螯合抑制剂BAPTA在菱镁矿与方解石浮选分离中的作用机理

印万忠, 孙浩然. 螯合抑制剂BAPTA在菱镁矿与方解石浮选分离中的作用机理[J]. 矿产保护与利用, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013
引用本文: 印万忠, 孙浩然. 螯合抑制剂BAPTA在菱镁矿与方解石浮选分离中的作用机理[J]. 矿产保护与利用, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013
YIN Wanzhong, SUN Haoran. Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013
Citation: YIN Wanzhong, SUN Haoran. Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite[J]. Conservation and Utilization of Mineral Resources, 2022, 42(2): 100-106. doi: 10.13779/j.cnki.issn1001-0076.2022.02.013

螯合抑制剂BAPTA在菱镁矿与方解石浮选分离中的作用机理

  • 基金项目:
    国家自然科学基金面上项目(51874072、51974064和52174239);中央高校基本科研业务专项资金资助(N2101025)
详细信息
    作者简介: 印万忠(1970-),男,浙江临安人,博士,教授,主要从事矿物综合利用研究,E-mail: yinwanzhong@mail.neu.edu.cn
    通讯作者: 孙浩然(1994-),男,河南商丘人,博士研究生,主要从事矿物综合利用研究,E-mail: 18842504743@163.com
  • 中图分类号: TD923+.14;TD973+.9

Mechanism of Chelating Depressant BAPTA in Flotation Separation of Magnesite and Calcite

More Information
  • 由于菱镁矿和方解石具有相似的晶体结构和化学性质,故通过浮选较难实现二者的有效分离。BAPTA作为一种Ca-选择性螯合剂,被用以改善菱镁矿与方解石的浮选分离。浮选试验结果表明,在油酸钠体系下,BAPTA能选择性地抑制方解石上浮,且在矿浆pH值11.0、BAPTA用量30 mg/L和油酸钠用量100 mg/L的条件下,可较好实现菱镁矿(回收率91.06%)与方解石(回收率7.37%)的浮选分离。利用Zeta电位、FTIR和XPS等检测方法研究了BAPTA的选择抑制机理,结果表明,BAPTA能选择性地与方解石表面的Ca发生反应,吸附并罩盖在方解石表面,阻止油酸钠在方解石表面吸附,消除油酸钠给方解石带来的零电点负移的影响,但BAPTA对菱镁矿表面的Mg作用较小,故对菱镁矿吸附油酸钠的影响较小。

  • 加载中
  • 图 1  BAPTA的结构

    Figure 1. 

    图 2  矿物X射线衍射图谱

    Figure 2. 

    图 3  浮选试验流程

    Figure 3. 

    图 4  矿浆pH值对矿物浮选回收率的影响

    Figure 4. 

    图 5  5BAPTA用量对矿物浮选回收率的影响

    Figure 5. 

    图 6  BAPTA用量对混合矿浮选指标的影响

    Figure 6. 

    图 7  不同药剂作用下矿物表面Zeta电位随矿浆pH值变化关系曲线

    Figure 7. 

    图 8  不同条件下矿物表面红外光谱

    Figure 8. 

    图 9  自然条件下菱镁矿(a)和方解石(b)的单矿物X射线光电子能谱

    Figure 9. 

    图 10  分离条件下菱镁矿(a)和方解石(b)的单矿物X射线光电子能谱

    Figure 10. 

    表 1  单矿物化学组分分析

    Table 1.  Chemical analysis of pure minerals  /%

    矿物 MgO CaO SiO2 Al2O3 TFe 纯度
    菱镁矿 45.68 1.20 0.80 0.055 0.15 95.93
    方解石 0.31 55.55 < 0.05 0.22 0.019 99.15
    下载: 导出CSV

    表 2  试验主要试验试剂

    Table 2.  Main reagents list of test

    试剂名称 化学式 纯度 用途 生产商
    油酸钠 C18H33O2Na 分析纯 捕收剂 MACKLIN., Shanghai
    BAPTA C22H20N2Na4O10 化学纯 抑制剂 MACKLIN., Shanghai
    盐酸 HCl 分析纯 pH调整剂 MACKLIN., Shanghai
    氢氧化钠 NaOH 分析纯 pH调整剂 MACKLIN., Shanghai
    溴化钾 KBr 光谱纯 红外基底 MACKLIN., Shanghai
    氯化钾 KCl 分析纯 电解质 MACKLIN., Shanghai
    下载: 导出CSV

