微生物浸铜技术研究进展

张一如, 张怡泽, 宋翔宇. 微生物浸铜技术研究进展[J]. 矿产保护与利用, 2022, 42(3): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2022.07.003
引用本文: 张一如, 张怡泽, 宋翔宇. 微生物浸铜技术研究进展[J]. 矿产保护与利用, 2022, 42(3): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2022.07.003
ZHANG Yiru, ZHANG Yize, SONG Xiangyu. Research Progress in Bioleaching of Copper Ore[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2022.07.003
Citation: ZHANG Yiru, ZHANG Yize, SONG Xiangyu. Research Progress in Bioleaching of Copper Ore[J]. Conservation and Utilization of Mineral Resources, 2022, 42(3): 125-134. doi: 10.13779/j.cnki.issn1001-0076.2022.07.003

微生物浸铜技术研究进展

  • 基金项目:
    国家自然科学基金项目资助(51874259)
详细信息
    作者简介: 张一如(2001-), 女, 河南安阳人, 冶金工程专业, E-mail: zyru@stu.zzu.edu.cn
    通讯作者: 宋翔宇(1970-), 男, 河南西平人, 教授级高工, 博士生导师, 主要从事贵金属矿物资源的选冶理论研究与工程实践、硫化矿生物冶金、复杂矿物资源绿色选冶与综合利用研究, E-mail: xysong@zzu.edu.cn
  • 中图分类号: TD952.1;TD925+.5

Research Progress in Bioleaching of Copper Ore

More Information
  • 微生物浸铜技术在处理低品位铜矿资源方面因具有安全、成本低、环境友好等诸多优点而应用前景广阔。主要从浸矿作用机理、菌种选育、浸出过程强化三个方面详细阐述了微生物浸铜技术的最新研究进展, 并分析了微生物浸铜技术工业化应用的主要影响因素, 对未来的研究前景进行了分析展望。

  • 加载中
  • [1]

    陈甲斌, 刘超, 冯丹丹, 等. 矿产资源安全需要关注的六个风险问题[J]. 中国国土资源经济, 2022(1): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ202201003.htm

    CEHN J B, LIU C, FENG D D, et al. Six risk problems pf mineral resources security need to focus on[J]. Natural Resource Economics of China, 2022(1): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDKJ202201003.htm

    [2]

    丁全利, 胡容波. 《中国矿产资源报告(2021)》发布[N]. 中国自然资源报, 2021-10-22(001).

    DENG Q L, HU R B. 《China Mineral Resources Report (2021)》published[N]. China Natural Resources Journal, 2021-10-22(001).

    [3]

    钟传刚, 石剑锋, 张罗虎, 等. 缅甸S&K矿浸矿微生物活性关键影响因素研究[J]. 有色金属(冶炼部分), 2019(2): 6-9. doi: 10.3969/j.issn.1007-7545.2019.02.002

    ZHONG C G, SHI J F, ZHANG L H, et al. Study on key factors of microbial activity in S&K mine in Myanmar[J]. Nonferrous Metals (Extractive Metallurgy), 2019(2): 6-9. doi: 10.3969/j.issn.1007-7545.2019.02.002

    [4]

    毛冰. 我国铜矿资源的主要类型与分布[J]. 地球, 2019(11): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU201911008.htm

    MAO B. Main types and distribution of copper resources in China[J]. Earth, 2019(11): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DIQU201911008.htm

    [5]

    王成. 中国铜矿成矿类型、成矿规律及找矿方法思考[J]. 中国金属通报, 2020(3): 38+40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB202003028.htm

    WANG C. Thinking on metallogenic types, metallogenic regularity and prospecting methods of copper deposits in China[J]. China Metal Bulletin, 2020(3): 38+40. https://www.cnki.com.cn/Article/CJFDTOTAL-JSTB202003028.htm

    [6]

    赵鹏飞, 马连新, 梁玉辉, 等. 安徽省铜矿矿产资源潜力动态评价[J]. 资源信息与工程, 2020(3): 38-40. doi: 10.3969/j.issn.2095-5391.2020.03.011

    ZHAO P F, MA L X, LIANG Y H, et al. Dynamic evaluation of copper resource potential in Anhui province[J]. Resource Information and Engineering, 2020(3): 38-40. doi: 10.3969/j.issn.2095-5391.2020.03.011

    [7]

    任彦瑛. 中国铜矿资源的现状及潜力分析[J]. 中国金属通报, 2021(1): 5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    REN Y Y. Status and potential analysis of copper resources in China[J]. China Metal Bulletin, 2021(1): 5-6. doi: 10.3969/j.issn.1672-1667.2021.01.003

    [8]

    主要矿产品供需形势分析报告(2018年)[J]. 中国国土资源经济, 2018(12): 2.

