硫脲-盐酸体系从稀土抛光粉废料中浸出回收稀土氧化物

翟京雨, 刘广义. 硫脲-盐酸体系从稀土抛光粉废料中浸出回收稀土氧化物[J]. 矿产保护与利用, 2022, 42(1): 158-164. doi: 10.13779/j.cnki.issn1001-0076.2022.01.023
引用本文: 翟京雨, 刘广义. 硫脲-盐酸体系从稀土抛光粉废料中浸出回收稀土氧化物[J]. 矿产保护与利用, 2022, 42(1): 158-164. doi: 10.13779/j.cnki.issn1001-0076.2022.01.023
ZHAI Jingyu, LIU Guangyi. The Leaching Technology of Rare Earth Polishing Powder Waste in Thiourea-Hydrochloric Acid System and Recovery of Rare Earth Oxides from the Lixivium Through Oxalic Acid Precipitation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 158-164. doi: 10.13779/j.cnki.issn1001-0076.2022.01.023
Citation: ZHAI Jingyu, LIU Guangyi. The Leaching Technology of Rare Earth Polishing Powder Waste in Thiourea-Hydrochloric Acid System and Recovery of Rare Earth Oxides from the Lixivium Through Oxalic Acid Precipitation[J]. Conservation and Utilization of Mineral Resources, 2022, 42(1): 158-164. doi: 10.13779/j.cnki.issn1001-0076.2022.01.023

硫脲-盐酸体系从稀土抛光粉废料中浸出回收稀土氧化物

详细信息
    作者简介: 翟京雨(1998-),男,湖北黄冈人,硕士研究生,主要研究方向为稀土材料回收再利用; E-mail: 1547343116@qq.com
    通讯作者: 刘广义(1974-),男,湖南娄底人,教授,博士,主要研究方向为绿色化工,资源加工与利用; E-mail: guangyiliu@csu.edu.cn
  • 中图分类号: TF845;TD983

The Leaching Technology of Rare Earth Polishing Powder Waste in Thiourea-Hydrochloric Acid System and Recovery of Rare Earth Oxides from the Lixivium Through Oxalic Acid Precipitation

More Information
  • 基于稀酸溶液中Ce(Ⅳ)难溶而Ce(Ⅲ)易溶的特点,采用硫脲-稀盐酸体系还原浸出稀土抛光粉废料中稀土氧化物。考察了浸出温度、浸出时间、液固比(L/S)、盐酸浓度和硫脲用量对稀土抛光粉废料中铈浸出率的影响。结果表明:在盐酸浓度为4 mol/L、L/S为4.2、浸出温度90 ℃、浸出时间60 min、硫脲用量0.04 g/g给料的优选条件下,铈浸出率达99.37%。然后对浸出液采用草酸沉淀法分离和回收稀土氧化物,经氨水调pH至1.8~2.0,草酸沉淀,氧化焙烧,得到稀土氧化物产物,总REO含量约为97%,其中CeO2 78.00%、La2O3 18.93%,回收率分别为91.66%和68.44%。激光粒度分析、XRD、SEM等研究表明,稀土氧化物产物粒度分布均匀,主要为CeO2晶体,方形颗粒表面平整,棱角分明。

  • 加载中
  • 图 1  液固比对铈浸出率的影响

    Figure 1. 

    图 2  盐酸浓度对铈浸出率的影响

    Figure 2. 

    图 3  硫脲用量对铈浸出率的影响

    Figure 3. 

    图 4  浸出时间对铈浸出率的影响

    Figure 4. 

    图 5  浸出温度对铈浸出率的影响

    Figure 5. 

    图 6  稀土抛光粉废料回收稀土元素数质量流程

    Figure 6. 

    图 7  稀土草酸盐热分解曲线

    Figure 7. 

    图 8  稀土氧化物产品粒度分布曲线

    Figure 8. 

    图 9  样品的XRD曲线:(a)稀土抛光粉废料,(b)稀土氧化物产品

    Figure 9. 

    图 10a  稀土抛光粉废料SEM图像

    Figure 10a. 

    图 10b  稀土氧化物产品SEM图像

    Figure 10b. 

