-
摘要:
月球蕴藏着大量的金属与非金属矿产资源,充分利用月球矿产资源,可减少地球发射到月球的荷载,节约深空研究、开发成本。对月壤原位资源利用中的月壤物理特性、模拟月壤材料固化成型工艺和提取冶金工艺的一般原理、基本过程、技术特点及最新研究进展情况进行了综述,并对这些方法在月球矿物原位利用方面的应用前景进行了展望。
Abstract:The moon stores a large number of metallic and non−metallic mineral resources. Making full use of lunar mineral resources can reduce the load of Earth launched to the moon and save the cost of deep space research. In this paper, the physical properties of lunar soil, the general principles, basic processes, technical characteristics and the latest research progress of the solidification molding process of simulated lunar soil materials and the extraction metallurgy process are reviewed, and the application prospects of these methods in the in−situ utilization of lunar minerals are prospected.
-
Key words:
- lunar soil /
- resource utilization /
- in-situ forming /
- metallurgical extraction
-
表 1 模拟月壤3D打印技术
Table 1. Simulated lunar soil 3D printing technology
3D 打印技术 主要试验步骤 添加剂 缺点 挤出打印 又称为轮廓工艺,先打印出轮廓,然后填充轮廓
内部,实现建造部件的填充硫 硫需要从地球上运输,挤压过程受到微
重力的限制D−shape 3D打印 利用一个(或多个)可移动的打印喷管将黏结剂喷洒
至砂质材料,黏结后,多次叠加得到需要的建筑构件无机黏结剂 无机黏结溶液的运输和储存受到限制,
液体的打印喷射过程受到微重力的限制激光3D打印 激光被用来烧结粉末,一层一层压实,制造成型 烧结层间黏结效果较差,超高真空条件
下换热机理还没有形成系统的理论“月壤油墨”打印 月壤粉末直接配制成“油墨”,然后挤压成型 有机溶液 有机溶剂需要从地球输送,油墨挤压受
到微重力的限制光固化打印 紫外线被用来选择性地曝光材料,使印刷材料
凝固成特定的形状固化树脂 光固化树脂材料需要从地球输运,
打印成型固体结构易碎,抗冲击性差太阳光聚焦3D打印 利用阳光聚焦熔融月壤逐层成型 无 阳光聚焦效果差,而且穿透力很弱。
烧结样品薄,可控性低表 2 月壤冶金提取技术总结
Table 2. Summary of Moon Soil Metallurgical Extraction Technology
提取技术 温度/℃ 可直接提取得到的物质 特性 氢气还原 800~1000 Fe 可以直接提取金属铁,但只能处理月壤中的铁矿物,不能制取氧气。以水电解制氢为基础的氢冶金技术可直接制备金属和氧气,是较具前景的原位利用技术 碳基还原技术 800~1000 Fe、Si 可以直接提取硅,但是碳基还原剂需要从地球上运输,
不能制取氧气氟化过程 低于700 O2 过程复杂,氟需要从地球上运输。如能进一步提高氟循环效率,可能发展为一种重要的氧气制备手段 熔融电解 1600~2000 Fe、Ti、Al、
Si、Ca、Mg、O2能从月壤中提取大部需要的矿物和气体,但是对电极要求较高 熔盐电解 800~1000 Fe、Ti、Al、
Si、Ca、Mg、O2可以从月壤中提取大部分金属,对原材料要求低。但是熔盐需要从地球补充。电解法工艺成熟且对原料适应性高,理论上可以还原月壤风化层中的任何金属氧化物,但该技术与实现应用仍有较大差距,需进一步提升电流效率并不断改良惰性阳极材料 真空热解 2000~10000 Fe、Ti、Al、
Si、Ca、Mg、O2对试验设备要求较低,可以获得需要的金属和氧气,但是分解率较低。对月球环境适应性高,其中激光热解法具有技术原理简单、设备易操作、对原料要求低、月球环境适应性好等优点 -
[1] 刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.
LIU J Z, LI X Y, ZHU K, et al. Utilization of lunar resources in situ and key scientific and technical issues[J] . China Science Foundation, 2022, 36(6) : 907−918.
