粗颗粒浮选技术及其应用

罗亨通, 封东霞, 杨多, 张小永, 熊宇农. 粗颗粒浮选技术及其应用[J]. 矿产保护与利用, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019
引用本文: 罗亨通, 封东霞, 杨多, 张小永, 熊宇农. 粗颗粒浮选技术及其应用[J]. 矿产保护与利用, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019
LUO Hengtong, FENG Dongxia, YANG Duo, ZHANG Xiaoyong, XIONG Yunong. Coarse Particle Flotation Technology and Its Application[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019
Citation: LUO Hengtong, FENG Dongxia, YANG Duo, ZHANG Xiaoyong, XIONG Yunong. Coarse Particle Flotation Technology and Its Application[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 129-137. doi: 10.13779/j.cnki.issn1001-0076.2022.01.019

粗颗粒浮选技术及其应用

  • 基金项目:
    云南省自然科学基金资助项目(2019FD033);云南省高层次人才引进计划项目(CCC21321005A); 昆明理工大学长江学者引进人才平台建设项目(109720190145)
详细信息
    作者简介: 罗亨通(1998-),男,硕士研究生
    通讯作者: 封东霞(1989-),女,副教授,硕士研究生导师
  • 中图分类号: TD923

Coarse Particle Flotation Technology and Its Application

More Information
    Corresponding author: FENG Dongxia
  • 粗颗粒浮选技术提高了矿物颗粒可浮选粒度上限,并且可以减少能量的消耗,这对于预选抛尾和粗粒尾矿再选,特别是对易于过粉碎的矿物浮选具有重大意义。近年来已有许多粗粒浮选技术应用于煤炭、磷酸盐矿等的选别。从分析粗颗粒矿物的性质及其难浮选的问题出发,提出了改善粗颗粒浮选的方法,总结了泡沫中浮选法、闪速浮选法、流化床浮选法等浮选方法及相关设备,并介绍了不同方法在实际生产应用中的优缺点。

  • 加载中
  • 图 1  SIF试验装置配置

    Figure 1. 

    图 2  泡沫分选机结构示意图[21]

    Figure 2. 

    图 3  闪速浮选工艺流程

    Figure 3. 

    图 4  闪速浮选槽浮选过程

    Figure 4. 

    图 5  YXII-4型闪速浮选机结构示意图[30]

    Figure 5. 

    图 6  SL-SSF75-1型高效闪速浮选机设备结构示意图[31]

    Figure 6. 

    图 7  旋流闪速浮选法工艺流程

    Figure 7. 

    图 8  NovaCell型浮选柱的工作原理

    Figure 8. 

    图 9  HydroFloat型水力浮选机的工作原理

    Figure 9. 

  • [1]

    JAMESON G J. New directions in flotation machine design[J]. Minerals Engineering, 2010, 23: 835-841. doi: 10.1016/j.mineng.2010.04.001

    [2]

    DANIEL M, LEWIS-GRAY E. Comminution efficiency attracts attention[J]. The AusIMM Bulletin, 2011(10): 20-30.

    [3]

    MUSA F, MORRISON R. A more sustainable approach to assessing comminution efficiency[J]. Minerals Engineering, 2009, 22: 593-601. doi: 10.1016/j.mineng.2009.04.004

    [4]

    NORGATE T, JAHANSHAHI S. Improving the sustainability of primary metal production—the need for a life cycle approach[C]. Brisbane, XXV International Mineral Processing Conference (IMPC), 2010.

    [5]

    MWALE AH, MUSONGE P, FRASER DM. The influence of particle size on energy consumption and water recovery in comminution and dewatering systems[J]. Minerals Engineering, 2005(18): 915-926.

    [6]

    敖顺福, 朱家锐, 徐峰, 等. 预选抛尾技术应用进展[J]. 矿产保护与利用, 2021, 41(4): 157-163. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3c4cd329-9265-4b28-9a2d-9cf6a6f65209

    AO S F, ZHU J R, XU F, et al. Application progress of preconcentration and discarding technology[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 157-163. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=3c4cd329-9265-4b28-9a2d-9cf6a6f65209

    [7]

    卢寿慈. 粗粒浮选理论、工艺及设备[J]. 国外金属矿选矿, 1982(10): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198210015.htm

    LU S C. Theory, technology and equipment of coarse flotation[J]. Metallic Ore Dressing Abroad, 1982(10): 47-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198210015.htm

    [8]

    SCHINA GOEL, GRAEME J JAMESON. Detachment of particles from bubbles in an agitated vessel[J]. Minerals Engineering, 2012(32/38): 324-330.

    [9]

    平翠霞. 铝土矿浮选泡沫尺寸分布特征与浮选药剂添加量关系模型[D]. 长沙: 中南大学, 2012.