    Analysis report on supply and demand situation of major mineral products (2018)[J]. Natural Resource Economics of China, 2018(12): 2.

    [9]

    S. R. Zimerley, D. G. Wilson, J. D. Parater. Cycle leaching process employing iron oxdizing bacteria[J]. US Patent, 1958(2): 829-964.

    [10]

    邓强, 韩伟. 微生物浸矿技术在选铜工业中的应用[J]. 矿业快报, 2007(3): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200703007.htm

    DENG Q, HAN W. Application of ore leaching technology by microbe in copper processing industry[J]. Modern Mining, 2007(3): 24-26. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKB200703007.htm

    [11]

    王金庆, 严群, 梁长利, 等. 硫化镍矿生物浸出研究进展[J]. 金属矿山, 2015(8): 85-91. doi: 10.3969/j.issn.1001-1250.2015.08.017

    WANG J Q, YAN Q, LIANG C L, et al. Research progress in bioleaching of nickel sulphide ore[J]. Metal Mine, 2015(8): 85-91. doi: 10.3969/j.issn.1001-1250.2015.08.017

    [12]

    徐家振, 金哲男. 重贵金属冶金中的微生物技术[J]. 有色矿冶, 2002(1): 31-34. doi: 10.3969/j.issn.1007-967X.2002.01.009

    XU G Z, JIN Z N. Microbial technology in heavy precious metal metallurgy[J]. Nonferrous Mining and Metallurgy, 2002(1): 31-34. doi: 10.3969/j.issn.1007-967X.2002.01.009

    [13]

    王廷健. 微生物浸出技术在铀矿开采中的应用[J]. 江西化工, 2019(13): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201903007.htm

    WANG T J. Application of microbial leaching technology in uranium mining[J]. Jiangxi Chemical, 2019(13): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-PROV201903007.htm

    [14]

    胡凯光, 谭凯旋, 杨仕教, 等. 微生物浸矿机理和影响因素探讨[J]. 湿法冶金, 2004(3): 113-121. doi: 10.3969/j.issn.1009-2617.2004.03.001

    HU K G, TAN K X, YANG S J, et al. Bacterial leaching mechanism and effect factors[J]. Hydrometallurgy of China, 2004(3): 113-121. doi: 10.3969/j.issn.1009-2617.2004.03.001

    [15]

    李学亚, 叶茜. 微生物冶金技术及其应用[J]. 矿业工程, 2006(2): 49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    LI X Y, YE Q. Microbial metallurgy technology and its application[J]. Mining and Metallurgical Engineering, 2006(2): 49-51. doi: 10.3969/j.issn.1671-8550.2006.02.023

    [16]

    孙伟, 渠光华, 王大鹏. 磷矿的微生物浸出研究进展[J]. 矿产保护与利用, 2021, 41(4): 50-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7350c55b-d527-4005-8f57-bdd666fda37b

    SUN W, JU G H, WANG D P. Research progress of microbial leaching of phosphate ore[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 50-58. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=7350c55b-d527-4005-8f57-bdd666fda37b

    [17]

    PADILLA R, RODIGUEZ M, RUIZ M C. Sulfidation of chalcopyrite with elemental sulfur[J]. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 2003, 34(1): 15-23. doi: 10.1007/s11663-003-0050-9

    [18]

    PADILLA R, PAVEZ P, RUIZ M C. Kinetics of copper dissolution from sulfidized chalcopyrite at high pressures in H2SO4-O2[J]. Hydrometallurgy, 2008, 91(1/2/3/4): 113-120.

    [19]

    陈薇. 微生物浸出技术研究及其应用现状[J]. 盐业与化工, 2014, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HHYH201412004.htm

    CHEN W. Research and application of microbial leaching technology[J]. Journal of Salt and Chemical Industry, 2014, 43(12): 8-11. https://www.cnki.com.cn/Article/CJFDTOTAL-HHYH201412004.htm

    [20]

    ZHAO H B, ZHANG Y S, ZHANG X, et al. The dissolution and passivation mechanism of chalcopyrite in bioleaching: an overview[J]. Minerals Engineering, 2019, 136: 140-154. doi: 10.1016/j.mineng.2019.03.014

    [21]

    刘明实, 万选志, 刘子龙, 等. 甲玛地区角岩矿微生物浸出的试验研究[J]. 矿产综合利用, 2020(3): 89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    LIU M S, WAN X Z, LIU Z L, et al. Experimental study on the hornfels ore's microbiological leaching in Jiama region[J]. Multipurpose Utilization of Mineral Resources, 2020(3): 89-93. doi: 10.3969/j.issn.1000-6532.2020.03.014