[2] FAN L L, TONG X, LIU Y, et al. Research progress of lunar mineral resources and in−itu beneficiation technology[J] . Conservation and Utilization of Mineral Resources, 2023(4): 1-11[2023-10-26]. DOI: 10.13779/j.cnki.issn1001-0076.2023.04.001.
[3] WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review[J]. Applied Clay Science, 2022, 229: 106−123. ISSN 0169−1317,https://doi.org/10.1016/j.clay.2022.106673.
[4] LI Q L, ZHOU Q, LIU Y, et al. Two−billion−year−old volcanism on the moon from Chang’e−5 basalts[J]. Nature, 2021, 600 (7887): 54−80.
[5] LU X, CHEN J, LING, Z, et al. Regolith at Chang'e−5 landing site: mature lunar soils from Fe−rich and young mare basalts[J]. Nature Astronomy, 2020, 15(6): 187−190190
[6] HEIKEN, G H, VANIMAN D T, et al. A User’s Guide to the Moon[M]. 1991.
[7] GUO Z, LI C, LI Y, WEN Y, et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang'e−5 lunar soil: Implications for thermal effects during impacts[J]. Geophysical Research Letters, 2021, 49: 97−123.
[8] GUO Z, LI C, LI Y, WEN Y, et al. Sub−microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’e−5 lunar soil[J]. Nature Communications, 2022, 13 (1): 1−7.
[9] 郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14−19.
ZHENG Y C, OUYANG Z Y, WANG S J, et al. The physical and mechanical properties of lunar soil[J]. Mineral Rocks, 2004, 24(4) , 14−19.
[10] MENG Z, LONG X, HONG J G, et al. Identification of the shear parameters for lunar regolith based on a GA−BP neural network[J]. Journal of Terramechanics, 2020, 89: 21−29. https://doi.org/10.1016/j.jterra.2020.02.003.
[11] T. PRABU, KASINATHAN MUTHUKKUMARAN, I. VENUGOPAL, et al. Assessment of dynamic properties of a new lunar highland soil simulant (LSS−ISAC−1) developed for Chandrayaan missions[J]. Soil Dynamics and Earthquake Engineering, 2022, 155: 107−178. https://doi.org/10.1016/j.soildyn.2022.107178.
[12] THANNASI PRABU, KASINATHAN MUTHUKKUMARAN, INDARAM VENUGOPAL, et al. Assessment of shear strength and compressibility characteristics of a newly developed lunar highland soil simulant (LSS−ISAC−1) for Chandrayaan lander and rover missions[J]. Planetary and Space Science, 2021, 209(1): 105−154. https://doi.org/10.1016/j.pss.2021.105354.
[13] XUMIN SUN, RUI ZHANG, XIUJUAN LI, et al. JLU−H: A novel lunar highland regolith simulant for use in large−scale engineering experiments[J]. Planetary and Space Science, 2022, 221: 105−162. https://doi.org/10.1016/j.pss.2022.105562.
[14] MAXIM ISACHENKOV, SVYATOSLAV CHUGUNOV, ZOE LANDSMAN, et al. Characterization of novel lunar highland and mare simulants for ISRU research applications[J]. Icarus, 2022, 376: 114−173. https://doi.org/10.1016/j.icarus.2021.114873.
[15] 刘琛, 李勇, 周文, 等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 14−20.
LIU C, LI Y, ZHOU W, et al. Advances in in−situ modeling of lunar/Martian soil[J] . Materials Bulletin, 2022, 36(22) : 14 −20.
[16] 宋蕾, 徐佼, 唐红, 等. 模拟月壤成型研究现状[J]. 矿物学报, 2020, 40(1): 47−57. DOI:10.16461/j.cnki.1000−4734.2019.39.090.
SONG L, XU Y, TANG H, et al. Current status of modeling lunar soil[J] . Journal of mineralogy, 2020, 40(1) : 47 −57. DOI: 10.16461/J. CNKI. 1000−4734.2019.39.090.
[17] TOUTANJI H, GLENN−LOPER B, SCHRAYSHUEN. Aerospace Sciences Meeting and Exhibit. Reno, Nevada, B. Strength and Durability Performance of Waterless Lunar Concrete[C]//43rd AIAA 2005: 11427−11438.
[18] TOUTANJI H, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar envirorunents[J]. Constr Build Mater, 2011, 29: 444−448.