    表 1  稀土抛光粉废料的化学组成

    Table 1.  Chemical composition of rare earth polishing powder waste  /%

    成分 Ce La O Al Si F Ca
    含量 43.40 14.79 23.90 5.00 4.37 3.85 0.80
    注:Ce和La为化学滴定法分析结果,其余元素为XRF分析结果。
    下载: 导出CSV

    表 2  稀土氧化物产品的化学组成

    Table 2.  Chemical composition of rare earth oxide products  /%

    成分 Ce La O F Cl Al Ca Si
    含量 63.49 16.14 17.6 2.21 0.152 0.041 0.035 0.02
    注:Ce和La为化学滴定法分析结果,其余元素为XRF分析结果。
    下载: 导出CSV
  • [1]

    BORRA C, VLUGT T, YANG Y, et al. Recovery of cerium from glass polishing waste: A critical review[J]. Metals, 2018, 8(10): 801-817. doi: 10.3390/met8100801

    [2]

    UM N, HIRATO T. A hydrometallurgical method of energy saving type for separation of rare earth elements from rare earth polishing powder wastes with middle fraction of ceria[J]. Journal of Rare Earths, 2016, 34(5): 536-542. doi: 10.1016/S1002-0721(16)60059-5

    [3]

    罗天纵, 吴希桃, 包新军, 等. 废弃稀土抛光粉回收再利用研究进展[J]. 稀土, 2020, 41(3): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202003015.htm

    LUO T Z, WU X T, BAO X J, et al. Research process in recovering and reutilizing of rare earth polishing powder wastes[J]. Chinese Rare Earths, 2020, 41(3): 95-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ202003015.htm

    [4]

    OH M, NHO J, CHO S, et al. Polishing behaviors of ceria abrasives on silicon dioxide and silicon nitride CMP[J]. Powder Technology, 2011, 206(3): 239-245. doi: 10.1016/j.powtec.2010.09.025

    [5]

    BINNEMANS K, JONES P T, BLANPAIN B, et al. Recycling of rare earths: a critical review[J]. Journal of Cleaner Production, 2013, 51: 1-22. doi: 10.1016/j.jclepro.2012.12.037

    [6]

    MESHRAM P, ABHILASH. Recovery and recycling of cerium from primary and secondary resources- a critical review[J]. Mineral Processing and Extractive Metallurgy Review, 2020, 41(4): 279-310. doi: 10.1080/08827508.2019.1677647

    [7]

    李振民, 王勇, 牛京考. 中国稀土资源开发的生态环境影响及维护政策[J]. 稀土, 2017, 38(6): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201706019.htm

    LI Z M, WANG Y, NIU J K. The influence of rare earth resources exploitation on ecology and environment and the protection plicy[J]. Chinese Rare Earths, 2017, 38(6): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201706019.htm

    [8]

    TING M H, SEAMAN J. Rare earths: future elements of conflict in asia[J]. Asian Studies Review, 2013, 37(2): 234-252. doi: 10.1080/10357823.2013.767313

    [9]

    涂雅洁. 废弃稀土抛光渣梯级循环利用的研究[D]. 武汉: 武汉理工大学, 2012.

    TU Y J. The study for step recycling of easte rare earth polishing powder[D]. Wuhan: Wuhan University of Technology, 2012.

    [10]

    KIM J, KIM U, BYEON M, et al. Recovery of cerium from glass polishing slurry[J]. Journal of Rare Earths, 2011, 29(11): 1075-1078. doi: 10.1016/S1002-0721(10)60601-1

    [11]

    WANG L, LIU P, CHEN Y. Recovery of cerium oxide abrasive from an abrasive-glass polishing waste through alkaline roasting followed by water leaching[J]. Metals, 2020, 10(6): 752-767. doi: 10.3390/met10060752

    [12]

    刘晓杰, 于亚辉, 许涛, 等. 碱焙烧法从稀土抛光粉废渣中回收稀土[J]. 稀土, 2015, 36(4): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504013.htm

    LIU X J, YU Y H, XU T, et al. Recovery of RE from waste RE polishing powder by Alkali roasting[J]. Chinese Rare Earths, 2015, 36(4): 75-80. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201504013.htm

    [13]

    ZOU D, LI H, DENG Y, et al. Recovery of lanthanum and cerium from rare earth polishing powder wastes utilizing acid baking-water leaching-precipitation process[J]. Separation and Purification Technology, 2021, 261: 118244. doi: 10.1016/j.seppur.2020.118244

    [14]

    罗磊. 从废弃稀土抛光粉中回收稀土金属的工艺条件研究[D]. 合肥: 合肥工业大学, 2015.

    LUO L. Technological conditions of recovering rare earth metals from an abandoned rare earth polishing power[D]. Hefei: Hefei University of Technology, 2015.

