. Formation and stability of ultrasonic generated bulk nanobubbles[J]. Chinese Physics B, 2018, 27(11): 118104.
[58] BU X, ALHESHIBRI M. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status [J]. Ultrasonics Sonochemistry, 2021, 76: 105629.
[59] 王成会, 林书玉. 超声场中气泡的耦合运动[J]. 声学学报, 2011, 36: 325-331.
WANG C, LIN S. The coupled motion of bubbles in ultrasonic field [J]. 2011, 36: 325-331.
[60] JIAO J, HE Y, YASUI K, et al. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field [J]. Ultrasonics Sonochemistry, 2015, 22: 70-77.
[61] FENG D, ALDRICH C. Effect of preconditioning on the flotation of coal [J]. Chemical Engineering Communications, 2005, 192(7): 972-983.
[62] MAO Y, BU X, PENG Y, et al. Effects of simultaneous ultrasonic treatment on the separation selectivity and flotation kinetics of high-ash lignite [J]. Fuel, 2020, 259: 116270.
[63] MAO Y, CHEN Y, BU X, et al. Effects of 20 kHz ultrasound on coal flotation: The roles of cavitation and acoustic radiation force [J]. Fuel, 2019, 256: 115938.