[19] HOUSSAM A. TOUTANJI, STEVE EVANS, et al. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials, 2012, 29: 444−448. https://doi.org/10.1016/j.conbuildmat.2011.10.041.
[20] RICHARD N. GRUGEL, HOUSSAM TOUTANJI. Sulfur “concrete” for lunar applications – Sublimation concerns[J]. Advances in Space Research, 2008,41(1): 103−112. https://doi.org/10.1016/j.asr.2007.08.018.
[21] MOHAMMAD HOSSEIN SHAHSAVARI, MOHAMMAD MEHDI KARBALA, SOHA IRANFAR, et al. Martian and lunar sulfur concrete mechanical and chemical properties considering regolith ingredients and sublimation[J]. Construction and Building Materials, 2022(1): 350−351. https://doi.org/10.1016/j.conbuildmat.
[22] MONTES C, BROUSSARD h, GONGRE M, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications[J]. Adv Space Res, 2015, 56(6): 1212−1221.
[23] ALEXIADIS A, ALBERINI F, MEYER M E. Geopolyners from lunar and Martian soil simulants[J]. Adv Space Res, 2017, 59(1): 490−495
[24] CAI L X, DING L Y, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process[J]. Constr BuildMater, 2019, 207: 373
[25] JULIANA MORAES NEVES, SIVAKUMAR RAMANATHAN, et al. Characterization, mechanical properties, and microstructural development of lunar regolith simulant−portland cement blended mixtures[J]. Construction and Building Materials, 2020, 258: 120−315.
[26] ZHOU S Q, LU C H, ZHU X Y, et al. Preparation and characterization of high−Strength geopolymer based on BH−1 lunar soil simulant with low alkali content[J]. Engineering, 2021, 7(11): 1631−1645.
[27] ZHOU S Q, YANG Z N, ZHANG R R, et al. Preparation and evaluation of geopolymer based on BH−2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189 (2): 90−98.
[28] ANNA M, LAUERMANNOVA, IVANA FALTYSOVA, et al. Regolith−based magnesium oxychloride composites doped by graphene: Novel high−performance building materials for lunar constructions[J]. Flat Chem, 2021, 26 (1): 100−134. https://doi.org/10.1016/j.flatc.2021.100234.
[29] JAHINDER MOMI, TAYLOR LEWIS, FEDERICO ALBERINI. et al. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon[J]. Advances in Space Research, 2021, 68 (11): 4496−4504. https://doi.org/10.1016/j.asr.2021.08.037.
[30] 周兆曦, 马芹永, 汪寒艳. 不同养护温度下模拟月壤地聚合物力学试验与分析[J]. 佳木斯大学学报(自然科学版), 2021, 39(6): 10−14.
ZHOU Z X, MA Q Y, WANG H Y. Mechanical test and analysis of polymer in simulated lunar soil under different curing temperatures[J] . Journal of Jiamusi University Science, 2021, 39(6) : 10−14.
[31] LI X C, LIE Y D, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: Effect of mixture and manufacture process[J]. Construction and Building Materials, 2019, 207: 373−386. https://doi.org/10.1016/j.conbuildmat.2019.02.146.
[32] HU Z J, SHI T, CEN M Q, et al. Research progress on lunar and Martian concrete[J]. Construction and Building Materials, 2022, 343: 117−128. https://doi.org/10.1016/j.conbuildmat.2022.128117.
[33] HOPKINSON N, HAGUE R, DICKENS P. Manufacturing: an industrial revolution for the digital age[M]. Chichester: John Wiley&Sons, Ltd. , 2005
[34] PEGNA J. Exploratory investigation of solid freeform construction[J]. Autom Constr, 1997, 5 ( 5 ) : 427−436
[35] JENNIFER N, MILLS, MARIA KATAZROVA, et al. Comparison of lunar and Martian regolith simulant−based geopolymer cements formed by alkali−activation for in−situ resource utilization[J]. Advances in Space Research, 2022, 69 (1): 761−777. https://doi.org/10.1016/j.asr.2021.10.045.
[36] X GUIHONG, Z WEIBIAO, L HUARONG, et al. Water pressure variation properties research in non−ballasted track crack interior under fatigue loading[J]. Intelligent Automation & Soft Computing, 2019, 25(4): 735–743.