    PING C X. Bauxite flotation foam size distribution characteristics and flotation reagent dosage relationship model[D]. Changsha: Central South University, 2012.

    [10]

    喻明军. 充气深槽浮选机性能参数试验及模拟分析[D]. 长沙: 中南大学, 2010.

    YU M J. Test and simulation analysis of performance parameters of aerated deep cell flotation machine[D]. Changsha: Central South University, 2010.

    [11]

    邱冠周, 胡岳华, 王淀佐. 颗粒间相互作用与细粒浮选[M]. 长沙: 中南工业大学出版社, 1993.

    QIU G Z, HU Y H, WANG D Z. Particle-to-particle interaction and fine-grain flotation[M]. Changsha: Central South University of Technology Press, 1993.

    [12]

    沈政昌. 浮选机理论与技术[M]. 北京: 冶金工业出版社, 2012.

    SHEN Z C. Flotation machine theory and technology[M]. Beijing: Metallurgical Industry Press, 2012.

    [13]

    SOTO H, BARBERY G. Flotation of coarse particles in a counter-current column cell[J]. Miner. Metall. Process, 1991, 8(1): 16-21.

    [14]

    SCHULZE HJ. Physic-chemical elementary processes in flotation: an analysis from the point of view of colloid science including process engineering considerations/Hans Joachim schulze (translated by manfred hecker)[R]. Elsevier, Amsterdam, New York: 1984.

    [15]

    KOHMUENCHA J N, MANKOSAB M J, THANASEKARANA H, et al. Improving coarse particle flotation using the hydrofloat(raising the trunk of the elephant curve)[J]. Minerals Engineering, 2018, 121: 137-14. doi: 10.1016/j.mineng.2018.03.004

    [16]

    李成秀. 卡房高砷锡石硫化铜矿粗粒浮选新工艺研究[D]. 昆明: 昆明理工大学, 2005.

    LI C X. Study on the new flotation process of high arsenic cassiterite sulfide copper ore in Kafang[D]. Kunming: Kunming University of Technology, 2005.

    [17]

    VIANNA S. The effect of particle size, collector coverage and liberation on the floatability of galena particles in an ore[D]. Queensland: University of Queensland, 2004.

    [18]

    邱冠周, 伍喜庆, 王毓华, 等. 近年浮选进展[J]. 金属矿山, 2006(1): 41-52. doi: 10.3321/j.issn:1001-1250.2006.01.013

    QIU G Z, WU X Q, WANG Y H, et al. Flotation progress in recent years[J]. Metal Mine, 2006(1): 41-52. doi: 10.3321/j.issn:1001-1250.2006.01.013

    [19]

    列皮伦JO., 刘万峰, 肖力子. 粗粒浮选的有效技术——泡沫中分选[J]. 国外金属矿选矿, 2004(9): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200409001.htm

    LEEPILUN J O., LIU W FE, XIAO L Z. Effective technology for coarse flotation: SIF[J]. Metallic Ore Dressing Abroad, 2004(9): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK200409001.htm

    [20]

    王泓皓. 宽粒级煤泥浮选机试验研究与流场分析[D]. 太原: 太原理工大学, 2013.

    WANG H H. Experimental research and flow field analysis of wide particle slime flotation machine[D]. Taiyuan: Taiyuan University of Technology, 2013.

    [21]

    肖遥, 韩海生, 孙伟, 等. 粗颗粒浮选技术与装备研究进展与趋势[J]. 金属矿山, 2020(6): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006004.htm

    XIAO Y, HAN H S, SUN W, et al. Research progress of coarse particle flotation technology and equipment[J]. Metal Mine, 2020(6): 9-23. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202006004.htm

    [22]

    李振, 刘炯天, 王永田, 等. 浮选技术的发展现状及展望[J]. 金属矿山, 2008(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200801002.htm

    LI Z, LIU J T, WANG Y T, et al. Development status and prospect of flotation technology[J]. Metal Mine, 2008(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200801002.htm

    [23]

    赵泓铭, 戴惠新. 闪速浮选技术及其应用[J]. 矿产综合利用, 2016(6): 17-20. doi: 10.3969/j.issn.1000-6532.2016.06.004

    ZHAO H M, DAI H X. Flash flotation technology and its application[J]. Comprehensive Utilization of Mineral Resources, 2016(6): 17-20. doi: 10.3969/j.issn.1000-6532.2016.06.004

    [24]

    MCCULLOCHC WALTER E. JR. Flash flotation for improved gold recovery at Freeport Indonesia[J]. Mining, Metallurgy & Exploration, 1990(3): 144-148.

    [25]

    BIANCA NEWCOMBE, BRADSHAW D, WIGHTMAN E. Flash flotation and the plight of the coarse particle[J]. Minerals Engineering, 2012(34): 1-10.

