电解锰阳极泥中战略金属回收技术进展

王鹏星, 刘兵兵, 黄艳芳, 孙虎, 韩桂洪. 电解锰阳极泥中战略金属回收技术进展[J]. 矿产保护与利用, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008
引用本文: 王鹏星, 刘兵兵, 黄艳芳, 孙虎, 韩桂洪. 电解锰阳极泥中战略金属回收技术进展[J]. 矿产保护与利用, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008
WANG Pengxing, LIU Bingbing, HUANG Yanfang, SUN Hu, HAN Guihong. Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008
Citation: WANG Pengxing, LIU Bingbing, HUANG Yanfang, SUN Hu, HAN Guihong. Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 53-62. doi: 10.13779/j.cnki.issn1001-0076.2022.03.008

电解锰阳极泥中战略金属回收技术进展

  • 基金项目:
    国家自然科学基金(51904273、U2004215)
详细信息
    作者简介: 王鹏星(1996-), 男, 河南洛阳人, 主要从事矿物资源加工、冶金过程强化研究
    通讯作者: 刘兵兵(1989-), 男, 湖北襄阳人, 博士, 副教授, 主要从事矿物资源加工、冶金过程强化研究, E-mail: liubingbing@zzu.edu.cn 韩桂洪(1981-), 男, 河北昌黎人, 博士, 教授, 主要从事矿物资源加工、冶金过程强化研究, E-mail: hanguihong@zzu.edu.cn
  • 中图分类号: TD98;TF80;X757

Review on the Strategic Metals Recovery from Electrolytic Manganese Anode Slime (EMAS)

More Information
  • 电解锰行业每年产生7.5~12万t的锰阳极泥固废, 其矿物组成与结构复杂, 有价金属组分多、含量高, 综合利用难度大, 目前大部分厂家廉价销售或大量堆存, 造成了严重的资源浪费和环境污染。文章分析了阳极泥的产生机理和资源特点, 综述了阳极泥中主要有价战略金属元素Mn、Pb、Sn、Se的分离回收技术, 对比了还原浸出法、焙烧浸出法、碱熔—浸出法等阳极泥处理方法的优缺点, 提出了硫转化综合回收锰铅锡硒新思路, 可为电解锰阳极泥固废的资源化利用提供技术参考。

  • 加载中
  • 图 1  电解锰流程

    Figure 1. 

    图 2  电解锰阳极泥原料分析:(a), (b)光学显微镜;(c), (d)SEM;(e)XRD[64]

    Figure 2. 

    图 3  不同还原剂与MnO2反应的ΔGθ-T关系

    Figure 3. 

    图 4  SnO2转化过程中反应的ΔGθ-T关系

    Figure 4. 

    图 5  反应流程示意图

    Figure 5. 

    图 6  不同pH下锰锡离子形态分布图

    Figure 6. 

    表 1  典型电解锰阳极泥主要化学成分 /%

    Table 1.  Chemical constituents of the typical electrolytic manganese anode slime

    Mn (NH4)2SO4 Fe CaO Pb MgO Sn Se
    40~50 5~10 0.1~6 0.1~6 3~6 0.1~6 0.1~0.5 0.1~0.4
    下载: 导出CSV

    表 2  不同还原剂与MnO2的反应方程式以及对应的ΔGθ-T方程式

    Table 2.  Reactions of different reducing agents and MnO2 and corresponding ΔGθ-T equations

    编号 反应方程式 ΔGθ-T/(kJ·mol-1) 自发反应温度范围/K
    (1) 11MnO2+2FeS2=11MnO+Fe2O3+4SO2(g) ΔGTθ=-170.92-1.026T 自发反应
    (2) 15MnO2+2FeS2+14H2SO4=15MnSO4+Fe2(SO4)3+14H2O ΔGθT=-2918.36-0.014T 自发反应
    (3) 2MnO2+SO2(g)=Mn2O3+SO3(l) ΔGTθ=-15.01+0.018T T<834
    (4) 3MnO2+2SO2(g)=Mn3O4+2SO3(l) ΔGTθ=-22.22+0.049T T<453
    (5) MnO2+SO2(g)=MnSO4 ΔGTθ=-240.98+0.177T T<1361
    (6) 3MnO2+2Fe+6H2SO4=3MnSO4+Fe2(SO4)3+6H2O ΔGTθ=-1020.13+0.047T 自发反应
    下载: 导出CSV