[37] ZHANG R R, ZHOU S Q, LI F, et al. Preparation of geopolymer based on lunar regolith simulant at in−situ lunar temperature and its durability under lunar high and cryogenic temperature[J]. Construction and Building Materials, 2022, 318: 126−133. https://doi.org/10.1016/j.conbuildmat.2021.126033.
[38] ALTEMIR D A. Cold press sintering of simulated lunar basalt[C]//Lunar and Planetary Science Conference. 1993
[39] DOU R, TANG W Z, WANG L. et al. Sintering of lunar regolith structures fabricated via digital light processing[J]. Ceramics International, 2019, 45 (14) : 17210−17215. ISSN 0272−8842. https://doi.org/10.1016/j.ceramint.2019.05.276.
[40] ANDREA ZOCCA, MIRANDA FATERI, DOMINIK AL−SABBAGH. et al. Investigation of the sintering and melting of JSC−2A lunar regolith simulant[J]. Ceramics International, 2020, 46 (9): 14097−14104. https://doi.org/10.1016/j.ceramint.2020.02.212.
[41] ZHANG X, SHAYAN GHOLAMI, MAHDIEH KHEDMATI, et al. Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties[J]. Ceramics International, 2021, 47(4) : 5209−5220.
[42] SONG L, XU J, FAN S Q, et al. Vacuum sintered lunar regolith simulant: Pore−forming and thermal conductivity[J]. Ceramics International, 2019, 45 (3): 3627−3633
[43] HAN W B, DING L Y, CAI L X, et al. Sintering of HUST−1 Lunar regolith simulant[J]. Construction and Building Materials, 2022, 324: 126655
[44] YOUNG−JAE KIM, BYUNG HYUN RYU, HYUNWOO JIN, et al. Microstructural, mechanical, and thermal properties of microwave−sintered KLS−1 lunar regolith simulant[J]. Ceramics International, 2021, 47 (19) : 26891−26897. https://doi.org/10.1016/j.ceramint.2021.06.098.
[45] HAILONG LIAO, JUNJIE ZHU, SHIJIE CHANG, et al. Lunar regolith − AlSi10Mg composite fabricated by selective laser melting[J]. Vacuum, 2021, 187: 110−122.
[46] SHAYAN GHOLAMI, ZHANG X, YOUNG−JAE KIM, et al. Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties[J]. Materials & Design, 2022, 220: 110−120. https://doi.org/10.1016/j.matdes.2022.110878.
[47] ROBERT E. FERGUSON, EVGENY SHAFIROVICH. Aluminum–nickel combustion for joining lunar regolith ceramic tiles[J]. Combustion and Flame, 2018, 197: 22−29.
[48] LIU M, TANG W Z, DUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829−5836.
[49] JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Frank Koch, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1–12,
[50] SHANNON L. TAYLOR, ADAM E. JAKUS, KATIE D, et al. Intering of micro−trusses created by extrusion−3D−printing of lunar regolith inks[J]. Acta Astronautica, 2018, 143: 1−8.
[51] SHIMA PILEHVAR, MARLIES ARNHOF, ANDREAS ERICHSEN, et al. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers[J]. Journal of Materials Research and Technology, 2021, 11 (1): 1506−1516. https://doi.org/10.1016/j.jmrt.
[52] CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronaut, 2014, 93: 430
[53] CECCANTI F, DINI E, DE KESTELIER X, et al. 3D printing technology for a moon outpost exploiting lunar soil[J]. lnternational Astronautical Congress, 2010: 10: 3−15
[54] BALLA V K, ROBERSON L B, CONNOR G W, et al. First demonstration on direct laser fabrication of lunar regolith parts[J]. Rapid Prototyp J, 2012, 18 (6): 451.
[55] FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on−site manufacturing applications[J]. Int J Appl Ceram Technol, 2015, 12 (1): 46
[56] GERDES N, FOKKEN L G, LINKE S, et al. Selective Laser Melting for processing of regolith in support of a lunar base[J]. J Laser Appl, 2018,30(3): 032018
[57] TAYLOR S L, JAKUS A E, KOUBE K D, et al. Sintering of microtrusses created by extrusion−3D−printing of lunar regolith inks[J]. ActaAstronaut, 2018, 143: 1
[58] 周思齐, 张荣荣, 杨湛宁, 等. 3D打印模拟月壤道路材料制备与性能研究[J]. 中国公路学报, 2022, 35(8): 105−117. DOI: 10.19721/j.cnki.1001−7372.2022.08.010.
