-
摘要:
月球上赋存有丰富的铁(Fe)、钛(Ti)、铬(Cr)和铝(Al)等矿产资源。目前,原位资源利用(ISRU)是月球矿产资源开发利用的最有效途径,选矿是原位资源利用的关键步骤。然而传统选矿工艺技术不适用于月球低重力、水资源紧缺、极端温度的环境,新的选矿技术亟待研究。从月球表面已探明的有用气体元素、水冰型矿产资源、金属和非金属矿产资源的类型及分布出发,分析了月球重力、表面温度、水资源和灰尘等环境因素对月球选矿技术实施造成的阻碍,总结了低能耗提取、离心筛分、静电分选和磁选等月球选矿技术的模拟研究进展,对未来月球选矿技术发展进行了展望。
Abstract:The lunar is rich in iron (Fe), titanium (Ti), chromium (Cr) and aluminum (Al) and other mineral resources. At present, in situ resource utilization (ISRU) is the most effective way to develop and utilize lunar mineral resources, and mineral processing is the key step of in situ resource utilization. However, the traditional mineral processing technology is not suitable for the lunar environment of low gravity, water shortage and extreme temperature, and new mineral processing technology needs to be studied urgently. Based on the types and distributions of proven useful gas elements, water−ice mineral resources, metal and non−metal mineral resources on the lunar surface, the obstacles caused by environmental factors such as lunar gravity, surface temperature, water resources and dust on the implementation of lunar mineral processing technology were analyzed, and the progress of simulation research on lunar mineral processing technology such as low−energy extraction, centrifugal screening, electrostatic separation and magnetic separation was summarized. The future development of lunar mineral processing technology is prospected.
-
Key words:
- lunar /
- mineral resources /
- resource in−situ utilization /
- mineral processing
-
图 1 月球表面每1 m2风化层中3He的总量(10−9/m2)[14]:(a)近侧,(b)远侧
Figure 1.
图 2 月球极区水冰物质含量分布(左:北极,右:南极)[8]
Figure 2.
图 3 离心筛分示意图[30]
Figure 3.
图 4 3D打印圆锥离心机系统设计图[44]:(a)系统的三个主要模块;(b)系统的关键组成部分;(c)圆锥离心机系统的组装图
Figure 4.
图 5 自由落体式摩擦电分离器[50]
Figure 5.
图 6 电动行波分选系统的实验装置[53]:(a)四相直角波电压的波形;(b)设置的配置;(c)输送机板的横截面图;(d)安置在真空室的分选系统的照片
Figure 6.
表 1 月球金属资源矿产种类及其用途[8]
Table 1. Types and application of lunar metal resources and minerals
资源种类 矿产资源 赋存岩石 主要赋存矿物或来源 推测品位 可能用途 黑色金属 Fe 月海玄武岩 辉石、钛铁矿、橄榄石 20.00% 基地建设 Mn 月海玄武岩 辉石、橄榄石 0.30% 合金的添加料 Cr 月海玄武岩 铬铁矿、辉石 2.00% 制造钢材 Cr 高地苏长岩 铬铁矿 15.00% 制造钢材 稀有/放射性金属 Ti 高钛玄武岩 钛铁矿、辉石 16.00% 制造火箭外壳、基地建设 Th KREEP岩/其他演
化程度较高火成岩磷灰石、陨磷钙钠石 0.05% 核燃料、战略资源 U KREEP岩/其他演
化程度较高火成岩磷灰石、陨磷钙钠石 0.01% 核能燃料 Ce KREEP岩/其他演
化程度较高火成岩磷灰石、陨磷钙钠石 0.35% 特殊材料、战略资源 有色金属 Al 斜长岩 钙长石 18.00% 基地建设混凝土 Ni 月壤 陨石撞击 0.15% 制造火箭外壳、基地建设 Zn 火山玻璃 火山玻璃 0.08% 合金材料 其他 K KREEP岩/其他演
化程度较高火成岩磷灰石、陨磷钙钠石 9.00% 生命必需元素、重要原料 表 2 地球和月球对矿物加工环境影响的比较[4,23-24]
Table 2. Comparison of the environmental effects of the earth versus lunaron processing
指标 地球 月球 对月球选矿的影响 重力加速度/(m·s−2) 9.81 1.62 磨机建造耗材大;
影响矿物颗粒分离沉降平均地表温度/℃ 14 130~150(昼间)
−180~−160(夜间)可能会降低选矿设备的强度;
致使选矿药剂挥发或凝固人类活动 频繁 严格限制 要求选矿设备自动化程度较高 水资源/亿t 1.3×1010 2.7×103(预测) 月球水资源目前技术开采较困难;
要求选矿在无水条件下进行灰尘 容易压制 静电,磨蚀 对选矿设备造成磨损;
对人体健康造成损害 -
[1] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5): 405−416.