    [22]

    赵钰, 董颖博, 林海. 有色金属矿尾矿微生物浸出技术研究进展[J]. 金属矿山, 2019(11): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201911034.htm

    ZHAO Y, DONG Y B, LIN H. Research progress on microbial leaching technology of non-ferrous metal tailings[J]. Metal Mine, 2019(11): 197-203. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201911034.htm

    [23]

    冯光志, 石玉, 舒玉凤. 微生物浸出技术及其在尾矿开发中的应用[J]. 生物学杂志, 2016, 33(1): 92-97. doi: 10.3969/j.issn.2095-1736.2016.01.092

    FENG G Z, SHI Y, SHU Y F. Microbial leaching technology and its application in the exploitation of the tailings[J]. Journal of Biology, 2016, 33(1): 92-97. doi: 10.3969/j.issn.2095-1736.2016.01.092

    [24]

    张析, 王军, 王进龙. 生物浸出技术及其应用研究进展[J]. 世界有色金属, 2016(14): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201614040.htm

    ZHANG X, WANG J, WANG J L. Research progress of bioleaching technology and its application[J]. World Nonferrous Metals, 2016(14): 110-112. https://www.cnki.com.cn/Article/CJFDTOTAL-COLO201614040.htm

    [25]

    COLMER A R, TEPAL K L, HINKLE M E. An iron-oxidizing bacterium from the acid drainage of some bituminous coal mines[J]. Bacterisl, 1950, 59(2): 317-328.

    [26]

    刘厚明, 舒荣波, 王晓慧, 等. 白银含铜废石生物柱浸试验研究[J]. 矿产综合利用, 2012(6): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201206004.htm

    LIU H M, SHU R B, WANG X H, et al. Experimental research on column bioleaching of Copper-containing waste rock in Baiyin[J]. Conservation and Utilization of Mineral Resources, 2012(6): 21-24. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZL201206004.htm

    [27]

    张在海. 铜硫化矿生物浸出高效菌种选育及浸出机理[D]. 长沙: 中南大学, 2002.

    ZHANG Z H. The screening and breeding of high effective bacteria and mechanism of bioleaching of copper sulfide minerals[D]. Changsha: Central South University, 2002.

    [28]

    ZENG W M, CAI Y X, HOU C W, et al. Influence diversity of extracellular DNA on bioleaching chalcopyrite and pyrite by Sulfobacillus thermosulfidooxidans ST[J]. Journal of Central South University, 2020(5): 1466-1476.

    [29]

    张卫民, 荆秀艳, 邱木清. 永平铜矿浸矿细菌驯化培养研究[J]. 有色金属(冶炼部分), 2004(5): 5-8, doi: 10.3969/j.issn.1007-7545.2004.05.002

    ZHANG W M, QING X Y, QIU M Q. Study on the domestication of leaching-ore bacteria from Yongping copper ore[J]. Nonferrous Metals (Extractive Metallurgy), 2004, 350(5): 5-8. doi: 10.3969/j.issn.1007-7545.2004.05.002

    [30]

    张亚平, 李骞. 一种海洋菌浸出低品位硫化矿的方法: 111519027A[P]. 2020-08-11.

    ZHANG Y P, LI Q. The invention relates to a method for leaching low-grade sulfide ore by marine bacteria: 111519027A[P]. 2020-08-11.

    [31]

    刘学, 武彪, 蔡镠璐, 等. 含磁黄铁矿低品位铜镍矿微生物浸出与除铁联合堆浸方法: 113122713A[P]. 2021-07-16.

    LIU X, WU B, CAI L L, et al. Combined heap leaching method of microbial leaching and iron removal for low grade copper-nickel ore containing pyrrhotite: 113122713A[P]. 2021-07-16.

    [32]

    袁明华, 周全雄, 赵继春. 氯化物体系中含银硫化铜矿生物浸出试验研究[J]. 有色矿冶, 2010, 26(3): 23-24. doi: 10.3969/j.issn.1007-967X.2010.03.007

    YUAN M H, ZHOU Q X, ZHAO J C. Study of copper sulphide ore bearing silver by bioleaching in the system of chloride solution[J]. Non-Ferrous Mining and Metallurgy, 2010, 26(3): 23-24. doi: 10.3969/j.issn.1007-967X.2010.03.007

    [33]

    NIE Z Y, ZHANG W W, LIU H C, et al. Bioleaching of chalcopyrite with different crystal phases by Acidianus manzaensis[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(3): 617-624. doi: 10.1016/S1003-6326(19)64971-X

    [34]

    关亚楠. 嗜酸性喜温硫杆菌中EnvZ/OmpR双组分调控系统的研究[D]. 济南: 山东大学, 2017.