    表 3  电解锰阳极泥中锰铅分离方法

    Table 3.  Separation methods of manganese and lead from electrolytic manganese anode slime

    分离方法 基本原理 优点 缺点
    无机还原浸出法 采用低价硫化物将Mn4+还原为Mn2+进入溶液,铅富集于渣中 锰浸出率高,操作简单 产生酸性废水和废渣,产生SO2和H2S气体
    有机还原浸出法 利用有机物的还原性将锰还原为低价进入溶液,铅不发生反应 锰铅分离效果好,原料价格低廉,易获得 操作复杂,反应周期长
    固态焙烧浸出法(空气气氛) 高温焙烧活化,乙酸铵浸出铅,锰则不发生反应 铅浸出率高,操作简单 能耗高,反应时间长
    固态焙烧浸出法(还原气氛) 利用还原性气体还原锰和铅,硫酸浸出后,固液分离 分离效果好,反应周期短 能耗高,会产生二次污染
    碱熔浸出法 高温下碱溶液与MnO2反应生成锰酸根进入溶液,铅不发生反应,锰酸盐经还原得到初级二氧化锰 产品收率高,分离效果好 操作复杂,能耗高
    下载: 导出CSV

    表 4  SnO2转化过程中发生的主要反应[73]及对应的ΔGθ-T方程式

    Table 4.  Main chemical reactions[73] during the conversion of SnO2and corresponding ΔGθ-Tequations

    编号 反应方程式 ΔGθ-T/(kJ·mol-1) 自发反应温度范围/K
    (32) SnO2+C=SnO+CO(g) ΔGθ-T=188.98-0.196T T>964
    (33) SnO2+2C=Sn+2CO(g) ΔGθ-T=359.06-0.384T T>935
    (34) 2SnO2+C=2SnO+CO2(g) ΔGθ-T=206.00-0.216T T>954
    (35) SnO2+C=Sn+CO2(g) ΔGθ-T=187.10-0.208T T>900
    (36) FeS2=FeS+0.5S2(g) ΔGθ-T=140.15-0.138T T>1 016
    (37) SnO+FeS=FeO+SnS(g) ΔGθ-T=211.46-0.149T T>1 419
    (38) 2Sn+S2=2SnS(g) ΔGθ-T=74.53-0.112T T>665
    下载: 导出CSV
  • [1]

    JOO S, CHOI Y, SHIN H. Hierarchical multi-porous copper structure prepared by dealloying electrolytic copper-manganese alloy[J]. Journal of Alloys and Compounds, 2022, 900: 163423. doi: 10.1016/j.jallcom.2021.163423

    [2]

    HE D, SHU J, WANG R, et al. A critical review on approaches for electrolytic manganese residue treatment and disposal technology: reduction, pretreatment, and reuse[J]. Journal of Hazardous Materials, 2021, 418: 126235. doi: 10.1016/j.jhazmat.2021.126235

    [3]

    LI P, LUO S, WANG X, et al. Study on the high-efficiency separation of Fe and Mn from low-grade pyrolusite and the preparation of LiMN2O4 materials for lithium-ion batteries[J]. Separation and Purification Technology, 2021, 278: 119611. doi: 10.1016/j.seppur.2021.119611

    [4]

    HE D, SHU J, ZENG X, et al. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag[J]. Science of the Total Environment, 2022, 810: 152175. doi: 10.1016/j.scitotenv.2021.152175

    [5]