    [15]

    POSCHER A, LUIDOLD S, ANTREKOWITSCH H. Extraction of cerium and lanthanum from spent glass polishing agent: rare earth elements symposium[C]. Montreal, 2013.

    [16]

    JANOŠ P, KURÁÑ P, EDERER J, et al. Recovery of cerium dioxide from spent glass-polishing slurry and its utilization as a reactive sorbent for fast degradation of toxic organophosphates[J]. Advances in Materials Science and Engineering, 2015(22): 1-8.

    [17]

    LU S, SUN S, HUANG X, et al. Optimization of recovering cerium from the waste polishing powder using response surface methodology[J]. Green Processing and Synthesis, 2017, 6(2): 217-224.

    [18]

    JING-YING L, XIU-LI X, WEN-QUAN L. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones[J]. Waste Management, 2012, 32(6): 1209-1212. doi: 10.1016/j.wasman.2012.01.026

    [19]

    SADRI F, RASHCHI F, AMINI A. Hydrometallurgical digestion and leaching of Iranian monazite concentrate containing rare earth elements Th, Ce, La and Nd[J]. International Journal of Mineral Processing, 2017, 159: 7-15. doi: 10.1016/j.minpro.2016.12.003

    [20]

    全国稀土标准化技术委员会. 稀土抛光粉化学分析方法第1部分: 氧化铈量的测定滴定法[S]. 北京: 中国标准出版社, 2012.

    National rare earth standardization technical committee. GB/T 20166.1-2012, Chemical analysis methods of rare earth polishing powder-Part1: Determination of cerium oxide content-Titrimetry[S]. Beijing: China Standard Press, 2012.

    [21]

    赵林治, 杨书廷. 硫脲稳定性研究[J]. 河南师范大学学报(自然科学版), 1992(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX199201018.htm

    ZHAO L Z, YANG S T. Study on the stability of thiourea[J]. Journal of Henan Normal University (Natural Science), 1992(1): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-HNSX199201018.htm

    [22]

    CALLA-CHOQUE D, LAPIDUS G T. Acid decomposition and silver leaching with thiourea and oxalate from an industrial jarosite sample[J]. Hydrometallurgy, 2020, 192: 105289. doi: 10.1016/j.hydromet.2020.105289

    [23]

    GABAL M A, ELROBY S A K, OBAID A Y. Synthesis and characterization of nano-sized ceria powder via oxalate decomposition route[J]. Powder Technology, 2012, 229: 112-118. doi: 10.1016/j.powtec.2012.06.017

    [24]

    李梅, 杨来东, 柳召刚, 等. 粒度及粒度分布对铈基稀土抛光粉性能影响的研究[J]. 稀土, 2016, 37(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201604026.htm

    LIM, YANG L D, LIU Z G, et al. The study of the ipact of particle size and particle size distribution of the Ce-based rare earth polishing powder on its performance[J]. Chinese Rare Earths, 2016, 37(4): 144-147. https://www.cnki.com.cn/Article/CJFDTOTAL-XTZZ201604026.htm

    [25]

    YU B, JIANG J, YANG C. Conversion of lanthanum and cerium recovered from hazardous waste polishing powders to hazardous ammonia decomposition catalysts[J]. Journal of Hazardous Materials, 2019, 379: 120773. doi: 10.1016/j.jhazmat.2019.120773

    [26]

    周筱桐, 肖汉宁, 刘井雄, 等. 草酸沉淀法制备稀土抛光粉及其抛光性能[J]. 机械工程材料, 2014, 38(8): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201408013.htm

    ZHOU X T, XIAO H N, LIU J X, et al. Preparation of polishing powders by oxalate deposition and its polishing performance[J]. Materials of Mechanical Engineering, 2014, 38(8): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201408013.htm

    [27]

    ZHAN G, YU J, XU Z, et al. Kinetics of thermal decomposition of lanthanum oxalate hydrate[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(4): 925-934. doi: 10.1016/S1003-6326(11)61266-1

    [28]

    ANJANEYA K C, NAYAKA G P, MANJANNA J, et al. Studies on structural, morphological and electrical properties of Ce0.8Ln0.2O2-δ (Ln=Y3+, Gd3+, SM3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method[J]. Journal of Alloys and Compounds, 2014, 585: 594-601. doi: 10.1016/j.jallcom.2013.09.101

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1500
  • PDF下载数:  56
  • 施引文献:  0
出版历程
收稿日期:  2021-11-15
刊出日期:  2022-02-25

目录