氨基三亚甲基膦酸抑制剂在菱镁矿和白云石浮选分离中的作用机理

陈旭东, 刘文刚, 彭祥玉, 孙文瀚. 氨基三亚甲基膦酸抑制剂在菱镁矿和白云石浮选分离中的作用机理[J]. 矿产保护与利用, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012
引用本文: 陈旭东, 刘文刚, 彭祥玉, 孙文瀚. 氨基三亚甲基膦酸抑制剂在菱镁矿和白云石浮选分离中的作用机理[J]. 矿产保护与利用, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012
CHEN Xudong, LIU Wengang, PENG Xiangyu, SUN Wenhan. Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012
Citation: CHEN Xudong, LIU Wengang, PENG Xiangyu, SUN Wenhan. Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 91-99. doi: 10.13779/j.cnki.issn1001-0076.2022.02.012

氨基三亚甲基膦酸抑制剂在菱镁矿和白云石浮选分离中的作用机理

  • 基金项目:
    辽宁省兴辽英才计划青年拔尖人才(XLYC1807089);中央高校基本科研业务费(N2101047)
详细信息
    作者简介: 陈旭东(1994-),男,陕西榆林人,博士研究生,主要从事矿物综合利用研究,E-mail: xdchen0922@qq.com
    通讯作者: 刘文刚(1981-),男,山东潍坊人,博士,教授,主要从事选矿药剂研发、矿山环境保护,E-mail: liuwengang@mail.neu.edu.cn
  • 中图分类号: TD923+.14;TD973+.4;TD973+.9

Effect and Mechanism of Depressant Amino Trimethylene Phosphonic Acid on Flotation Separation of Magnesite and Dolomite

More Information
  • 如何利用高效分离抑制剂实现白云石与菱镁矿的有效分离是含钙型菱镁矿矿石加工利用的研究重点。本文在油酸钠(NaOL)体系下,以氨基三亚甲基膦酸(ATMP)为抑制剂,通过单矿物浮选和人工混合矿浮选试验,考察其对菱镁矿和白云石浮选行为的影响。在此基础上,利用Zeta电位、接触角、红外光谱和X射线光电子能谱等手段揭示了ATMP在两种矿物表面的作用机制。结果表明,针对菱镁矿与白云石质量比4 : 1的人工混合矿,在pH=10、NaOL用量为60 mg/L、ATMP用量为20 mg/L时,可获得MgO品位43.98%、CaO品位3.30%、MgO回收率91.18%的菱镁矿精矿,分选效率达91.18%。ATMP可强烈抑制白云石,而对菱镁矿的浮选几乎没有影响。ATMP通过与白云石表面的Ca位点强烈作用,占据白云石表面活性位点,并通过静电排斥作用阻碍NaOL在白云石表面吸附,进而扩大了菱镁矿和白云石表面疏水性能的差异,实现了对白云石的选择性抑制。

  • 加载中
  • 图 1  白云石(a) 和菱镁矿(b) 样品的XRD图谱

    Figure 1. 

    图 2  NaOL用量对菱镁矿和白云石浮选的影响

    Figure 2. 

    图 3  有无ATMP时pH对菱镁矿和白云石浮选的影响[c(NaOL)=60 mg/L]

    Figure 3. 

    图 4  ATMP用量对菱镁矿和白云石浮选性能的影响

    Figure 4. 

    图 5  不同pH条件下白云石(a) 和菱镁矿(b) Zeta电位

    Figure 5. 

    图 6  菱镁矿和白云石与不同药剂作用前后的接触角

    Figure 6. 

    图 7  NaOL和ATMP的红外光谱

    Figure 7. 

    图 8  白云石(a) 和菱镁矿(b) 与不同药剂作用后的红外光谱

    Figure 8. 

    图 9  ATMP作用前后白云石(a) 和菱镁矿(b) XPS全谱扫描谱图

    Figure 9. 

    图 10  ATMP作用前后白云石表面元素的窄区扫描图谱: (a) Mg 1s;(b) Ca 2p;(c) O 1s

    Figure 10. 

    图 11  ATMP作用前后菱镁矿表面元素的窄区扫描图谱: (a) Mg 1s;(b) O 1s

    Figure 11. 