ZHOU S Q, ZHANG R R, YANG Z N, et al. Preparation and properties of 3d−printed lunar soil road materials[J]. Chinese Journal of Highways, 2022, 35(8) : 105−117.
[59] LIU M, TANG W Z, DDUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceram Int, 2019, 45(5): 5829
[60] MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D printing of lunar regolith[J]. Acta Astronaut, 2018, 152: 800−810. https://doi.org/10.1016/j.actaastro.2018.06.063.
[61] CARR B B. Recovery of water or oxygen by reduction of lunar rock[J]. AIAAJ, 1963, 1(4): 921
[62] DENK T, GONZALEZ−PARDO A, CANADAS I, et al. Design and test of a concentrated solar powered fluidized bed reactor for ilmenite reduction: 1st Ed[M] Santiago: Solar Power&Chemical Energy Systems, 2017
[63] SARGEANT H M, ABERNETHY FAJ, WRIGHT I P, et al. Hydrogen reduction of ihnenite: towards an in[J]. situ resource utilization demonstration on the surface of the Moon[J]. Planet Space Sci, 2020, 180: 104−121
[64] SARGEANT H, ABERNETHY F, et al. Experimental development and testing of the ilmenite reduction reaction for a lunar ISRU demonstration with ProSPA[C]// Proceedings of the Lunar and Planetary Science Conference. Houston, 2019: 1797−1801.
[65] SARGEANT H, S J BARBER, M. et al. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon[J]. Planetary and Space Science, 2021, 205: 105−287. https://doi.org/10.1016/j.pss.2021.105287.
[66] LU Y H, REDDY R G. Extraction of metals and oxygen from lunar soil[J]. High Temp Mater Process, 2008, 27(4): 223
[67] LOUTZENHISER P G, TUERK O, STEINFELD A. Production of Si by vacumn carbothennal reduction of SiO2 using concentrated solar energy[J]. JOM, 2010, 62(9): 49−54.
[68] MICHAIL SAMOUHOS, PETROS TSAKIRIDIS, et al. In−situ resource utilization: ferrosilicon and SiC production from BP−1 lunar regolith simulant via carbothermal reduction, Planetary and Space Science[J]. 2022, 212: 105−414. https://doi.org/10.1016/j.pss.2021.105414.
[69] EVREN M. TURAN, SAMUEL A, STEIN, RIDDHI MAHARAJ, et al. A flow sheet for the conversion of lunar regolith using fluorine gas[J]. Advances in Space Research, 2020, 65 (7) : 1852−1862. https://doi.org/10.1016/j.asr.2020.01.014.
[70] P REISS, F KERSCHER, L GRILL, et al. Thermogravimetric analysis of chemical reduction processes to produce oxygen from lunar regolith[J]. Planetary and Space Science, 2020, 181: 104−795.
[71] FRAY, D J. Anodic and cathodic reactions in molten calcium chloride[J]. Can Metall Q, 2002, 41 (4): 433
[72] ONO K. Fundamental aspects of calciothennic process to produce titanium[J]. Mater Tran, 2004, 45 (5) : 1660
[73] KILBY K T, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55(23): 7126
[74] KAMAL TRIPURANENI KILBY, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55 (23): 7126
[75] XIE K Y, SHI Z N, XU J L, et al. Almninothennic reduction−molten salt electrolysis using inert anode for oxygen and Al−base alloy extraction from lunar soil simulant[J]. JOM, 2017, 69(10): 1963.
[76] BETHANY A, LOMAX, MELCHIORRE CONTI, et al. Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith[J]. Planet space, 2020, 180: 104748
[77] ALEXANDRE MEURISSE, BETHANY LOMAX, ÁRON SELMECI, et al. Lower temperature electrochemical reduction of lunar regolith simulants in molten salts[J]. Planetary and Space Science, 2022, 211: 32−39. https://doi.org/10.1016/j.pss.2021.105408.