    YANG T, XUE Y, LIU X, et al. Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: a review[J]. Process Safety and Environmental Protection, 2022, 157: 509-526. doi: 10.1016/j.psep.2021.10.031

    [6]

    HUANG L. Q, BI Y. F, MU L. L, et al. The process and mechanism of electrolytic manganese anode slime lead removal[J]. Advanced Materials Research, 2014, 878: 163-170. doi: 10.4028/www.scientific.net/AMR.878.163

    [7]

    WANG Y, GAO S, LIU X, et al. Preparation of non-sintered permeable bricks using electrolytic manganese residue: Environmental and NH3-N recovery benefits[J]. Journal of Hazardous Materials, 2019, 378: 120768. doi: 10.1016/j.jhazmat.2019.120768

    [8]

    SHU J, WU Y, DENG Y, et al. Enhanced removal of Mn2+ and NH4+-N in electrolytic manganese metal residue using washing and electrolytic oxidation[J]. Separation and Purification Technology, 2021, 270: 118798. doi: 10.1016/j.seppur.2021.118798

    [9]

    黄良取, 黄升谋, 唐疆蜀, 等. 电解锰阳极泥的利用研究进展[J]. 武汉工程大学学报, 2015, 37(10): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201510002.htm

    HUANG L, HUANG S, TANG J, et al. Research progress on utilization of electrolytic manganese anode slime[J]. Journal of Wuhan University, 2015, 37(10): 5-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WHHG201510002.htm

    [10]

    夏熙. 二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1)[J]. 电池, 2004(6): 411-414. doi: 10.3969/j.issn.1001-1579.2004.06.009

    XIA X. Crystal structure, preparation and discharge performance for manganese dioxides and related manganese oxides (Ⅰ). Battery Bimonthly, 2004(6): 411-414. doi: 10.3969/j.issn.1001-1579.2004.06.009

    [11]

    SONG J, ZHU J, ZHANG P, et al. Reduction of low-grade manganese oxide ore by biomass roasting[J]. ActaMetallurgicaSinica-English Letters, 2010(3): 223-229.

    [12]

    WU Y, SHI B, LIANG H, et al. Magnetic properties of low grade manganese carbonate ore[J]. Applied Mechanics and Materials, 2014, 664: 38-42. doi: 10.4028/www.scientific.net/AMM.664.38

    [13]

    DUAN N, FAN W, CHANGBO Z, et al. Analysis of pollution materials generated from electrolytic manganese industries in China[J]. Resources, Conservation and Recycling, 2010, 54(8): 506-511. doi: 10.1016/j.resconrec.2009.10.007

    [14]

    ZHANG H, BI Y, CHEN X, et al. Treatment and characterization analysis of electrolytic manganese anode slime[J]. Procedia Environmental Sciences, 2016, 31: 683-690. doi: 10.1016/j.proenv.2016.02.125

    [15]

    ZHU R, LONG H, WANG Y, et al. Microwave-assisted recovery of lead from electrolytic manganese anode sludge using tartaric acid and NaOH[J]. Environmental Technology, 2021: 1-15.

    [16]

    TAO C, LI D, LIU Z, et al. Activation and purification of electrolytic-manganese anode slime and its application[J]. Battery Bimonthly, 2011, 41: 121-124.

    [17]

    GUO P, TANG J, WANG S, et al. Synergistic effect of reduction leaching of manganese anode slime and oxidation pretreatment of gold concentrate[J]. Materials Research Express, 2019(6): 1065.

    [18]

    LI K, CHEN J, PENG J, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field[J]. Journal of Hazardous Materials, 2020, 384: 121227. doi: 10.1016/j.jhazmat.2019.121227

    [19]

    ZHOU X, LUO C, WANG J, et al. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation[J]. SCIENCE of the Total Environment, 2021, 762: 143120. doi: 10.1016/j.scitotenv.2020.143120

    [20]

    WU Y, SHEN H. Comprehensive recycling of manganese anode slime with modified reductant[J]. Mining and Metallurgical Engineering, 2016, 36(5): 69-72+75.