    表 1  菱镁矿和白云石样品的多元素化学分析

    Table 1.  Chemical compositions of magnesite and dolomite

    Minerals Compositions
    MgO CaO SiO2 Al2O3 Total Fe
    Magnesite 46.50 0.51 0.35 0.09 0.28
    Dolomite 20.91 30.70 0.34 0.33 0.07
    下载: 导出CSV

    表 2  不同药剂制度下菱镁矿和白云石人工混合矿浮选结果

    Table 2.  Flotation results of mixed magnesite and dolomite treated with different reagents

    Reagents Products Yield/% Grade/% Recovery/% E/%
    MgO CaO MgO CaO
    NaOL: 60 mg/L Concentrate 90.77 41.89 5.43 91.76 75.16 81.32
    Tailing 9.23 36.36 17.55 8.10 24.69
    Feed 100.00 41.38 6.55 99.85 99.85
    ATMP: 20 mg/L
    NaOL: 60 mg/L
    Concentrate 85.79 43.98 3.30 91.18 43.23 91.18
    Tailing 14.21 25.69 26.15 8.82 56.77
    Feed 100.00 41.38 6.55 100.00 100.00
    下载: 导出CSV
  • [1]

    PRASAD S V S, PRASAD S B, VERMA K, et al. The role and significance of Magnesium in modern day research-A review[J]. Journal of Magnesium and Alloys, 2022, 10: 1-61. doi: 10.1016/j.jma.2021.05.012

    [2]

    乌志明, 马培华. 镁、镁资源与镁质材料概述[J]. 盐湖研究, 2007, 15(4): 65-72. doi: 10.3969/j.issn.1008-858X.2007.04.012

    WU Z M, MA P H. Summary of magnesium, magnesium resources and magnesium materials[J]. Journal of Salt Lake Research, 2007, 15(4): 65-72. doi: 10.3969/j.issn.1008-858X.2007.04.012

    [3]

    WONYEN D G, KROMAH V, GIBSON B, et al. A review of flotation separation of Mg carbonates (dolomite and magnesite)[J]. Minerals, 2018, 8(8): 354-354. doi: 10.3390/min8080354

    [4]

    LIU W B, PENG X Y, LIU W G, et al. Effect mechanism of the iso-propanol substituent on amine collectors in the flotation of quartz and magnesite[J]. Powder Technology, 2020, 360: 1117-1125. doi: 10.1016/j.powtec.2019.10.060

    [5]

    LIU A P, NI W, WU W. Mechanism of separating pyrite and dolomite by flotation[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2007, 14(4): 291-296. doi: 10.1016/S1005-8850(07)60057-7

    [6]

    GENCE N. Wetting behavior of magnesite and dolomite surfaces[J]. Applied Surface Science, 2006, 252(10): 3744-3750. doi: 10.1016/j.apsusc.2005.05.053

    [7]

    PELEKA E N, GALLIOS G P, MATIS K A. A perspective on flotation: A review[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(3): 615-623.

    [8]

    HAN C, ZHANG H, TAN R, et al. Effects of monohydric alcohols of varying chain lengths and isomeric structures on magnesite and dolomite flotation by dodecylamine[J]. Powder Technology, 2020, 374: 233-240. doi: 10.1016/j.powtec.2020.07.048

    [9]

    TANG Y, YIN W Z, KELEBEK S. Molecular dynamics simulation of magnesite and dolomite in relation to flotation with cetyl phosphate[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610: 125928. doi: 10.1016/j.colsurfa.2020.125928

    [10]

    LUO N, WEI D Z, SHEN Y B, et al. Elimination of the adverse effect of calcium ion on the flotation separation of magnesite from dolomite[J]. Minerals, 2017, 7(8): 150. doi: 10.3390/min7080150

    [11]

    YAO J, SUN H R, HAN F, et al. Enhancing selectivity of modifier on magnesite and dolomite surfaces by pH control[J]. Powder Technology, 2020, 362: 698-706. doi: 10.1016/j.powtec.2019.12.040

    [12]

    CHEN G L, TAO D. Reverse flotation of magnesite by dodecyl phosphate from dolomite in the presence of sodium silicate[J]. Separation science and technology, 2005, 39(2): 377-390. doi: 10.1081/SS-120027564

    [13]

    SHI Q, FENG Q M, ZHANG G F, et al. A novel method to improve depressants actions on calcite flotation[J]. Minerals Engineering, 2014, 55: 186-189. doi: 10.1016/j.mineng.2013.10.010

    [14]

    TIAN M J, GAO Z Y, HAN H S, et al. Improved flotation separation of cassiterite from calcite using a mixture of lead (Ⅱ) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant[J]. Minerals Engineering, 2017, 113: 68-70. doi: 10.1016/j.mineng.2017.08.010

    [15]

    CHEN W, FENG Q M, ZHANG G F, et al. Selective flotation of scheelite from calcite using calcium lignosulphonate as depressant[J]. Minerals Engineering, 2018, 119: 73-75. doi: 10.1016/j.mineng.2018.01.015