[78] PENG Y H, TANG H, MO B, et al. Influencing factors for the preparation of Fe0 in lunar soil simulant using high−temperature carbothermic reduction[J]. Advances in Space Research, 2022: 273−1177. https://doi.org/10.1016/j.asr.2022.07.074.
[79] STEURER W. Vapor phase pyrolysis[J/OL]. NASA Technical Reports Server, 2021, 3: 15−25
[80] COLAO F, LAZIC V, FANTONI R, et al. A comparison of single and double pulse laser−induced breakdown spectroscopy of aluminum samples[J]. Spectrochimica Acta B: AtSpectrosc, 2002, 57(7): 1167
[81] NAKANO M, MATSUI M, TANAKA K, et al. Nmnerical simulation on almnina reduction using laser plasma[J]. Appl Plasma Sci, 2012, 20(1): 43
[82] SAUERBORN M. PYROLYSE VON. Metalloxide and Silikaten unter Vakuum mit konzentrierter Solarstrahlung[M]. Bonn: Rheinische Friedrich−Wilhehns−Universitat Bonn, 2005
[83] MATCHETT J. Producttion of lunar oxygen through vacuum pyrolysis[M]. Washington D C: The George Washington University, 2006.
[84] YABE T, MOHAMED M S, UCHIDA S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J]. J Appl phys, 2007, 101(12): 123106
[85] BURTON R L, SCHUBERT P J, RYSANEK F, et al. Oxygen Extraction apparatus and process[J]. United States Patent, US 2009: 26−92.
[86] LIAO S H, YABE T, MOHAMED M S, et al. Laser−induced Mg production from magnesimn oxide using Si−based agents and Si−based agents recycling[J]. J Appl Phys, 2011, 109 (1): 013103
[87] WANG C Y, GONG H Q, WEI W, et. al, Vat photopolymerization of low−titanium lunar regolith simulant for optimal mechanical performance[J]. Ceramics International, 2022, 48 (20): 29752−29762.
[88] GARRETT L. SCHIEBER, BRANT M. JONES, THOMAS M. ORLANDO, et al. Indirect solar receiver development for the thermal extraction of H2O from lunar regolith: Heat and mass transfer modeling[J]. Acta Astronautica, 2022, 190: 365−376. https://doi.org/10.1016/j.actaastro.2021.09.020.
[89] JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1−12. https://doi.org/10.1016/j.actaastro.2021.01.045.
[90] MATTHEW G. SHAW, GEOFFREY A. BROOKS, M. AKBAR RHAMDHANI, et al. Thermodynamic modelling of ultra−high vacuum thermal decomposition for lunar resource processing[J]. Planetary and Space Science, 2021, 204 (1): 105−272. https://doi.org/10.1016/j.pss.2021.105272.
[91] 邢丹, 葸雄宇, 郭泽世, 等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学(技术科学), 2020, 50(12): 1625−1633.
XING D, XI X Y, GUO Z S, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant (in Chinese)[J]. Sci Sin Tech, 2020, 50: 1625−1633. doi: 10.1360/SST−2020−0141
[92] BING HAO, THERESA FORSTER, EDITH MADER. Modification of basalt fibre using pyrolytic carbon coating for sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 123−128. https://doi.org/10.1016/j.compositesa.2017.06.010.
[93] 秦利锋, 林启美, 薛彩荣, 等. 月球土壤的生物改良试验: 固氮蓝藻对模拟月壤肥力的影响[J]. 航天医学与医学工程, 2020, 33(6): 497−503.
QIN L F, LIN Q M, XUE C R, et al. Biological improvement of lunar soil: effect of nitrogen−fixing cyanobacteria on simulated lunar soil fertility[J]. Aerospace Medicine and medical engineering, 2020, 33(6): 497−503.
[94] 秦利锋, 艾为党, 唐永康, 等. 模拟月壤对蓝细菌生长特性的影响[J]. 载人航天, 2014, 20(6): 555−561. .
QIN L F, AI W D, TANG Y K, et al. Effects of simulated lunar soil on growth characteristics of cyanobacteria[J]. Manned space flight, 2014, 20(6) : 555−561.
[95] YAO Z K, FENG J J, LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length[J]. Acta Astronautica, 2022, 193: 1−8.