    [21]

    FAN X, XI S, SUN D, et al. Mn-Se interactions at the cathode interface during the electrolytic-manganese process[J]. Hydrometallurgy, 2012, 127/128: 24-29. doi: 10.1016/j.hydromet.2012.07.006

    [22]

    左小红. 高纯电解锰生产工艺设计探讨[J]. 湖南有色金属, 2003(1): 17-19. doi: 10.3969/j.issn.1003-5540.2003.01.006

    ZUO X. Discussion on production process design of high purity electrolytic manganese[J]. Hunan Nonferrous Metals, 2003(1): 17-19. doi: 10.3969/j.issn.1003-5540.2003.01.006

    [23]

    ZHANG W, CHENG C Y. Manganese metallurgy review. Part Ⅱ: manganese separation and recovery from solution[J]. Hydrometallurgy, 2007, 89: 160-177. doi: 10.1016/j.hydromet.2007.08.009

    [24]

    黄健, 李武斌, 张谊, 等. 一体化组合体电解槽电解锰阳极泥控制机理研究[J]. 广州化工, 2020, 48(15): 76-78. doi: 10.3969/j.issn.1001-9677.2020.15.026

    HUANG J, LI W, ZHANG Y, et al. Research on control mechanism of anode mud producing manganese by combined electrolytic device[J]. Guangzhou Chemical Industry, 2020, 48(15): 76-78. doi: 10.3969/j.issn.1001-9677.2020.15.026

    [25]

    孙俊. 富铅电解锰渣中锰和铅回收工艺研究[D]. 昆明: 昆明理工大学, 2021.

    SUN J. Recovery of Mn and Pb from containing lead electrolytic manganese residues[D]. Kunming: Kunming University of Science and Technology, 2021.

    [26]

    陈玉亮. 电解锰阳极泥中MnO2晶型调控规律及放电性能研究[D]. 重庆: 重庆大学, 2016.

    CHEN Y. Study on crystal shape control rule of MnO2 and discharge performance for electrolytic manganese anode slime[D]. Chongqing: Chongqing University, 2016.

    [27]

    XIE Z, CHANG J, TAO C, et al. Polyacrylonitrile-based carbon fiber as anode for manganese electrowinning: anode slime emission reduction and metal dendrite control[J]. Journal of the Electrochemical Society, 2021, 168: 013501. doi: 10.1149/1945-7111/abd608

    [28]

    SHU J, LIU R, LIU Z, et al. Leaching of manganese from electrolytic manganese residue by electro-reduction[J]. Environmental Technology, 2017, 38: 2077-2084. doi: 10.1080/09593330.2016.1245789

    [29]

    魏汉可, 杨勇, 罗豆, 等. 电解金属锰阳极泥的综合回收利用研究[J]. 中国锰业, 2017, 35(S1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM2017S1016.htm

    WEI H, YANG Y, LUO D, et al. A research on comprehensive recycling of electrolytic manganese anode slime[J]. China's manganese industry, 2017, 35(S1): 55-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM2017S1016.htm

    [30]

    严超, 杨勇, 黄冠汉, 等. 电解金属锰阳极泥资源化工程应用研究[J]. 中国锰业, 2017, 35(3): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201703039.htm

    YAN C, YANG Y, HUANG G, et al. A study on resource engineering utilization of electrolytic manganese anode slime[J]. China's manganese industry, 2017, 35(3): 135-137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM201703039.htm

    [31]

    LUO S, GUO H, WANG Z, et al. The electrochemical performance and reaction mechanism of coated titanium anodes for manganese electrowinning[J]. Journal of the Electrochemical Society, 2019, 166: E502-E511. doi: 10.1149/2.1071914jes

    [32]

