月球矿产资源及其原位选矿技术研究进展

范琳琳, 童雄, 刘洋, 温小韵, 胡泽伟. 月球矿产资源及其原位选矿技术研究进展[J]. 矿产保护与利用, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001
引用本文: 范琳琳, 童雄, 刘洋, 温小韵, 胡泽伟. 月球矿产资源及其原位选矿技术研究进展[J]. 矿产保护与利用, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001
FAN Linlin, TONG Xiong, LIU Yang, WEN Xiaoyun, HU Zewei. Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001
Citation: FAN Linlin, TONG Xiong, LIU Yang, WEN Xiaoyun, HU Zewei. Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 1-11. doi: 10.13779/j.cnki.issn1001-0076.2023.04.001

月球矿产资源及其原位选矿技术研究进展

详细信息
    作者简介: 范琳琳(1999—),女,硕士研究生,研究方向为浮选理论与工艺,E-mail:1370359507@qq.com
    通讯作者: 童雄(1965—),男,博士,教授,研究方向为复杂多金属难处理矿产资源综合利用。E-mail:kgxiongtong@163.com
  • 中图分类号: TD989

Research Progress of Lunar Mineral Resources and In−situ Beneficiation Technology

More Information
  • 月球上赋存有丰富的铁(Fe)、钛(Ti)、铬(Cr)和铝(Al)等矿产资源。目前,原位资源利用(ISRU)是月球矿产资源开发利用的最有效途径,选矿是原位资源利用的关键步骤。然而传统选矿工艺技术不适用于月球低重力、水资源紧缺、极端温度的环境,新的选矿技术亟待研究。从月球表面已探明的有用气体元素、水冰型矿产资源、金属和非金属矿产资源的类型及分布出发,分析了月球重力、表面温度、水资源和灰尘等环境因素对月球选矿技术实施造成的阻碍,总结了低能耗提取、离心筛分、静电分选和磁选等月球选矿技术的模拟研究进展,对未来月球选矿技术发展进行了展望。

  • 加载中
  • 图 1  月球表面每1 m2风化层中3He的总量(10−9/m2)[14]:(a)近侧,(b)远侧

    Figure 1. 

    图 2  月球极区水冰物质含量分布(左:北极,右:南极)[8]

    Figure 2. 

    图 3  离心筛分示意图[30]

    Figure 3. 

    图 4  3D打印圆锥离心机系统设计图[44]:(a)系统的三个主要模块;(b)系统的关键组成部分;(c)圆锥离心机系统的组装图

    Figure 4. 

    图 5  自由落体式摩擦电分离器[50]

    Figure 5. 

    图 6  电动行波分选系统的实验装置[53]:(a)四相直角波电压的波形;(b)设置的配置;(c)输送机板的横截面图;(d)安置在真空室的分选系统的照片

    Figure 6. 

    表 1  月球金属资源矿产种类及其用途[8]

    Table 1.  Types and application of lunar metal resources and minerals

    资源种类矿产资源赋存岩石主要赋存矿物或来源推测品位可能用途
    黑色金属
    Fe月海玄武岩辉石、钛铁矿、橄榄石20.00%基地建设
    Mn月海玄武岩辉石、橄榄石0.30%合金的添加料
    Cr月海玄武岩铬铁矿、辉石2.00%制造钢材
    Cr高地苏长岩铬铁矿15.00%制造钢材
    稀有/放射性金属Ti高钛玄武岩钛铁矿、辉石16.00%制造火箭外壳、基地建设
    ThKREEP岩/其他演
    化程度较高火成岩
    磷灰石、陨磷钙钠石0.05%核燃料、战略资源
    UKREEP岩/其他演
    化程度较高火成岩
    磷灰石、陨磷钙钠石0.01%核能燃料
    CeKREEP岩/其他演
    化程度较高火成岩
    磷灰石、陨磷钙钠石0.35%特殊材料、战略资源
    有色金属Al斜长岩钙长石18.00%基地建设混凝土
    Ni月壤陨石撞击0.15%制造火箭外壳、基地建设
    Zn火山玻璃火山玻璃0.08%合金材料
    其他KKREEP岩/其他演
    化程度较高火成岩
    磷灰石、陨磷钙钠石9.00%生命必需元素、重要原料
    下载: 导出CSV

    表 2  地球和月球对矿物加工环境影响的比较[4,23-24]

    Table 2.  Comparison of the environmental effects of the earth versus lunaron processing

    指标地球月球对月球选矿的影响
    重力加速度/(m·s−2)9.811.62磨机建造耗材大;
    影响矿物颗粒分离沉降
    平均地表温度/℃14130~150(昼间)
    −180~−160(夜间)
    可能会降低选矿设备的强度;
    致使选矿药剂挥发或凝固
    人类活动频繁严格限制要求选矿设备自动化程度较高
    水资源/亿t1.3×10102.7×103(预测)月球水资源目前技术开采较困难;
    要求选矿在无水条件下进行
    灰尘容易压制静电,磨蚀对选矿设备造成磨损;
    对人体健康造成损害
    下载: 导出CSV
  • [1]

    吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5): 405−416.