    [16]

    王霞, 白媛丽, 思玉琥, 等. 氨基三甲叉膦酸的合成及其缓蚀阻垢性能[J]. 腐蚀与防护, 2012, 33(5): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201205014.htm

    WANG X, BAI Y L, SI Y H, et al. Synthesis and performance of amino trimethylene phosphonic acid[J]. Corrosion & Protection, 2012, 33(5): 404-410. https://www.cnki.com.cn/Article/CJFDTOTAL-FSYF201205014.htm

    [17]

    LIU C, AI G H, SONG S X. The effect of amino trimethylene phosphonic acid on the flotation separation of pentlandite from lizardite[J]. Powder Technology, 2018, 336: 527-532. doi: 10.1016/j.powtec.2018.06.030

    [18]

    CHEN Y F, TANG X K. Selective flotation separation of smithsonite from calcite by application of amino trimethylene phosphonic acid as depressant[J]. Applied Surface Science, 2020, 512: 145663. doi: 10.1016/j.apsusc.2020.145663

    [19]

    TANTAYAKOM V, FOGLER H S, DE MORAES F F, et al. Study of Ca-ATMP precipitation in the presence of magnesium Ion[J]. Langmuir, 2004, 20(6): 2220-2226. doi: 10.1021/la0358318

    [20]

    LIU W B, LIU W G, ZHAO B, et al. Novel insights into the adsorption mechanism of the isopropanol amine collector on magnesite ore: a combined experimental and theoretical computational study[J]. Powder Technology, 2019, 343: 366-374. doi: 10.1016/j.powtec.2018.11.063

    [21]

    YANG B, WANG D H, CAO S H, et al. Selective adsorption of a high-performance depressant onto dolomite causing effective flotation separation of magnesite from dolomite[J]. Journal of Colloid and Interface Science, 2020, 578: 290-303. doi: 10.1016/j.jcis.2020.05.100

    [22]

    XU L H, ZHANG S L, GUO S Y, et al. ATMP derived cobalt-metaphosphate complex as highly active catalyst for oxygen reduction reaction[J]. Journal of Catalysis, 2020, 387: 129-137. doi: 10.1016/j.jcat.2020.04.014

    [23]

    YIN W Z, SUN H R, TANG Y, et al. Effect of pulp temperature on separation of magnesite from dolomite in sodium oleate flotation system[J]. Physicochemical Problems of Mineral Processing, 2019, 55: 1049-1058.

    [24]

    WANG J J, LI W H, ZHOU Z H, et al. 1-Hydroxyethylidene-1, 1-diphosphonic acid used as pH-dependent switch to depress and activate fluorite flotation I: depressing behavior and mechanism[J]. Chemical Engineering Science, 2020, 214: 115369. doi: 10.1016/j.ces.2019.115369

    [25]

    STRANICK M A, ROOT M J. Influence of strontium on monofluorophosphate uptake by hydroxyapatite XPS characterization of the hydroxyapatite surface[J]. Colloids and surfaces, 1991, 55: 137-147. doi: 10.1016/0166-6622(91)80088-6

    [26]

    GÖTTLICHER S, VEGAS A. Electron-density distribution in magnesite (MgCO3)[J]. Acta Crystallographica Section B: Structural Science, 1988, 44(4): 362-367. doi: 10.1107/S0108768188002332

    [27]

    LAÇIN O, DÖNMEZ B, DEMIR F. Dissolution kinetics of natural magnesite in acetic acid solutions[J]. International Journal of Mineral Processing, 2005, 75(1/2): 91-99.

    [28]

    CHEN G L, TAO D. Effect of solution chemistry on flotability of magnesite and dolomite[J]. International Journal of Mineral Processing, 2004, 74(1/2/3/4): 343-357.

    [29]

    孙文瀚, 代淑娟, 罗娜, 等. 基于矿石溶解性差异的菱镁矿酸浸脱钙[J]. 中国有色金属学报, 2019, 29(8): 1733-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201908018.htm

    SUN W H, DAI S J, LUO N, et al. Decalcification leaching test of magnesite based on solubleness difference of minerals[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(8): 1733-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201908018.htm

    [30]

    GLEDHILL W E, FEIJTEL T C J. Environmental properties and safety assessment of organic phosphonates used for detergent and water treatment applications[M]. Berlin: Springer, 1992: 261-285.

  • 加载中

(11)

(2)

计量
  • 文章访问数:  1572
  • PDF下载数:  35
  • 施引文献:  0
出版历程
收稿日期:  2022-04-13
刊出日期:  2022-04-25

目录