    LUO S, GUO H, ZHANG S, et al. Comprehensive utilization of metallurgic waste in manganese electrowinning: Towards high performance LiMn2O4[J]. Ceramics International, 2019, 45: 8607-8615. doi: 10.1016/j.ceramint.2019.01.180

    [33]

    刘建本, 陈上. 用电解锰阳极泥和含SO2工业尾气制备硫酸锰[J]. 化工环保, 2009, 29(6): 538-540. doi: 10.3969/j.issn.1006-1878.2009.06.014

    LIU J, CHEN S. Preparation of manganese sulfate using anode slurry from electrolytic manganese production and industrial exhaust gas containing SO2[J]. Environmental Protection of Chemical Industry, 2009, 29(6): 538-540. doi: 10.3969/j.issn.1006-1878.2009.06.014

    [34]

    黄良取. 电解锰阳极泥制备锰酸锂电池正极材料的工艺研究[D]. 武汉: 武汉工程大学, 2014: 83.

    HUANG L. Research on preparation of manganate cathode materials for lithium batteries with electrolytic manganese anode slime[D]. Wuhan: Wuhan Institute of Technology, 2014: p83.

    [35]

    陈炳翰, 丁建华, 叶会寿, 等. 中国硒矿成矿规律概要[J]. 矿床地质, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm

    CHEN B, DING J, YE H, et al. Metallogenic regularity of selenium ore in China[J]. Mineral Deposits, 2020, 39(6): 1063-1077. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ202006007.htm

    [36]

    FUNARI V, GOMES H I, COPPOLA D, et al. Opportunities and threats of selenium supply from unconventional and low-grade ores: a critical review[J]. Resources, Conservation and Recycling, 2021, 170: 105593. doi: 10.1016/j.resconrec.2021.105593

    [37]

    ABOUTALEBI MR, ISAC M, GUTHRIE R I L. The behaviour of selenium impurities during the addition of Se-containing manganese to steel melt[J]. Steel Research International, 2004, 75: 366-372. doi: 10.1002/srin.200405782

    [38]

    鲜金利, 童湖云, 蔡正杰, 等. 硒与新型冠状病毒研究进展[J]. 保健医学研究与实践, 2020, 17(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GXBJ202005004.htm

    XIAN J, DONG H, CAI Z, et al. Research progress of selenium and novelcoro navirus[J]. Health Medicine Research and Practice, 2020, 17(5): 12-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GXBJ202005004.htm

    [39]

    张栋. 铜阳极泥蒸硒过程中含硒物相变化的研究[D]. 昆明: 昆明理工大学, 2021.

    ZHANG D. Study on the change of selenium phase in copper anode slime during selenium evaporation[D]. Kunming University of Science and Technology, 2021.

    [40]

    曾宪日, 王雨红, 屈欣轲, 等. 碱浸回收电解锰阳极泥中硒的研究[J]. 有色金属(冶炼部分), 2016(8): 48-51. doi: 10.3969/j.issn.1007-7545.2016.08.011

    ZENG X, WANG Y, QU X, et al. Seleniumre covery from manganese anode slime by alkaline leaching. Nonferrous Metals (Extractive Metallurgy), 2016(8): 48-51. doi: 10.3969/j.issn.1007-7545.2016.08.011

    [41]

    彭思尧, 杨建广, 陈冰, 等. 含锡二次资源隔膜电积回收锡新工艺试验[J]. 中国有色金属学报, 2016, 26(12): 2656-2667. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201612022.htm

    PENG S, YANG J, CHEN B, et al. Novel process for tin recovery from stannous secondary resources based on membrane electrodeposition[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(12): 2656-2667. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201612022.htm

    [42]

    韦栋梁, 何绘宇, 夏斌. 对我国锡矿业发展的几点思考[J]. 中国矿业, 2006(1): 58-61. doi: 10.3969/j.issn.1004-4051.2006.01.017