WU W R, LIU J Z, TANG Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405−416.
[2] ZHOU C, JIA Y, LIU J, et al. Scientific objectives and payloads of the lunar sample return mission−Chang ’e−5[J]. Advances in Space Research, 2022, 69(1): 823−836. doi: 10.1016/j.asr.2021.09.001
[3] TOKLU Y C, ACIKBAS N C, ACıKBAş G, et al. Production of a set of lunar regolith simulants based on Apollo and Chinese samples[J]. Advances in Space Research, 2023, 72(2): 565−576. doi: 10.1016/j.asr.2023.03.035
[4] SHAW M, HUMBERT M, BROOKS G, et al. Mineral processing and metal extraction on the lunar surface−challenges and opportunities[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(7): 865−891. doi: 10.1080/08827508.2021.1969390
[5] WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: a review[J]. Applied Clay Science, 2022, 229: 106673. doi: 10.1016/j.clay.2022.106673
[6] KAWAMOTO H. Vibration transport of lunar regolith for in situ resource utilization using piezoelectric actuators with displacement−amplifying mechanism[J]. Journal of Aerospace Engineering, 2020, 33(3): 04020014. doi: 10.1061/(ASCE)AS.1943-5525.0001128
[7] CRAWFORD I A. Lunar resources: a review[J]. Progress in Physical Geography−Earth and Environment, 2015, 39(2): 137−167. doi: 10.1177/0309133314567585
[8] 高楠, 许英奎, 罗泰义, 等. 月球矿产资源勘查进展及展望[J]. 矿物学报, 2022, 42(2): 222−230.
GAO N, XU Y K, LUO T Y, et al. Recent advance and prospect of the lunar mineral resources exploration[J]. Acta Mineralogica Sinica, 2022, 42(2): 222−230.
[9] 秦克章, 邹心宇. 行星矿产及行星资源地质学初论[J]. 岩石学报, 2021, 37(8): 2276−2286.
QING K Z, ZOU X Y, Potential mineral resources in the planets and preliminary discussion on planetary resource geology[J]. Acta Petrologica Sinica, 2021, 37(8): 2276−2286.
[10] 裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582
PEI Z Y, LIU J Z, WANG Q, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582
[11] 欧阳自远, 邹永廖. 月球的地质特征和矿产资源及我国月球探测的科学目标[J]. 国土资源情报, 2004(1): 36−39.
OUYANG Z Y, ZOU Y L. Geological characteristics and mineral resources of the moon and scientific objectives of lunar exploration in China[J]. Natural Resources Information, 2004(1): 36−39.
[12] RASERA J N, CILLIERS J J, LAMAMY J A, et al. The beneficiation of lunar regolith for space resource utilisation: A review[J]. Planetary and Space Science, 2020, 186: 104879. doi: 10.1016/j.pss.2020.104879
[13] 宋洪庆, 杜恒畅, 张杰, 等. 月球氦−3资源的原位开采热释放行为研究[J]. 空间科学学报, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787
SONG H Q, DU H C, ZHANG J, et al. Release behavior research of in−situ helium−3 resources extraction in moon under heating[J]. Chinese Journal of Space Science, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787
[14] FA W Z, JIN Y Q. Quantitative estimation of helium−3 spatial distribution in the lunar regolith layer[J]. ICARUS, 2007, 190(1): 15−23. doi: 10.1016/j.icarus.2007.03.014
[15] 王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文), 2020, 7(3): 241−247.