    [26]

    夏晓鸥. 闪速浮选的理论与实践[J]. 国外金属矿选矿, 1993(10): 47-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199310009.htm

    XIA X O. Theory and practice of flash flotation[J]. Metallic Ore Dressing Abroad, 1993(10): 47-57. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK199310009.htm

    [27]

    BIANCA NEWCOMBE. A phenomenological model for an industrial flash flotation cell[J]. Minerals Engineering, 2014(64): 51-62.

    [28]

    国家自然科学基金委员会. 冶金与矿业科学[M]. 北京: 科学出版社, 1997.

    National natural science foundation of China. Metallurgy and Mining Science[M]. Beijing: Science Press, 1997.

    [29]

    陈典助. 闪速浮选工艺及其设备的探讨[J]. 工程设计与研究, 1993(2): 16-19.

    CHEN D Z. Discussion of flash flotation process and its equipment[J]. Engineering Design and Research, 1993(2): 16-19.

    [30]

    谭明, 冯天然, 韩志彬, 等. YXⅡ-4闪速浮选机在磨矿分级回路的工业试验研究[J]. 有色金属(选矿部分), 2017(1): 74-77+85. doi: 10.3969/j.issn.1671-9492.2017.01.017

    TAN M, FENG T R, HAN Z B, et al. Industrial test and research of YXⅡ-4 flash flotation machine in grinding and grading circuit[J]. Nonferrous Metals(Mineral Processing Section), 2017(1): 74-77+85. doi: 10.3969/j.issn.1671-9492.2017.01.017

    [31]

    夏剑雄, 梅丰. 高效闪速浮选机应用实践[J]. 中国矿业, 2000(S2): 216-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2000S2048.htm

    XIA J X, MEI F. Efficient flash flotation machine application practice[J]. China Mining Magazine, 2000(S2): 216-219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA2000S2048.htm

    [32]

    陈贵民, 陈桥, 张福生, 等. 闪速浮选回收磨矿-分级回路中金矿物试验研究[J]. 中国资源综合利用, 2019, 37(9): 1-4. doi: 10.3969/j.issn.1008-9500.2019.09.001

    CHEN G M, CHEN Q, ZHANG F S, et al. Experimental study on recovery of gold minerals in grinding grading circuit by flash flotation[J]. Comprehensive Utilization of Resources in China, 2019, 37(9): 1-4. doi: 10.3969/j.issn.1008-9500.2019.09.001

    [33]

    BIANCA NEWCOMBE, WIGHTMAN E, BRADSHAW D. The role of a flash flotation circuit in an industrial refractory gold concentrator[J]. Minerals Engineering, 2013, 53: 57-73. doi: 10.1016/j.mineng.2013.06.016

    [34]

    BIANCA NEWCOMBE, BRADSHAW D, WIGHTMAN E. The hydrodynamics of an operating flash flotation cell[J]. Minerals Engineering, 2013, 41: 86-96. doi: 10.1016/j.mineng.2012.11.007

    [35]

    李皊值. 闪速浮选机及其应用[J]. 湿法冶金, 1995(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ501.000.htm

    LI L Z. Flash flotation machine and its applications[J]. Hydrometallurgy, 1995(1): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ501.000.htm

    [36]

    严立德. 快速浮选(摘要)[J]. 国外金属矿选矿. 1986(8): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198608008.htm

    YAN L D. Fast flotation (Summary)[J]. Metallic Ore Dressing Abroad, 1986(8): 25-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JSXK198608008.htm

    [37]

    何从行. 快速浮选[J]. 有色矿山, 1987(10): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS198710012.htm

    HE C X. Flash flotation[J]. Nonferrous Mines, 1987(10): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKS198710012.htm

    [38]

    王海瑞. 闪速浮选技术的研究与应用[J]. 甘肃有色金属, 1998(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK802.002.htm

    WANG H R. Research and application of flash flotation technology[J]. Gansu non-ferrous metals, 1998(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK802.002.htm

    [39]

    张和仕. 闪速浮选[J]. 江西冶金, 1989, 9(4): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198904009.htm

    ZHANG H S. Flash flotation[J]. Jiangxi Metallurgy, 1989, 9(4): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JXYE198904009.htm

    [40]

    李长根, 刘永强. 旋流闪速浮选法的研究——旋流闪速浮选法的可行性研究[J]. 有色金属, 2000, 52(1): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200001005.htm

    LI C G, LI Y Q. Study of cyclone flash flotation method--feasibility study of cyclone flash flotation method[J]. Nonferrous Metals, 2000, 52(1): 22-31. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200001005.htm

    [41]

    朱耘青. 石油炼制工艺学(下)[M]. 北京: 中国石化出版社, 1992: 80-85.

    ZHU G Q. Petroleum processing technology course volume Ⅱ[M]. Beijing: Sinopec Press, 1992: 80-85.