    GUAN Y N. Functional analysis of the two-component system EnvZ-OmpR in acidithiobacillus caldus[D]. Jinan: Shandong University, 2017.

    [35]

    毛振华, 孙见行, 周文博, 等. 生物冶金中耐盐浸矿微生物的研究进展[J]. 微生物学通报, 2020, 47(9): 2996-3003. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202009030.htm

    MAO Z H, SUN J X, ZHOU W B, et al. Salt-tolerant microorganisms in biohydrometallurgy: a review[J]. Microbiology China, 2020, 47(9): 2996-3003. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT202009030.htm

    [36]

    饶苗苗, 周仲魁, 葛玉波, 等. 嗜酸性氧化亚铁硫杆菌耐氟性研究[J]. 有色金属(冶炼部分), 2019(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201910011.htm

    RAO M M, ZHOU Z K, GE Y B, et al. Study on fluoride resistance of eosinophilic thiobacillus ferrooxidans[J]. Nonferrous Metals (Extractive Metallurgy), 2019(10): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-METE201910011.htm

    [37]

    潘文俊. 浸矿微生物氧化亚铁硫杆菌抗氟基因工程菌的构建[D]. 衡阳: 南华大学, 2011.

    PAN W J. Construction of bioleaching bacteria thiobacillus ferrooxidans with fluoride-resistant activity by genetic engineering[D]. Hengyang: University of South China, 2011.

    [38]

    李想, 温建康, 莫晓兰, 等. 浸矿微生物氟抑制机理及铁的竞争络合作用[J]. 工程科学学报, 2018, 40(10): 1223-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201810009.htm

    LI X, WEN J K, MUO X L, et al. Mechanism of fluoride inhibition on bioleaching bacteria and competitive complexation of ferric ions[J]. Chinese Journal of Engineering, 2018, 40(10): 1223-1230. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201810009.htm

    [39]

    ARAYA G, ACOSTA M, DEMERGASSO C, et al. Analysis of gene expression as marker of relevant metabolisms, in three acidithiobacillus ferrooxidans strains, in different growth conditions[J]. Integration of Scientific and Industrial Knowledge on Biohydrometallurgy, 2013(825): 166-171.

    [40]

    申丽, 刘学端, 邱冠周. 基于基因芯片对微生物基因功能与群落结构分析的硫化矿生物浸出分析[J]. 生物工程学报, 2008(6): 968-974. doi: 10.3321/j.issn:1000-3061.2008.06.011

    SHEN L, LIU X R, QIU G Z. Gene function and microbial community structure in sulfide minerals bioleaching system based on microarray analysis[J]. Chinese Journal of Biotechnology, 2008(6): 968-974. doi: 10.3321/j.issn:1000-3061.2008.06.011

    [41]

    刘新星, 谢建平, 霍强, 等. 生物信息学在生物冶金研究中的应用[J]. 矿冶工程, 2005(5): 47-49. doi: 10.3969/j.issn.0253-6099.2005.05.014

    LIU X X, XIE J P, HUO Q, et al. Application of bioinformatics in bio-metallurgy research[J]. Mining and Metallurgical Engineering, 2005(5): 47-49. doi: 10.3969/j.issn.0253-6099.2005.05.014

    [42]

    熊英, 胡建平, 林滨兰, 等. 氧化亚铁硫杆菌的驯化与诱变选育[J]. 矿产综合利用, 2001(6): 27-31. doi: 10.3969/j.issn.1000-6532.2001.06.008

    XIONG Y, HU J P, LIN B L, et al. Domestication and mutagenesis of Thiobacillus ferrooxidans[J]. Multipurpose Utilization of Mineral Resources, 2001(6): 27-31. doi: 10.3969/j.issn.1000-6532.2001.06.008

    [43]

    AI C B, YAN Z, CHAI H S, et al. Increased chalcopyrite bioleaching capabilities of extremely thermoacidophilic Metallosphaera sedula inocula by mixotrophic propagation[J]. Journal of Industrial Microbiology & Biotechnology, 2019, 46(8): 1113-1127.