    WU W R, LIU J Z, TANG Y H, et al. China lunar exploration program[J]. Journal of Deep Space Exploration, 2019, 6(5): 405−416.

    [2]

    ZHOU C, JIA Y, LIU J, et al. Scientific objectives and payloads of the lunar sample return mission−Chang ’e−5[J]. Advances in Space Research, 2022, 69(1): 823−836. doi: 10.1016/j.asr.2021.09.001

    [3]

    TOKLU Y C, ACIKBAS N C, ACıKBAş G, et al. Production of a set of lunar regolith simulants based on Apollo and Chinese samples[J]. Advances in Space Research, 2023, 72(2): 565−576. doi: 10.1016/j.asr.2023.03.035

    [4]

    SHAW M, HUMBERT M, BROOKS G, et al. Mineral processing and metal extraction on the lunar surface−challenges and opportunities[J]. Mineral Processing and Extractive Metallurgy Review, 2022, 43(7): 865−891. doi: 10.1080/08827508.2021.1969390

    [5]

    WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: a review[J]. Applied Clay Science, 2022, 229: 106673. doi: 10.1016/j.clay.2022.106673

    [6]

    KAWAMOTO H. Vibration transport of lunar regolith for in situ resource utilization using piezoelectric actuators with displacement−amplifying mechanism[J]. Journal of Aerospace Engineering, 2020, 33(3): 04020014. doi: 10.1061/(ASCE)AS.1943-5525.0001128

    [7]

    CRAWFORD I A. Lunar resources: a review[J]. Progress in Physical Geography−Earth and Environment, 2015, 39(2): 137−167. doi: 10.1177/0309133314567585

    [8]

    高楠, 许英奎, 罗泰义, 等. 月球矿产资源勘查进展及展望[J]. 矿物学报, 2022, 42(2): 222−230.

    GAO N, XU Y K, LUO T Y, et al. Recent advance and prospect of the lunar mineral resources exploration[J]. Acta Mineralogica Sinica, 2022, 42(2): 222−230.

    [9]

    秦克章, 邹心宇. 行星矿产及行星资源地质学初论[J]. 岩石学报, 2021, 37(8): 2276−2286.

    QING K Z, ZOU X Y, Potential mineral resources in the planets and preliminary discussion on planetary resource geology[J]. Acta Petrologica Sinica, 2021, 37(8): 2276−2286.

    [10]

    裴照宇, 刘继忠, 王倩, 等. 月球探测进展与国际月球科研站[J]. 科学通报, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582

    PEI Z Y, LIU J Z, WANG Q, et al. Overview of lunar exploration and international lunar research station[J]. Chinese Science Bulletin, 2020, 65(24): 2577−2586. doi: 10.1360/TB-2020-0582

    [11]

    欧阳自远, 邹永廖. 月球的地质特征和矿产资源及我国月球探测的科学目标[J]. 国土资源情报, 2004(1): 36−39.

    OUYANG Z Y, ZOU Y L. Geological characteristics and mineral resources of the moon and scientific objectives of lunar exploration in China[J]. Natural Resources Information, 2004(1): 36−39.

    [12]

    RASERA J N, CILLIERS J J, LAMAMY J A, et al. The beneficiation of lunar regolith for space resource utilisation: A review[J]. Planetary and Space Science, 2020, 186: 104879. doi: 10.1016/j.pss.2020.104879

    [13]

    宋洪庆, 杜恒畅, 张杰, 等. 月球氦−3资源的原位开采热释放行为研究[J]. 空间科学学报, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787

    SONG H Q, DU H C, ZHANG J, et al. Release behavior research of in−situ helium−3 resources extraction in moon under heating[J]. Chinese Journal of Space Science, 2021, 41(5): 787−792. doi: 10.11728/cjss2021.05.787

    [14]

    FA W Z, JIN Y Q. Quantitative estimation of helium−3 spatial distribution in the lunar regolith layer[J]. ICARUS, 2007, 190(1): 15−23. doi: 10.1016/j.icarus.2007.03.014

    [15]

    王超, 张晓静, 姚伟. 月球极区水冰资源原位开发利用研究进展[J]. 深空探测学报(中英文), 2020, 7(3): 241−247.