    [42]

    PUSPASARI MZM, TALIB WRW, TASIRIN DAUD SM. Drying kinetics of oil palm frond particles in an agitated fluidized bed dryer[J]. Drying Technology, 2012, 30(6): 619-630. doi: 10.1080/07373937.2012.654873

    [43]

    MATT R. TOMKINS, TOM E. BALDOCK, PETER NIELSEN. Hindered settling of sand grains[J]. Sedimentology, 2005, 52: 1425-1432. doi: 10.1111/j.1365-3091.2005.00750.x

    [44]

    SANGKYUN KOO. Estimation of hindered settling velocity of suspensions[J]. Journal of Industrial and Engineering Chemistry, 2009(15): 45-49.

    [45]

    LUTTRELL GH, WESTERFIELD TC, KOHMUENCH JN, et al. Development of high-efficiency hydraulic separators[J]. Mining, Metallurgy & Exploration, 2006, 23: 33-39.

    [46]

    BELLSON AWATEYA, HOMIE THANASEKARANB, JAISEN N. KOHMUENCHC, et al. Optimization of operating parameters for coarse sphalerite flotation in the hydrofloat fluidized-bed separator[J]. Minerals Engineering, 2013(50-51): 99-105.

    [47]

    BAIT RG, PAWAR SB, BANERJEE AN, et al. Mechanically agitated fluidized bed drying of cohesive particles at low air velocity[J]. Drying Technology, 2011, 29(7): 808-818. doi: 10.1080/07373937.2010.541574

    [48]

    LYU B, DENG X W, CHANG L S, et al. Effect of agitation on hydrodynamics and separation performance of gas-solid separation fluidized bed[J]. Powder Technology, 2021, 388: 129-138. doi: 10.1016/j.powtec.2021.04.084

    [49]

    GRAEME J. JAMESON, CAGRI ENER. Coarse chalcopyrite recovery in a universal froth flotation machine[J]. Minerals Engineering, 2019, 134: 118-133.

    [50]

    沈政昌, 罗世瑶, 杨义红, 等. 流态化浮选技术概述[J]. 有色金属(选矿部分), 2019(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201905005.htm

    SHEN Z C, LUO S Y, YANG Y H, et al. Overview of fluidization flotation technology[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXK201905005.htm

    [51]

    王冬冬, 王怀法. 粗颗粒煤炭流化床浮选试验研究[J]. 煤炭工程, 2018, 50(5): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201805035.htm

    WANG D D, WANG H F. Experimental study on fluidized bed flotation of coarse coal[J]. Coal Engineering, 2018, 50(5): 123-126. https://www.cnki.com.cn/Article/CJFDTOTAL-MKSJ201805035.htm

    [52]

    XU D, AMETOV I, GRANO SR. Quantifying rheological and fine particle attachment contributions to coarse particle recovery in flotation[J]. Minerals Engineering, 2012, 39: 89-98. doi: 10.1016/j.mineng.2012.07.003

    [53]

    YOON RH, LUTTRELL GH. The effect of bubble size on fine particle flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989(5): 1-4+101-122.

    [54]

    ATAS, CHENZ, JAMESONG J. Improving the capture of coarse particles using bubble clusters[M]. Littleton, Colorado: Society for Mining, Metallurgy and Exploration, 2009.

    [55]

    柳开芳, 叶艳, 令狐丹, 等. 超声波对粗粒高灰煤泥浮选效果的影响研究[J]. 山东化工, 2020, 49(2): 129-130. doi: 10.3969/j.issn.1008-021X.2020.02.048

    LIU K F, YE Y, LING H D, et al. Effect of ultrasound on the flotation performance of coarse size fraction of high-ash coal particles[J]. Shandong Chemical Industry, 2020, 49(2): 129-130. doi: 10.3969/j.issn.1008-021X.2020.02.048

    [56]

    SAYED AHMED, AHMED SOBHY. Cavitation nanobubble enhanced flotation process for more efficient coal recovery[D]. Kentucky: University of Kentucky, 2013.

    [57]

    刘安, 韩峰, 李志红, 等. 纳米气泡在微细粒矿物浮选中的应用研究进展[J]. 矿产保护与利用, 2018(3): 81-86. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ac5ca317-8380-486a-a10a-31beeca402e5

    LIU A, HAN F, LI Z H, et al. Research Progress of Nano-bubble in Micro-fine Mineral Flotation[J], Conservation and Utilization of Mineral Resources, 2018(3): 81-86. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=ac5ca317-8380-486a-a10a-31beeca402e5

  • 加载中

(9)

计量
  • 文章访问数:  2000
  • PDF下载数:  29
  • 施引文献:  0
出版历程
收稿日期:  2022-01-25
刊出日期:  2022-02-25

目录