    [44]

    AI C B, LIANG Y T, QIU G Z, et al. Bioleaching of low-grade copper sulfide ore by extremely thermoacidophilic consortia at 70 degrees C in column reactors[J]. Journal of Central South University, 2020, 27(5): 1404-1415. doi: 10.1007/s11771-020-4376-0

    [45]

    崔亚铨, 冯守帅, 黄兴, 等. 铜耐受定向驯化强化嗜酸喜温硫杆菌浸出贫黄铜矿[J]. 生物技术通报, 2019(8): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201908012.htm

    CHUI Y Q, FENG S S, HUANG X, et al. Directed domestication of copper tolerance for enhancing lowgrade chalcopyrite bioleaching be acidithiobacillus caldus[J]. Biotechnology Bulletin, 2019(8): 95-102. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201908012.htm

    [46]

    胡凯建, 王洪江, 李广泽, 等. 一株碱性产氨浸铜细菌改良试验研究[J]. 工程科学学报, 2015, 37(11): 1410-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201511003.htm

    HU K J, WANG H J, LI G Z, et al. Improvement experiment study of alkaline copper leaching bacteria[J]. Chinese Journal of Engineering, 2015, 37(11): 1410-1414. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201511003.htm

    [47]

    李正中. 微生物强化浸出及微波技术在黄铜矿冶金中的运用[J]. 中国金属通报, 2020(18): 1672-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO200703011.htm

    LI Z Z. Application of comprehensive bioleaching and microwave techniques to chalcopyrite metallurgy[J]. China Metal Bulletin, 2020(18): 1672-1667. https://www.cnki.com.cn/Article/CJFDTOTAL-YJCO200703011.htm

    [48]

    申秋实, 龚文琪, 王恩文, 等. 微波诱变嗜酸氧化硫硫杆菌浸出低品位磷矿[J]. 武汉理工大学学报, 2008(11): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200811008.htm

    SHEN Q S, GONG W Q, WANG E W, et al. Bioleaching of low-grade phosphate ore with microwave-mutated acidithiobacillus thiooxidans[J]. Journal of Wuhan University of Technology, 2008(11): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY200811008.htm

    [49]

    姜成英, 刘双江, 宋金龙, 等. 一种促进微生物Ar-4生物冶金浸出率的光电能法: 112080637B[P]. 2021-11-23.

    JIANG C Y, LIU S J, SONG J L, et al. The invention relates to a photoelectric energy method for improving the leaching rate of microbial Ar-4 by bio-metallurgy: 112080637B[P]. 2021-11-23.

    [50]

    PENG J B, YANG W M, BAO X Z. Expression of heterogenous arsenic resistance genes in the obligately autotrophic booming bacterium thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology, 1994, 60(7): 2653-2656. doi: 10.1128/aem.60.7.2653-2656.1994

    [51]

    徐海岩, 颜望明, 刘振盈, 等. 利用氧化亚铁硫杆菌抗砷工程菌Tf-59(PsdX3)处理含砷金精矿[J]. 应用与环境微生物学报, 1997, 3(4): 366-370.

    XUN H Y, YANG W M, LIU Z Y, et al. Treatment of arsenic bearing gold concentrate by thiobacillus ferrooxidans anti-arsenic engineering bacterium TF-59(PsdX3)[J]. Chinese Journal of Applied & Environmental Microbiology, 1997, 3(4): 366-370.

    [52]

    宫磊, 徐晓军. 物理诱变氧化亚铁硫杆菌及浸出低品位黄铜矿的研究[J]. 金属矿山, 2005(8): 39-41. doi: 10.3321/j.issn:1001-1250.2005.08.011

    GONG L, XUN X J. Physical mutagenesis of thiobacillus ferrooxidans and leaching of low-grade chalcopyrite[J]. Metal Mines, 2005(8): 39-41. doi: 10.3321/j.issn:1001-1250.2005.08.011

    [53]

    武国娟. 硫化铜矿生物浸出菌种发展情况的研究[J]. 科技视界, 2019(20): 38-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201920017.htm

    WU G J. Research on the development of bacterial strains for bioleaching of copper sulphide ore[J]. Science & Technology Vision, 2019(20): 38-39. https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201920017.htm

    [54]

    余润兰, 石丽娟, 周丹, 等. 生物浸出过程中微生物协同作用机制的研究进展[J]. 中国有色金属学报, 2013(10): 3006-3014. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201310036.htm

    YU R L, SHI L J, ZHOU D, et al. Research development of microorganism synergy mechanisms during bioleaching[J]. The Chinese Journal of Nonferrous Metals, 2013(10): 3006-3014. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201310036.htm

    [55]

    朱宏飞, 李辉, 刘东奇. 三种浸矿细菌协同作用的回顾及展望[J]. 微生物学通报, 2016(12): 2730. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201612024.htm

    ZHU H F, LI H, LIU D Q. A review of synergy development and prospect of three leaching bacteria[J]. Microbiology China, 2016(12): 2730. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201612024.htm

    [56]

    巫銮东, 赵永鑫, 邹来昌. 紫金山铜矿微生物浸出工艺研究[J]. 采矿技术, 2005(4): 28-30. doi: 10.3969/j.issn.1671-2900.2005.04.012

    WU L D, ZHAO Y X, ZHOU L C. Study on microbial leaching technology of Zijinshan copper mine[J]. Mining Technology, 2005(4): 28-30. doi: 10.3969/j.issn.1671-2900.2005.04.012

    [57]

    崔文静. 细菌混合浸出低品位硫化铜矿以及强化细菌浸出的研究[D]. 呼和浩特: 内蒙古师范大学, 2010.