    WAMG C, ZHANG X J, YAO W, et al. Reseach prospects of lunar polar water ice resource in−situ utilization[J]. Journal of Deep Space Exploration, 2020, 7(3): 241−247.

    [16]

    NOZETTE S, LICHTENBERG C L, SPUDIS P, et al. The clementine bistatic radar experiment[J]. Science (New York, N. Y. ), 1996, 274(5292): 1495−1498. doi: 10.1126/science.274.5292.1495

    [17]

    吴言蔚, 贺佳峰, 王国光. 月球内部水和月表水冰资源研究进展[J]. 高校地质学报, 2023.

    WU Y W, HE J F, WANG G G, Research advances of water in lunar interior and water ice on lunar surface[J]. Geological Journal of China Universities, 2023.

    [18]

    HAYNE P O, HENDRIX A, SEFTON−NASH E, et al. Evidence for exposed water ice in the moon's south polar regions from lunar reconnaissance orbiter ultraviolet albedo and temperature measurements[J]. ICARUS, 2015, 255: 58−69. doi: 10.1016/j.icarus.2015.03.032

    [19]

    BRADLEY L. Jolliff, L. R. Gaddis, G, et al. New views of the Moon: better understanding through data integration[J]. Eos, Transactions American Geophysical Union, 2000, 81(31): 349−353.

    [20]

    刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.

    LIU J Z, LI X Y, ZHU K, et al. Key science and technology issues of lunar in situ resource utilization[J]. Bulletin of National Natural Science Foundation of China, 2022, 36(6): 907−918.

    [21]

    李琛, 魏奎先, 李阳, 等. 月球表面矿产资源原位利用研究进展[J]. 中南大学学报(自然科学版), 2020, 51(12): 3289−3299.

    LI C, WEI K X, LI Y, et al. Research progress on in−situ resources utilization of lunar surface minerals[J]. Journal of Central South University(Science and Technology), 2020, 51(12): 3289−3299.

    [22]

    CILLIERS J J, RASERA J N, HADLER K. Estimating the scale of space resource utilisation (SRU) operations to satisfy lunar oxygen demand[J]. Planetary and Space Science, 2020, 180: 104749. doi: 10.1016/j.pss.2019.104749

    [23]

    刘贤良. 月昼期间月球车的热性能计算[D]. 南京: 南京航空航天大学, 2018.

    LIU X L. Thermal calculation for a lunar rover in the lunar day[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

    [24]

    支羽萧, 石耀霖. 月表温度对于月幔对流影响的数值模拟研究[J]. 地球物理学报, 2023, 66(2): 685−697.

    ZHI Y X, SHI Y L. Influence of surface temperature on lunar convection[J]. Chinese Journal of Geophysics, 2023, 66(2): 685−697.

    [25]

    刘惠中, 吴华冬. 螺旋选矿设备的应用现状及展望[J]. 有色金属(选矿部分), 2022(5): 151−158.

    LIU H Z, WU H D. Application and prospect of spiral concentrator[J]. Nonferrous Metals(Mineral Processing Section), 2022(5): 151−158.

    [26]

    张银川, 徐春江, 田忠坤, 等. 干扰床分选机颗粒自由沉降末速数学模型探索[J]. 选煤技术, 2018(1): 32−35.

    ZHANG Y C, XU C J, TIAN Z K, et al. Study on mathematical modelling for calculating free settling terminal velocity of particles in teetered bed separator[J]. Coal Preparation Technology, 2018(1): 32−35.

    [27]

    刘志伟. 磨机磨矿效率影响因素分析[J]. 有色金属(选矿部分), 2018(4): 66−69.

    LIU Z W. Discussion of the factors that influence grinding efficiency[J]. Nonferrous Metals(Mineral Processing Section), 2018(4): 66−69.

    [28]

    雷存友, 余浔, 冯裕果. 碎磨工艺现状及发展趋势[J]. 有色金属(选矿部分), 2019(5): 15−19.

    LEI C Y, YU X, FENG Y G. Present status and development trend of comminution process[J]. Nonferrous Metals(Mineral Processing Section), 2019(5): 15−19.

    [29]

    Craig L. Resource modelling for mining on the moon, mars and asteroids[C]//AusIMM Future Mining Conference. 2019.

    [30]

    Dreyer C B, Walton O, Riedel E P. Centrifugal sieve for size−segregation and beneficiation of Regolith[C]//Proceedings of the 13th ASCE Aerospace Division Conference and the 5th NASA/ASCE Workshop on Granular Materials in Space Exploration. 2012, 31−35.