WAMG C, ZHANG X J, YAO W, et al. Reseach prospects of lunar polar water ice resource in−situ utilization[J]. Journal of Deep Space Exploration, 2020, 7(3): 241−247.
[16] NOZETTE S, LICHTENBERG C L, SPUDIS P, et al. The clementine bistatic radar experiment[J]. Science (New York, N. Y. ), 1996, 274(5292): 1495−1498. doi: 10.1126/science.274.5292.1495
[17] 吴言蔚, 贺佳峰, 王国光. 月球内部水和月表水冰资源研究进展[J]. 高校地质学报, 2023.
WU Y W, HE J F, WANG G G, Research advances of water in lunar interior and water ice on lunar surface[J]. Geological Journal of China Universities, 2023.
[18] HAYNE P O, HENDRIX A, SEFTON−NASH E, et al. Evidence for exposed water ice in the moon's south polar regions from lunar reconnaissance orbiter ultraviolet albedo and temperature measurements[J]. ICARUS, 2015, 255: 58−69. doi: 10.1016/j.icarus.2015.03.032
[19] BRADLEY L. Jolliff, L. R. Gaddis, G, et al. New views of the Moon: better understanding through data integration[J]. Eos, Transactions American Geophysical Union, 2000, 81(31): 349−353.
[20] 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.
LIU J Z, LI X Y, ZHU K, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907−918.
[21] 李琛, 魏奎先, 李阳, 等. 月球表面矿产资源原位利用研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3289−3299.
LI C, WEI K X, LI Y, et al. Research progress on in−situ resources utilization of lunar surface minerals[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3289−3299.
[22] CILLIERS J J, RASERA J N, HADLER K. Estimating the scale of space resource utilisation (SRU) operations to satisfy lunar oxygen demand[J]. Planetary and Space Science, 2020, 180: 104749. doi: 10.1016/j.pss.2019.104749
[23] 刘贤良. 月昼期间月球车的热性能计算[D]. 南京: 南京航空航天大学, 2018.
LIU X L. Thermal calculation for a lunar rover in the lunar day[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
[24] 支羽萧, 石耀霖. 月表温度对于月幔对流影响的数值模拟研究[J]. 地球物理学报, 2023, 66(2): 685−697.
ZHI Y X, SHI Y L. Influence of surface temperature on lunar convection[J]. Chinese Journal of Geophysics, 2023, 66(2): 685−697.
[25] 刘惠中, 吴华冬. 螺旋选矿设备的应用现状及展望[J]. 有色金属(选矿部分), 2022(5): 151−158.
LIU H Z, WU H D. Application and prospect of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 151−158.
[26] 张银川, 徐春江, 田忠坤, 等. 干扰床分选机颗粒自由沉降末速数学模型探索[J]. 选煤技术, 2018(1): 32−35.
ZHANG Y C, XU C J, TIAN Z K, et al. Study on mathematical modelling for calculating free settling terminal velocity of particles in teetered bed separator[J]. Coal Preparation Technology, 2018(1): 32−35.
[27] 刘志伟. 磨机磨矿效率影响因素分析[J]. 有色金属(选矿部分), 2018(4): 66−69.
LIU Z W. Discussion of the factors that influence grinding efficiency[J]. Nonferrous Metals(Mineral Processing Section), 2018(4): 66−69.
[28] 雷存友, 余浔, 冯裕果. 碎磨工艺现状及发展趋势[J]. 有色金属(选矿部分), 2019(5): 15−19.
LEI C Y, YU X, FENG Y G. Present status and development trend of comminution process[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 15−19.
[29] Craig L. Resource modelling for mining on the moon, mars and asteroids[C]//AusIMM Future Mining Conference. 2019.
[30] Dreyer C B, Walton O, Riedel E P. Centrifugal sieve for size−segregation and beneficiation of Regolith[C]//Proceedings of the 13th ASCE Aerospace Division Conference and the 5th NASA/ASCE Workshop on Granular Materials in Space Exploration. 2012, 31−35.