    CUI W J. Research on bioleaching of low grade chalcopyrite by mixed culture bacteria and catalytic oxidation bioleaching[D]. Hohhot: Inner Mongolia Normal University, 2010.

    [58]

    聂毅磊, 陈宏, 罗立津, 等. 一种浸矿混合菌种的筛选、鉴定及浸矿的研究[J]. 生物技术通报, 2016(8): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201608026.htm

    NIE Y L, CHEN H, LUO L J, et al. Screening and identification of mixed culture, and its bioleaching capacity[J]. Biotechnology Bulletin, 2016(8): 177-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201608026.htm

    [59]

    钱林. Acidithiobacilius ferrooxidans和Acidiphilium spp. 细菌的分离鉴定及其协同浸出黄铜矿能力研究[D]. 长沙: 中南大学, 2008.

    QIAN L. Isolation, identification of Acidithiobacilius ferrooxidans and Acidiphilium spp. and studies on their synergistic effect of leaching chalcopyrite[D]. Changsha: Central South University, 2008.

    [60]

    叶茂友. 铅锌硫化尾矿中金属的生物浸出行为及浸出机理的研究[D]. 广州: 广东工业大学, 2017.

    YE M Y. Studies on bioleaching of metals and leaching mechanism from lead-zinc sulfide mine tailings[D]. Guangzhou: Guangdong University of Technology, 2017.

    [61]

    GAUTIER V, ESCONAR B, VARGAS T. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70℃[J]. Hydrometallurgy, 2008, 94(4): 121-126.

    [62]

    ZHOU H, ZHANG L, GUO Y, et al. Investigations of attached and unattached cells during bioleaching of chalcopyrite with acidianus manzaensis at 65℃[J]. Advanced Materials Research, 2009, 71/72/73: 377-380.

    [63]

    张仕奇, 杨洪英, 佟琳琳, 等. 硫化矿细菌浸出机理及协同作用研究现状[J]. 有色金属(冶炼部分), 2021(4): 1-10. doi: 10.3969/j.issn.1007-7545.2021.04.001

    ZHANG S Q, YANG H Y, DONG L L, et al. Research status of bioleaching of sulfide minerals and bacteria synergy mechanisms[J]. Nonferrous Metals (Extractive Metallurgy), 2021(4): 1-10. doi: 10.3969/j.issn.1007-7545.2021.04.001

    [64]

    JIA Y, SUN H Y, CHEN D F, et al. Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar[J]. Hydrometallurgy, 2016(164): 355-361.

    [65]

    刘佳晨, 刘金辉, 徐玲玲, 等. 生物浸矿微生物群落结构研究进展[J]. 稀有金属, 2021, 45(10): 1258-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202110012.htm

    LIU J C, LIU J H, XU L L, et al. Recent research advances on microbial community structure in bioleaching[J]. Chinese Journal of Rare Metals, 2021, 45(10): 1258-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXJS202110012.htm

    [66]

    温建康. 高硫低铜次生硫化铜矿选择性生物浸出研究与应用[D]. 北京: 北京有色金属研究总院, 2016.

    WEN J K. Research and application on selective bioleaching of high sulfur low copper secondary copper sulfide ore[D]. Beijing: General Research Institute for Nonferrous Metals, 2016.

    [67]

    马丽媛, 王兴杰, 刘学端, 等. 一种定向调控土著微生物群落提高黄铜矿浸出效率的方法: 111321294B[P]. 2021-07-09.

    MA L Y, WANG X J, LIU X D, et al. A method for improving chalcopyrite leaching efficiency by directional regulation of indigenous microbial communities: 111321294B[P]. 2021-07-09.

    [68]

    ACOSTA M, GALLEGUILLOS P, GHORBANI Y, et al. Variation in microbial community from predominantly mesophilic to thermotolerant and moderately thermophilic species in an industrial copper heap bioleaching operation[J]. Hydrometallurgy, 2014(150): 281-289.