    [31]

    靳少康. 影响新型干式磁选机分选品位的因素分析[D]. 包头: 内蒙古科技大学, 2022.

    JIN S K. Analysis of factors affecting the separation grade of new dry magnetic separator[D]. Baotou: Inner Mongolia University of Science & Technology, 2022.

    [32]

    王海锋. 摩擦电选过程动力学及微粉煤强化分选研究[D]. 北京: 中国矿业大学, 2011.

    WANG H F. Study on the dynamics of triboelectrostatic separation and enhanced separation of fine coal[D]. Beijing: China University of Mining and Technology, 2011.

    [33]

    宋馨, 张有为, 刘自军, 等. 极月轨道上太阳电池阵外热流规律分析[J]. 空间科学学报, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362

    SONG X, ZHANG Y W, LIU Z J, et al. External heat flux of the solar array on the polar lunar orbit[J]. Chinese Journal of Space Science, 2015, 35(3): 362−367. doi: 10.11728/cjss2015.03.362

    [34]

    WILLIAMS J P, PAIGE D A, GREENHAGEN B T, et al. The global surface temperatures of the moon as measured by the diviner lunar radiometer experiment[J]. ICARUS, 2017, 283: 300−325. doi: 10.1016/j.icarus.2016.08.012

    [35]

    HODGES R R, HOFFMAN J H, JOHNSON F S. The lunar atmosphere[J]. Icarus, 1974, 21(4): 415−426. doi: 10.1016/0019-1035(74)90144-4

    [36]

    SARGEANT H M, ABERNETHY F A J, BARBER S J, et al. Hydrogen reduction of ilmenite: towards an in situ resource utilization demonstration on the surface of the moon[J]. Planetary and Space Science, 2020, 180: 104751. doi: 10.1016/j.pss.2019.104751

    [37]

    Burke J D. Perpetual sunshine, moderate temperatures and perpetual cold as lunar polar resources[M]//Moon: Prospective Energy and Material Resources. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012: 335−345.

    [38]

    张小平, 甘红, 李存惠, 等. 月尘运动与生物毒性研究进展[J]. 地球与行星物理论评, 2021, 52(5): 495−506.

    ZHANG X P, GAN H, LI C H, et al. Recent progress in lunar dust migration and biological toxicity research[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(5): 495−506.

    [39]

    YANG K, FENG W M, XU L Y, et al. Review of research on lunar dust dynamics[J]. Astrophysics and Space Science, 2022, 367(7): 67. doi: 10.1007/s10509-022-04094-x

    [40]

    POPEL S I, ZELENYI L M, GOLUB A P, et al. Lunar dust and dusty plasmas: recent developments, advances, and unsolved problems[J]. Planetary and Space Science, 2018, 156: 71−84. doi: 10.1016/j.pss.2018.02.010

    [41]

    COLWELL J E, BATISTE S, HORANYI M, et al. Lunar surface: dust dynamics and regolith mechanics[J]. REVIEWS OF GEOPHYSICS, 2007, 45(2): RG2006.

    [42]

    李健楠, 贺怀宇, 刘子恒, 等. 一种提取月球氦−3资源的地面试验装置及方法: 202210092037.6[P]. 2022−05−13.

    LI J N. HE H Y, LIU Z H, et al. The invention relates to a ground test device and method for extracting lunar helium−3 resources: 202210092037.6[P]. 2022−05−13.

    [43]

    苏菲, 贺怀宇, 刘冉冉, 等. 一种低能耗月球原位稀有气体提取系统及提取方法: 201911172554.9[P]. 2021−05−04.

    SU F, HE H Y, LIU R R, et al. The present invention relates to a low energy consumption lunar in situ noble gas extraction system and extraction method: 201911172554.9[P]. 2021−05−04.

    [44]

    MITCHELL K, URADE S, KERSHAW A, et al. 3D printing of conical centrifuge system for mineral particle separation[J]. Separation and Purification Technology, 2023, 306: 122567. doi: 10.1016/j.seppur.2022.122567

    [45]

    TRIGWELL S, CAPTAIN J, ARENS E, et al. Evaluating the use of tribocharging in electrostatic beneficiation of lunar simulant[C]//Florida AVS Symposium. 2007.