    WEI D, HE H, XIA B. Some views on the development of tin industry in China[J]. China Mining Magazine, 2006(1): 58-61. doi: 10.3969/j.issn.1004-4051.2006.01.017

    [43]

    马娟, 秦德先, 薛传东. 世界锡矿资源形势预测[J]. 昆明理工大学学报(理工版), 2002(6): 13-17. doi: 10.3969/j.issn.1007-855X.2002.06.004

    MA J, QIN D, XUE C. Prediction of the situation for the world tin mines[J]. Journal of Kunming University of Science and Technology, 2002(6): 13-17. doi: 10.3969/j.issn.1007-855X.2002.06.004

    [44]

    崔凤平. 电解锰用阳极材料中锡的示波极谱法测定[J]. 冶金分析, 2003(4): 72. doi: 10.3969/j.issn.1000-7571.2003.04.030

    CUI F. Determination of tin in anode material by oscillopolarography for electrolytic manganese[J]. Metallurgical Analysis, 2003(4): 72. doi: 10.3969/j.issn.1000-7571.2003.04.030

    [45]

    TENG Y, HAN F, ZHAO S, et al. Preparation of manganese sulfate by reduction of electrolytic manganese mud with corn straws[J]. Singapore: Springer Singapore, 2018, pp 627-636.

    [46]

    DU B, ZHOU C, LI X, et al. A kinetic study of Mn (Ⅱ) precipitation of leached aqueous solution from electrolytic manganese residues[J]. Toxicological&Environmental Chemistry, 2015, 97: 349-357.

    [47]

    王强. 玉米秆还原浸出电解锰阳极泥制备化学二氧化锰研究[D]. 南宁: 广西大学, 2015.

    WANG Q. Study on preparation ofchemicalmanganese dioxide leaching of electrolytic mangane seanode slimer eduction for corn stalk[D]. Nanning: Guangxi University, 2015.

    [48]

    符磊, 满瑞林, 扶强, 等. 电解锰阳极泥制备锰酸锂[J]. 广东化工, 2018, 45(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201808009.htm

    FU L, MAN R, FU Q, et al. Preparation of lithium manganate from electrolytic manganese anode slime[J]. Guangdong Chemical Industry, 2018, 45(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201808009.htm

    [49]

    伍永国. 电解锰阳极渣回收制备一氧化铅和活性二氧化锰[D]. 吉首: 吉首大学, 2020.

    WU Y. Preparation oflead oxide and active manganese dioxide from electrolyticmanganese anode slag[D]. Jishou: Jishou University, 2020.

    [50]

    严浩, 彭文杰, 王志兴, 等. 响应曲面法优化电解锰阳极渣还原浸出工艺[J]. 中国有色金属学报, 2013, 23(2): 528-534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201302033.htm

    YAN H, PENG W, WANG Z, et al. Reductive leaching technology of manganese anode slag optimized by response surface methodology[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(2): 528-534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201302033.htm

    [51]

    沈慧庭, 覃华, 黄晓毅, 等. 某含锰冶金渣中锰和铅的综合回收研究[J]. 金属矿山, 2009(6): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200906055.htm

    SHEN H, TAN H, HUANG X, et al. Research on the comprehensive recovery of manganese and an Mn-bearing metallurgical residue[J]. Metal mine, 2009(6): 171-176. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS200906055.htm

    [52]

    ZHANG Y, YOU Z, LI G, et al. Manganese extraction by sulfur-based reduction roasting-acid leaching from low-grade manganese oxide ores[J]. Hydrometallurgy, 2013, 133: 126-132. doi: 10.1016/j.hydromet.2013.01.003

    [53]

    汤集刚, 韩至成. 锰阳极泥的工艺矿物学及杂质的脱除研究[J]. 矿冶, 2005(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200503019.htm

    TANG J, HAN Z. Investigation on process mineralogy of manganese anode slime and impurity removal[J]. Mining&Metallurgy, 2005(3): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ200503019.htm

    [54]