    [69]

    LIU X Y, WU B, CHEN B W, et al. Bioleaching of chalcocite started at different pH: response of the microbial community to environmental stress and leaching kinetics[J]. Hydrometallurgy, 2010, 103(1): 1.

    [70]

    柳建设, 王兆慧, 耿梅梅, 等. 微生物浸出中微生物-矿物多相界面作用的研究进展[J]. 矿冶工程, 2006(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200601011.htm

    LIU J S, WANG Z H, GENG M M, et al. Progress in the study of polyphase interfacial interactions between microorganism and mineral in bio-hydrometallurgy[J]. Mining and Metallurgical Engineering, 2006(1): 40-44. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200601011.htm

    [71]

    Shrihari, Jayant M Modak, Kumar R, et al. Dissolution of particles of pyrite mineral by direct attachment of Thiobacillus ferrooxidans[J]. Hydrometallurgy, 1995, 38: 175-187.

    [72]

    李秀艳, 魏德洲. 含砷金精矿生物预氧化过程中细菌吸附的作用[J]. 东北大学学报(自然科学版), 2000, 21(6): 641-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200006016.htm

    LING Y Y, WEI D Z. Biosorption and biosorption of arsenic bearing gold concentrate[J]. Journal of Northeastern University (natural science), 2000, 21(6): 641-644. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX200006016.htm

    [73]

    NATHAN YEE, JEREMY B FEIN, CHRISTOPHER J DAUGHNEY. Experimental study of the pH, ionic strength and reversibility behavior of bacteria mineral adsorption[J]. Geochimica et Cosmochinica Acta, 2000, 64(4): 609-617.

    [74]

    MULAK W, BALA P, CHOJNACKA M. Chemical and morphological changes of millerite by mechanical activation[J]. International Journal of Mineral Processing, 2002, 66(1/2/3/4): 233-240.

    [75]

    尹升华, 王雷鸣, 陈勋. 矿石粒径对次生硫化铜矿浸出规律的影响[J]. 中南大学学报(自然科学版), 2015, 46(8): 2771-2777. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508001.htm

    YIN S H, WANG L M, CHEN X. Effects of ore particle sizes on leaching regularities of secondary copper sulfide[J]. Journal of Central South University (Science and Technology), 2015, 46(8): 2771-2777. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201508001.htm

    [76]

    李凯, 王玉光, 仉丽娟, 等. 矿石粒度对西藏玉龙次生硫化铜矿柱浸的影响研究[J]. 现代生物医学进展, 2016, 16(20): 3812-3816. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201620004.htm

    LI K, WANG Y G, ZHANG L J, et al. Effect of particle size on the column leaching of secondary sulphide ore from Tibet Yulong copper mine[J]. Progress in Modern Biomedicine, 2016, 16(20): 3812-3816. https://www.cnki.com.cn/Article/CJFDTOTAL-SWCX201620004.htm

    [77]

    唐远, 印万忠, 迟晓鹏. 破碎方式对低品位金矿石全泥氰化的影响[J]. 中国有色金属学报, 2016, 26(2): 423-429. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602021.htm

    TANG Y, YIN W Z, CHI X P. Influence of comminuting methods on full-slime cyaniding of low grade gold ore[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(2): 423-429. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ201602021.htm

    [78]

    陈克强, 印万忠, 饶峰, 等. 地质聚合反应制团对低品位铜矿石高压辊破碎——生物浸出的影响[J]. 金属矿山, 2020(7): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202007017.htm

    CHEN K Q, YIN W Z, RAO F, et al. Effect of agglomeration through geopolymerization on the bioleaching of low-grade copper ore from high pressure grinding roll[J]. Metal Mine, 2020(7): 105-110. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202007017.htm

    [79]

    CAO S T, ZHENG X F, NIE Z Y, et al. Mechanical activation on bioleaching of chalcopyrite: a new insight[J]. Minerals, 2020, 10(9): 788.

    [80]

    PATHAK A, MORRISON L, HEALY M G. Catalytic potential of selected metal ions for bioleaching, and potential techno-economic and environmental issues: a critical review[J]. Bioresource Technology, 2017, 229: 211-221.

    [81]

    辛靖靖, 刘金艳, 伍赠玲, 等. 黄铜矿生物浸出过程中的钝化作用研究进展[J]. 金属矿山, 2018(9): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201809004.htm

    XIN J J, LIU J Y, WU Z L, et al. Research progress of passivation in the bioleaching of chalcopyrite[J]. Metal Mine, 2018(9): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201809004.htm

    [82]

    MIER J, BALLESTER A, BL áZQUEZ M L, et al. Influence of metallic ions in the bioleaching of chalcopyrite by sulfolobus BC: experiments using pneumatically stirred reactors and massive samples[J]. Minerals Engineering, 1995(9): 949-965.