    [46]

    QUINN J W, CAPTAIN J G, WEIS K, et al. Evaluation of tribocharged electrostatic beneficiation of lunar simulant in lunar gravity[J]. Journal of Aerospace Engineering, 2013, 26(1): 37−42. doi: 10.1061/(ASCE)AS.1943-5525.0000227

    [47]

    TRIGWELL S, CAPTAIN J G, ARENS E E, et al. The use of tribocharging in the electrostatic beneficiation of lunar simulant[J]. IEEE Transactions on Industry Applications, 2009, 45(3): 1060−1067. doi: 10.1109/TIA.2009.2018976

    [48]

    TRIGWELL S, LANE J E, CAPTAIN J G, et al. Quantification of efficiency of beneficiation of lunar regolith[J]. Particulate Science and Technology, 2013, 31(1): 45−50. doi: 10.1080/02726351.2011.641071

    [49]

    LI T X, BAN H, HOWER J C, et al. Dry triboelectrostatic separation of mineral particles: a potential application in space exploration[J]. Journal of Electrostatics, 1999, 47(3): 133−142. doi: 10.1016/S0304-3886(99)00033-9

    [50]

    TRIGWELL S, CAPTAIN J, WEIS K, et al. Electrostatic beneficiation of lunar regolith: applications in in situ resource utilization[J]. Journal of Aerospace Engineering, 2013, 26(1): 30−36. doi: 10.1061/(ASCE)AS.1943-5525.0000226

    [51]

    RASERA J N, CILLIERS J J, LAMAMY J A, et al. Experimental investigation of an optimised tribocharger design for space resource utilisation[J]. Planetary and Space Science, 2023, 228: 105651. doi: 10.1016/j.pss.2023.105651

    [52]

    YU Y, CILLIERS J, HADLER K, et al. A review of particle transport and separation by electrostatic traveling wave methods[J]. Journal of Electrostatics, 2022, 119: 103735. doi: 10.1016/j.elstat.2022.103735

    [53]

    KAWAMOTO H, MOROOKA H, NOZAKI H. Improved electrodynamic particle−size sorting system for lunar regolith[J]. Journal of Aerospace Engineering, 2022, 35(1): 04021115. doi: 10.1061/(ASCE)AS.1943-5525.0001371

    [54]

    赵文迪, 章晓林, 景满, 等. 钛铁矿选别工艺进展[J]. 有色金属(选矿部分), 2020(2): 50−56.

    ZHAO W D, ZHANG X L, JING M, et al. Progress of ilmenite separation process[J]. Nonferrous Metals(Mineral Processing Section), 2020(2): 50−56.

    [55]

    张冰倩, 林周越, 方利强, 等. 磁选机的研究与应用现状[J]. 云南冶金, 2017, 46(5): 13−17.

    ZHANG B Q, LIN Z Y, FANG L Q, et al. Research and application status of magnetic separator[J]. Yunnan Metallurgy, 2017, 46(5): 13−17.

    [56]

    刘琴. 我国钛矿选矿概述[J]. 四川有色金属, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003

    LIU Q. Review of titanium ore processing in China[J]. Sichuan Nonferrous Metals, 2021, 138(1): 6−8. doi: 10.3969/j.issn.1006-4079.2021.01.003

    [57]

    李金, 罗荣飞, 王洪彬, 等. 原生钛铁矿石选矿装备的应用进展与优化建议[J]. 现代矿业, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046

    LI J, LUO R F, WANG H B, et al. Application progress and optimization suggestions of primary titanite mineral processing equipment[J]. Modern Mining, 2021, 37(6): 166−168. doi: 10.3969/j.issn.1674-6082.2021.06.046

    [58]

    冯定五, 孙仲元, 陈荩. 钕铁硼永磁体在选矿中的应用[J]. 磁性材料及器件, 1994(4): 51−55.

    FENG D W, SUN Z Y, CHEN J. Application of NdFeb permanent magnet in mineral processing[J]. Journal of Magnetic Materials and Devices, 1994(4): 51−55.

    [59]

    KAWAMOTO H, INOUE H. Magnetic cleaning device for lunar dust adhering to spacesuits[J]. Journal of Aerospace Engineering, 2012, 25(1): 139−142. doi: 10.1061/(ASCE)AS.1943-5525.0000101

    [60]

    Oder R R. Magnetic separation of lunar soils[C]//in IEEE Transactions on Magnetics. 1991: 5367−5370.

    [61]

    孙自凯. 永磁同步电机永磁体退磁故障性能分析[J]. 电机技术, 2022(6): 53−56.

    SUN Z K, Performance analysis on the permanent magnet demagnetization fault of PMSM[J]. Electrical Machinery Technology, 2022(6): 53−56.

  • 加载中

(6)

(2)

计量
  • 文章访问数:  135
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-06-20
刊出日期:  2023-08-25

目录