    表 3  BAPTA作用前后矿物表面元素含量及结合能分析

    Table 3.  Analysis of mineral surface element content and binding energy before and after BAPTA action

    矿物 检测条件 元素含量/%(结合能/eV)
    C 1s O 1s Mg 1s Ca 2p N 1s
    菱镁矿 自然条件 44.40 (284.80) 48.52 (531.38) 7.08(1304.43)
    pH 11.0、BAPTA 80 mg/L 45.27 (284.80) 47.61 (531.64) 7.01(1304.40) 0.11(402.02)
    偏差 0.87(0.00) -0.91(0.26) -0.07(-0.03) 0.11(402.02)
    方解石 自然条件 41.92 (284.80) 50.76 (531.10) 9.32(347.46)
    pH 11.0、BAPTA 80 mg/L 45.80 (284.80) 44.31 (531.27) 6.18(347.93) 3.71(402.06)
    偏差 3.88(0.00) -6.45(0.17) -3.15(0.47) 3.71(402.06)
    标注: “―”表示检测过程中元素含量低于0.10%的分析分辨率,无法通过试验检测发现。
    下载: 导出CSV
  • [1]

    HU Y, CHEN P, SUN W. Study on quantitative structure-activity relationship of quaternary ammonium salt collectors for bauxite reverse flotation [J]. Minerals Engineering, 2012, 26: 24-33. doi: 10.1016/j.mineng.2011.10.007

    [2]

    姚金. 含镁矿物浮选体系中矿物的交互影响研究[D]. 沈阳: 东北大学, 2014.

    YAO J. Research on the reciprocal influences among magnesium-containing ores in flotation[D]. Shenyang: Northeastern University, 2014.

    [3]

    李虎龙. 研究菱镁矿矿床地质特征及其应用[J]. 世界有色金属, 2019(5): 284-286. doi: 10.3969/j.issn.1002-5065.2019.05.175

    LI H L. Study on geological characteristics of magnesite deposit and its application[J]. World Nonferrous Metals, 2019(5): 284-286. doi: 10.3969/j.issn.1002-5065.2019.05.175

    [4]

    邓志杰. 世界镁的生产及发展动态[J]. 中国金属通报, 2000(21): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB200021004.htm

    DENG Z J. Production and development of magnesium in the world[J]. China Metal Bulletin, 2019(21): 9-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB200021004.htm

    [5]

    YUN Z, GUO Z. A technology of preparing honeycomb-like structure MgO from low grade magnesite [J]. International Journal of Mineral Processing, 2014, 126: 35-40. doi: 10.1016/j.minpro.2013.11.006

    [6]

    KOZHEVNIKOV E, KROPANEV S, BARAANOVSKII N. Beneficiation of dolomites [J]. Raw Material, 1973(3): 19-21.

    [7]

    HAN J, FU D, CUO J, et al. Volatilization and condensation behavior of magnesium vapor during magnesium production via a silicothermic process with magnesite [J]. Vacuum, 2021, 189: 110227. doi: 10.1016/j.vacuum.2021.110227

    [8]

    ZHANG Z, MAO J. Effect of sodium oleate on flotation of magnesite[J]. Journal of Wuhan University of Technology-Materials Science, 1992(4): 60-70.