    申永强, 符智荣, 黄养逢, 等. 电解金属锰阳极泥回收制备化学二氧化锰工艺研究[J]. 中国锰业, 2007(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM200703006.htm

    SHEN Y, FU Z, HUANG Y, et al. The research on manganese anode slime recycle to produce into chemical manganese dioxide[J]. China's Manganese Industry, 2007(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMM200703006.htm

    [55]

    陈晓亮, 王海峰, 尤晓宇, 等. 两矿法浸出电解锰阳极渣中锰的研究[J]. 矿冶工程, 2021, 41(3): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202103022.htm

    CHEN X, WANG H, YOU X, et al. Leaching of manganese in anode residue from manganese electrolysis[J]. Mining and Metallurgical Engineering, 2021, 41(3): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC202103022.htm

    [56]

    吴焱, 沈慧庭. 改性无机还原剂还原浸出电解锰阳极泥综合回收锰铅研究[J]. 矿冶工程, 2016, 36(5): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201605021.htm

    WU Y, SHEN H. Comprehensive recycling of manganese anode slime with modified reductant[J]. Mining and Metallurgical Engineering, 2016, 36(5): 69-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201605021.htm

    [57]

    赵世珍, 韩凤兰, 滕於江, 等. 木纤维还原电解锰阳极泥制备硫酸锰工艺研究[J]. 无机盐工业, 2017, 49(6)63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201706016.htm

    ZHAO S, HAN F, TENG Y, et al. Study on preparation of manganese sulfate by reduction of electrolytic manganese anode slime with wood fiber[J]. Inorganic Chemicals Industry, 2017, 49(6): 63-65. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201706016.htm

    [58]

    刘贵扬, 沈慧庭, 王强. 电解锰阳极泥有机还原浸出回收锰和铅的研究[J]. 矿冶工程, 2014(4): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201404023.htm

    LIU G, SHEN H, WANG Q. Recovery of manganese and lead from manganese electrowinning anode slimeby reduction leaching with organic reductants[J]. Mining and Metallurgical Engineering, 2014(4): 92-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC201404023.htm

    [59]

    XIE H, ZHANG L, CHEN G, et al. High temperature roasting combined with ultrasonic enhanced extracting lead from electrolytic manganese anode mud[J]. Materials Research Express, 2019, 6(10): 105530.

    [60]

    黎应芬, 李祥, 叶华, 等. 硫磺还原焙烧-酸浸法提取锰阳极泥[J]. 有色金属(冶炼部分), 2017(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201708004.htm

    LI Y, LI X, YE H, et al. Recovery of manganese anode slimes by sulfur reduction roasting-acid leaching process[J]. Nonferrous Metals (Extractive Metallurgy), 2017(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201708004.htm

    [61]

    SHU J, LIU R, LIU Z, et al. Enhanced discharge performance of electrolytic manganese anode slime using calcination and pickling approach[J]. Journal of Electroanalytical Chemistry, 2017, 806: 15-21.

    [62]

    WANG B, MU L, GUO S, et al. Lead leaching mechanism and kinetics in electrolytic manganese anode slime[J]. Hydrometallurgy, 2019, 183: 98-105.

    [63]

    XIE H, LI S, GUO Z, et al. Extraction of lead from electrolytic manganese anode mud by microwave coupled ultrasound technology[J]. Journal of Hazardous Materials, 2021, 407: 124622.

    [64]

    ZHANG Y, WANG J, LIU B, et al. Extraction and separation of Mn and Pb from electrolytic manganese anodic slime (EMAS) via SO2 roasting followed by acid leaching process[J]. JOM, 2020, 72(2): 925-932.

    [65]

    王晖, 王重庆, 符剑刚. 硒的资源、提取及应用研究现状[J]. 稀有金属与硬质合金, 2013, 41(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201302002.htm

    WANG H, WANG C, FU J. Research on resource situation, extraction and application of selenium[J]. Rare Metals and Cemented Carbides, 2013, 41(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XYJY201302002.htm

    [66]

    KILIC Y, KARTAL G, TIMUR S. An investigation of copper and selenium recovery from copper anode slimes[J]. International Journal of Mineral Processing, 2013, 124: 75-82.