[31] 靳少康. 影响新型干式磁选机分选品位的因素分析[D]. 包头: 内蒙古科技大学, 2022.
JIN S K. Analysis of factors affecting the separation grade of new dry magnetic separator[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.
[32] 王海锋. 摩擦电选过程动力学及微粉煤强化分选研究[D]. 北京: 中国矿业大学, 2011.
WANG H F. Study on the dynamics of triboelectrostatic separation and enhanced separation of fine coal[D]. Beijing: China University of Mining and Technology, 2011.
[33] 宋馨, 张有为, 刘自军, 等. 极月轨道上太阳电池阵外热流规律分析[J]. 空间科学学报, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362
SONG X, ZHANG Y W, LIU Z J, et al. External heat flux of the solar array on the polar lunar orbit[J]. Chinese Journal of Space Science, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362
[34] WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment[J]. ICARUS, 2017, 283: 300−325. doi: 10.1016/j.icarus.2016.08.012
[35] HODGES R R, HOFFMAN J H, JOHNSON F S. The lunar atmosphere[J]. Icarus, 1974, 21(4): 415−426. doi: 10.1016/0019-1035(74)90144-4
[36] SARGEANT H M, ABERNETHY F A J, BARBER S J, et al. Hydrogen reduction of ilmenite: towards an in situ resource utilization demonstration on the surface of the moon[J]. Planetary and Space Science, 2020, 180: 104751. doi: 10.1016/j.pss.2019.104751
[37] Burke J D. Perpetual sunshine, moderate temperatures and perpetual cold as lunar polar resources[M]//Moon: Prospective Energy and Material Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 335−345.
[38] 张小平, 甘红, 李存惠, 等. 月尘运动与生物毒性研究进展[J]. 地球与行星物理论评, 2021, 52(5): 495−506.
ZHANG X P, GAN H, LI C H, et al. Recent progress in lunar dust migration and biological toxicity research[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(5): 495−506.
[39] YANG K, FENG W M, XU L Y, et al. Review of research on lunar dust dynamics[J]. Astrophysics and Space Science, 2022, 367(7): 67. doi: 10.1007/s10509-022-04094-x
[40] POPEL S I, ZELENYI L M, GOLUB A P, et al. Lunar dust and dusty plasmas: recent developments, advances, and unsolved problems[J]. Planetary and Space Science, 2018, 156: 71−84. doi: 10.1016/j.pss.2018.02.010
[41] COLWELL J E, BATISTE S, HORANYI M, et al. Lunar surface: dust dynamics and regolith mechanics[J]. REVIEWS OF GEOPHYSICS, 2007, 45(2): RG2006.
[42] 李健楠, 贺怀宇, 刘子恒, 等. 一种提取月球氦−3资源的地面试验装置及方法: 202210092037.6[P]. 2022−05−13.
LI J N. HE H Y, LIU Z H, et al. The invention relates to a ground test device and method for extracting lunar helium−3 resources: 202210092037.6[P]. 2022−05−13.
[43] 苏菲, 贺怀宇, 刘冉冉, 等. 一种低能耗月球原位稀有气体提取系统及提取方法: 201911172554.9[P]. 2021−05−04.
SU F, HE H Y, LIU R R, et al. The present invention relates to a low energy consumption lunar in situ noble gas extraction system and extraction method: 201911172554.9[P]. 2021−05−04.
[44] MITCHELL K, URADE S, KERSHAW A, et al. 3D printing of conical centrifuge system for mineral particle separation[J]. Separation and Purification Technology, 2023, 306: 122567. doi: 10.1016/j.seppur.2022.122567
[45] TRIGWELL S, CAPTAIN J, ARENS E, et al. Evaluating the use of tribocharging in electrostatic beneficiation of lunar simulant[C]//Florida AVS Symposium. 2007.