    [9]

    GENCE N. Wetting behavior of magnesite and dolomite surfaces[J]. Applied Surface Science, 2006, 252: 3744-3750. doi: 10.1016/j.apsusc.2005.05.053

    [10]

    GENCE N, OZBAY N. pH dependence of electrokinetic behavior of dolomite and magnesite in aqueous electrolyte solutions[J]. Applied Surface Science, 2006, 252: 8057-8061. doi: 10.1016/j.apsusc.2005.10.015

    [11]

    TANG Y, YIN W, KELEBEK S. Selective flotation of magnesite from calcite using potassium cetyl phosphate as a collector in the presence of sodium silicate[J]. Minerals Engineering, 2020, 146: 106154. doi: 10.1016/j.mineng.2019.106154

    [12]

    王金良, 杨秀花. 菱镁矿除钙可选性研究[J]. 中国非金属矿工业导刊, 2010(04): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201004011.htm

    WANG J L, YANG X H. Study on separability of dolomite from magnesite ores[J]. China Non-metallic Mining Industry Herald, 2010(4): 28-31. https://www.cnki.com.cn/Article/CJFDTOTAL-LGFK201004011.htm

    [13]

    YANG B, ZHU Z, SUN H, et al. Improving flotation separation of apatite from dolomite using PAMS as a novel eco-friendly depressant[J]. Minerals Engineering, 2020, 156: 106492. doi: 10.1016/j.mineng.2020.106492

    [14]

    ZHU Z, WANG D, YANG B, et al. Effect of nano-sized roughness on the flotation of magnesite particles and particle-bubble interactions[J]. Minerals Engineering, 2020, 151: 106340. doi: 10.1016/j.mineng.2020.106340

    [15]

    JOHN B, EMMA R. Calcium in biological systems[J]. Advances in Inorganic Chemistry, 2009, 61: 251-366.

    [16]

    KOIDE Y, YAMADA K. Selective flotation of metal ions by using chelating surfactants[J]. Journal of Japan Oil Chemists' Society, 1990, 39: 736-743. doi: 10.5650/jos1956.39.10_736

    [17]

    LIU C, ZHANG W, SONG S, et al. Flotation separation of smithsonite from calcite using 2-phosphonobutane-1, 2, 4-tricarboxylic acid as a depressant[J]. Powder Technology, 2019, 352: 11-15. doi: 10.1016/j.powtec.2019.04.036

    [18]

    YIN W, YANG B, FU Y, et al. Effect of calcium hypochlorite on flotation separation of covellite and pyrite[J]. Powder Technology, 2019, 343: 578-585. doi: 10.1016/j.powtec.2018.11.048

    [19]

    SANTANA A, PERES A. Reverse magnesite flotation[J]. Minerals Engineering 2001, 14: 107-111. doi: 10.1016/S0892-6875(00)00164-3

    [20]

    SUN R, LIU D, LI Y, et al. Influence of lead ion pretreatment surface modification on reverse flotation separation of fluorite and calcite[J]. Minerals Engineering, 2021, 171: 107077. doi: 10.1016/j.mineng.2021.107077

    [21]

    ANFRUNS J, KITCHEENER J. Rate of capture of small particles in flotation[J]. Transactions of the Institution of Mining and Metallurgy C: Mineral Processing and Extractive Metallurgy, 1977, 86: 9-15.

    [22]

    ZHOU Z, XU Z, FINCH J, et al. Role of hydrodynamic cavitation in fine particle flotation[J]. International Journal of Mineral Processing, 1997, 51: 139-149. doi: 10.1016/S0301-7516(97)00026-4

    [23]

    BAER D, MARMORSTEIN A, WILLIFORD R, et al. Comparison Spectra for Calcite by XPS[J]. Surface Science Spectra, 1992(1): 80-86.

    [24]

    LIN B, WANG R, LIN J, et al. Effect of chlorine on the chemisorptive properties and ammonia synthesis activity of alumina-supported catalysts[J]. Catalysis Letters, 2011, 141: 1557-1568. doi: 10.1007/s10562-011-0658-3

    [25]

    SIMON M, HARRISON D, BERS M. The effect of temperature and ionic strength on the apparent Ca-affinity of EGTA and the analogous Ca-chelators BAPTA and dibromo-BAPTA[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1987, 925(2): 133-143. doi: 10.1016/0304-4165(87)90102-4

    [26]

    SUN H, YIN W, YAO J. Study of selective enhancement of surface hydrophobicity on magnesite and quartz by N, N-Dimethyloctadecylamine: Separation test, adsorption mechanism, and adsorption model[J]. Applied Surface Science, 2022, 152482.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1385
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2022-04-02
刊出日期:  2022-04-25

目录