    [67]

    ZHENG Y, CHEN K. Leaching kinetics of selenium from selenium-tellurium-rich materials in sodium sulfite solutions[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2): 536-543.

    [68]

    LIU W, YANG T, ZHANG D, et al. Pretreatment of copper anode slime with alkaline pressure oxidative leaching[J]. International Journal of Mineral Processing, 2014, 128: 48-54.

    [69]

    覃兆财, 明宪权, 李春霞, 等. 亚硫酸铵还原浸出电解锰阳极泥中锰和硒的研究[J]. 有色金属(冶炼部分), 2020(10): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202010011.htm

    TAN Z, MING X, LI C, et al. Leaching of manganese and selenium from electrolytic manganese anode slime with ammonium sulfiteas reducing agent[J]. Nonferrous Metals (Extractive Metallurgy), 2020(10): 55-59. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202010011.htm

    [70]

    王雨红, 覃兆财, 黄丽燕, 等. 从电解锰阳极泥中两段浸出锰富集硒试验研究[J]. 湿法冶金, 2020, 39(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202002010.htm

    WANG Y, TAN Z, HUANG L, et al. Two-stage leaching of manganese and enrichment of selenium from electrolytic manganese anode slime[J]. Hydrometallurgy of China, 2020, 39(2): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ202002010.htm

    [71]

    韦成果. 含锡富渣烟化炉硫化挥发[J]. 有色金属(冶炼部分), 2002(4): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-METE200204005.htm

    WEI C. Sulphurationvolatilization of rich tin slag on fuming furnace[J]. Nonferrous Metals (Extractive Metallurgy), 2002(4): 21-22. https://www.cnki.com.cn/Article/CJFDTOTAL-METE200204005.htm

    [72]

    P. HALSALL P. HODGKINS. 从副产品中回收锡和中低品位锡精矿的综合利用[J]. 有色金属(冶炼部分), 1982(8): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL198208005.htm

    P. HALSALL P. HODGKINS. Comprehensive utilization of tin recovery from by-products and medium and low grade tin concentrate[J]. Nonferrous Metals (Extractive Metallurgy), 1982(8): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL198208005.htm

    [73]

    后宝明. 碳热还原硫化挥发法从锡中矿回收金属锡的试验研究[J]. 矿冶, 2015, 24(4): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201504011.htm

    HOU B. Experiment study on tin recovery from tin middling product by carbothermic reduction and sulfidizing volatilization[J]. Mining&Metallurgy, 2015, 24(4): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-KYZZ201504011.htm

    [74]

    钟晨, 陈淑瑜, 梁惠珠. 用低品位锡矿制取锡酸钠的研究[J]. 广东有色金属学报, 1999(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS901.006.htm

    ZHONG C, CHEN S, LIANG H. Study on preparation of sodium stannate from the tin ore of low grade[J]. Journal of guangdong non-ferrous metals, 1999(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYS901.006.htm

    [75]

    傅其华. 从低品位锡渣中制取锡酸钠[J]. 有色金属(冶炼部分), 1983(8): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL198308003.htm

    FU Q. Sodium stannate is prepared from low-grade tin slag[J]. Nonferrous Metals (Extractive Metallurgy), 1983(8): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSYL198308003.htm

    [76]

    LIU W, GU K, HAN J, et al. Innovative methodology for comprehensive use of tin anode slime: preparation of CaSnO3[J]. Minerals Engineering, 2019, 143: 105945.

  • 加载中

(6)

(4)

计量
  • 文章访问数:  1596
  • PDF下载数:  12
  • 施引文献:  0
出版历程
收稿日期:  2022-03-10
刊出日期:  2022-06-25

目录