    [83]

    张德诚, 马萍, 朱莉, 等. 黄铜矿低温下银离子催化细菌浸出[J]. 有色金属工程, 2008(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200801013.htm

    ZHANG D C, MA P, ZHU L, et al. Bacteria leaching of chalcopyrite at low temperature with silver ion catalysis[J]. Nonferrous Metals, 2008(1): 51-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS200801013.htm

    [84]

    胡岳华, 张在海, 邱冠周, 等. Ag+在细菌浸出中的催化作用研究[J]. 矿冶工程, 2001(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200101008.htm

    HU Y H, ZHANG Z H, QIU G Z, et al. Catalystic effect of Ag+ on bacterial laching-a study[J]. Mining and Metallurgical Engineering, 2001(1): 24-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KYGC200101008.htm

    [85]

    LIAO R, WANG X X, YANG B J, et al. Catalytic effect of silver-bearing solid waste on chalcopyrite bioleaching: a kinetic study[J]. Journal of Central South University, 2020, 27(5): 1395-1403.

    [86]

    李小燕, 张卫民, 谷士飞. 微生物浸出技术在处理低品位原生硫化铜矿中的应用及研究进展[J]. 湿法冶金, 2006, 25(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ200602002.htm

    LI X Y, ZHANG W M, GU S F. Application and research progress of microbial leaching technology in treating low-grade primary copper sulfide ore[J]. Hydrometallurgy of China, 2006, 25(2): 61-64. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ200602002.htm

    [87]

    ZHANG H, WEI D Z, LIU W G, et al. Effect of polyvinyl pyrrolidone on chalcopyrite bioleaching with acidithiobacillus ferrooxidans[J]. Hydrometallurgy, 2021(205).

    [88]

    贾炎, 阮仁满, 谭巧义, 等. 一种黄铜矿生物浸出的方法: 110527830A[P]. 2019-12-03.

    JIA Y, RUAN R M, TAN Q Y, et al. The invention relates to a bioleaching method of chalcopyrite: 110527830A[P]. 2019-12-03.

    [89]

    宋哲名, 段东平, 周娥, 等. 添加纤维素对硫化铜矿细菌浸出过程的影响研究[J]. 有色金属工程, 2017(2): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201702010.htm

    SONG Z M, DUAN D P, ZHOU E, et al. Effect of cellulose on bioleaching of copper sulfide ore[J]. Nonferrous Metals Engineering, 2017(2): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-YOUS201702010.htm

    [90]

    李佳峰, 杨洪英, 佟琳琳. 硫化物生物浸出过程中木质纤维素的应用现状[J]. 有色金属(冶炼部分), 2020(10): 5-13. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202010002.htm

    LI J F, YANG H Y, DONG L L. Application status of lignocellulose in sulfide bioleaching[J]. Nonferrous Metals (Extractive Metallurgy), 2017(2): 46-52. https://www.cnki.com.cn/Article/CJFDTOTAL-METE202010002.htm

    [91]

    ZHU P, LIU X D, CHEN A J, et al. Comparative study on chalcopyrite bioleaching with assistance of different carbon materials by mixed moderate thermophiles[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(6): 1294-1303.

    [92]

    彭琴秀. 德兴铜矿含铜废石细菌浸出试验研究[J]. 湿法冶金, 2002(2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ200202009.htm

    PENG Q X. Tests on bioleaching of copper from waste ore at dexing copper mine[J]. Hydrometallurgy of China, 2002(2): 83-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SFYJ200202009.htm

    [93]

    ZHAO C X, YANG B M J, WANG X X, et al. Catalytic effect of visible light and Cd2+ on chalcopyrite bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(4): 1078-1090.

    [94]

    YANG B J, LUO W, LIAO Q, et al. Photogenerated-hole scavenger for enhancing photocatalytic chalcopyrite bioleaching[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 200-211.

    [95]

    卢龙, 雷良城, 林锦富, 等. 矿物表面特征和表面反应的研究现状及其应用[J]. 桂林工学院学报, 2002, 22(3): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200203038.htm

    LU L, LEI L C, LIN J F, et al. Research status and application of mineral surface characteristics and surface reactions[J]. Journal of Guilin Institute of Technology, 2002, 22(3): 354-358. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGX200203038.htm

  • 加载中
计量
  • 文章访问数:  3218
  • PDF下载数:  72
  • 施引文献:  0
出版历程
收稿日期:  2022-04-13
刊出日期:  2022-06-25

目录