[46] QUINN J W, CAPTAIN J G, WEIS K, et al. Evaluation of tribocharged electrostatic beneficiation of lunar simulant in lunar gravity[J]. Journal of Aerospace Engineering, 2013, 26(1): 37−42. doi: 10.1061/(ASCE)AS.1943-5525.0000227
[47] TRIGWELL S, CAPTAIN J G, ARENS E E, et al. The use of tribocharging in the electrostatic beneficiation of lunar simulant[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1060−1067. doi: 10.1109/TIA.2009.2018976
[48] TRIGWELL S, LANE J E, CAPTAIN J G, et al. Quantification of efficiency of beneficiation of lunar regolith[J]. Particulate Science and Technology, 2013, 31(1): 45−50. doi: 10.1080/02726351.2011.641071
[49] LI T X, BAN H, HOWER J C, et al. Dry triboelectrostatic separation of mineral particles: a potential application in space exploration[J]. Journal of Electrostatics, 1999, 47(3): 133−142. doi: 10.1016/S0304-3886(99)00033-9
[50] TRIGWELL S, CAPTAIN J, WEIS K, et al. Electrostatic beneficiation of lunar regolith: applications in in situ resource utilization[J]. Journal of Aerospace Engineering, 2013, 26(1): 30−36. doi: 10.1061/(ASCE)AS.1943-5525.0000226
[51] RASERA J N, CILLIERS J J, LAMAMY J A, et al. Experimental investigation of an optimised tribocharger design for space resource utilisation[J]. Planetary and Space Science, 2023, 228: 105651. doi: 10.1016/j.pss.2023.105651
[52] YU Y, CILLIERS J, HADLER K, et al. A review of particle transport and separation by electrostatic traveling wave methods[J]. Journal of Electrostatics, 2022, 119: 103735. doi: 10.1016/j.elstat.2022.103735
[53] KAWAMOTO H, MOROOKA H, NOZAKI H. Improved electrodynamic particle−size sorting system for lunar regolith[J]. Journal of Aerospace Engineering, 2022, 35(1): 04021115. doi: 10.1061/(ASCE)AS.1943-5525.0001371
[54] 赵文迪, 章晓林, 景满, 等. 钛铁矿选别工艺进展[J]. 有色金属(选矿部分), 2020(2): 50−56.
ZHAO W D, ZHANG X L, JING M, et al. Progress of ilmenite separation process[J]. Nonferrous Metals(Mineral Processing Section), 2020(2): 50−56.
[55] 张冰倩, 林周越, 方利强, 等. 磁选机的研究与应用现状[J]. 云南冶金, 2017, 46(5): 13−17.
ZHANG B Q, LIN Z Y, FANG L Q, et al. Research and application status of magnetic separator[J]. Yunnan Metallurgy, 2017, 46(5): 13−17.
[56] 刘琴. 我国钛矿选矿概述[J]. 四川有色金属, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003
LIU Q. Review of titanium ore processing in China[J]. Sichuan Nonferrous Metals, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003
[57] 李金, 罗荣飞, 王洪彬, 等. 原生钛铁矿石选矿装备的应用进展与优化建议[J]. 现代矿业, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046
LI J, LUO R F, WANG H B, et al. Application progress and optimization suggestions of primary titanite mineral processing equipment[J]. Modern Mining, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046
[58] 冯定五, 孙仲元, 陈荩. 钕铁硼永磁体在选矿中的应用[J]. 磁性材料及器件, 1994(4): 51−55.
FENG D W, SUN Z Y, CHEN J. Application of NdFeb permanent magnet in mineral processing[J]. Journal of Magnetic Materials and Devices, 1994(4): 51−55.
[59] KAWAMOTO H, INOUE H. Magnetic cleaning device for lunar dust adhering to spacesuits[J]. Journal of Aerospace Engineering, 2012, 25(1): 139−142. doi: 10.1061/(ASCE)AS.1943-5525.0000101
[60] Oder R R. Magnetic separation of lunar soils[C]//in IEEE Transactions on Magnetics. 1991: 5367−5370.
[61] 孙自凯. 永磁同步电机永磁体退磁故障性能分析[J]. 电机技术, 2022(6): 53−56.
SUN Z K, Performance analysis on the permanent magnet demagnetization fault of PMSM[J]. Electrical Machinery Technology, 2022(6): 53−56.