月壤原位资源利用技术研究进展

徐桂弘, 李阳, 李瑞, 张曼, 唐则涛, 唐政. 月壤原位资源利用技术研究进展[J]. 矿产保护与利用, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002
引用本文: 徐桂弘, 李阳, 李瑞, 张曼, 唐则涛, 唐政. 月壤原位资源利用技术研究进展[J]. 矿产保护与利用, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002
XU Guihong, LI Yang, LI Rui, ZHANG Man, TANG Zetao, TANG Zheng. Research Progress on In−situ Resource Utilization of Lunar Soil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002
Citation: XU Guihong, LI Yang, LI Rui, ZHANG Man, TANG Zetao, TANG Zheng. Research Progress on In−situ Resource Utilization of Lunar Soil[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 12-23. doi: 10.13779/j.cnki.issn1001-0076.2023.04.002

月壤原位资源利用技术研究进展

  • 基金项目: 深空探测实验室前沿科研计划(2022-QYKYJH-HXYF-023);贵州省科技计划项目(黔科合基础−ZK[2022] 重点027);贵州省科学技术研究项目(黔科合基础−ZK[2022] 一般170)
详细信息
    作者简介: 徐桂弘 (1979—),女,博士,教授,主要从事岩石力学、高速重载轨道及轨道动力学方向科研、教学工作。E-mail:smileanne@163.com
    通讯作者: 李阳(1984—),男,博士,研究员,主要从事地球化学、天体化学研究工作。
  • 中图分类号: TD989

Research Progress on In−situ Resource Utilization of Lunar Soil

More Information
    Corresponding author: LI Yang
  • 月球蕴藏着大量的金属与非金属矿产资源,充分利用月球矿产资源,可减少地球发射到月球的荷载,节约深空研究、开发成本。对月壤原位资源利用中的月壤物理特性、模拟月壤材料固化成型工艺和提取冶金工艺的一般原理、基本过程、技术特点及最新研究进展情况进行了综述,并对这些方法在月球矿物原位利用方面的应用前景进行了展望。

  • 加载中
  • 图 1  氢气还原过程示意图

    Figure 1. 

    图 2  部分熔融还原示意图

    Figure 2. 

    图 3  熔盐电解法−FFC法

    Figure 3. 

    图 4  熔盐电解法− OS法

    Figure 4. 

    图 5  真空热解法分解月壤

    Figure 5. 

    表 1  模拟月壤3D打印技术

    Table 1.  Simulated lunar soil 3D printing technology

    3D 打印技术主要试验步骤添加剂缺点
    挤出打印又称为轮廓工艺,先打印出轮廓,然后填充轮廓
    内部,实现建造部件的填充
    硫需要从地球上运输,挤压过程受到微
    重力的限制
    D−shape 3D打印利用一个(或多个)可移动的打印喷管将黏结剂喷洒
    至砂质材料,黏结后,多次叠加得到需要的建筑构件
    无机黏结剂无机黏结溶液的运输和储存受到限制,
    液体的打印喷射过程受到微重力的限制
    激光3D打印激光被用来烧结粉末,一层一层压实,制造成型烧结层间黏结效果较差,超高真空条件
    下换热机理还没有形成系统的理论
    “月壤油墨”打印月壤粉末直接配制成“油墨”,然后挤压成型有机溶液有机溶剂需要从地球输送,油墨挤压受
    到微重力的限制
    光固化打印紫外线被用来选择性地曝光材料,使印刷材料
    凝固成特定的形状
    固化树脂光固化树脂材料需要从地球输运,
    打印成型固体结构易碎,抗冲击性差
    太阳光聚焦3D打印利用阳光聚焦熔融月壤逐层成型阳光聚焦效果差,而且穿透力很弱。
    烧结样品薄,可控性低
    下载: 导出CSV

    表 2  月壤冶金提取技术总结

    Table 2.  Summary of Moon Soil Metallurgical Extraction Technology

    提取技术温度/℃可直接提取得到的物质特性
    氢气还原800~1000Fe可以直接提取金属铁,但只能处理月壤中的铁矿物,不能制取氧气。以水电解制氢为基础的氢冶金技术可直接制备金属和氧气,是较具前景的原位利用技术
    碳基还原技术800~1000Fe、Si可以直接提取硅,但是碳基还原剂需要从地球上运输,
    不能制取氧气
    氟化过程低于700O2过程复杂,氟需要从地球上运输。如能进一步提高氟循环效率,可能发展为一种重要的氧气制备手段
    熔融电解1600~2000Fe、Ti、Al、
    Si、Ca、Mg、O2
    能从月壤中提取大部需要的矿物和气体,但是对电极要求较高
    熔盐电解800~1000Fe、Ti、Al、
    Si、Ca、Mg、O2
    可以从月壤中提取大部分金属,对原材料要求低。但是熔盐需要从地球补充。电解法工艺成熟且对原料适应性高,理论上可以还原月壤风化层中的任何金属氧化物,但该技术与实现应用仍有较大差距,需进一步提升电流效率并不断改良惰性阳极材料
    真空热解2000~10000Fe、Ti、Al、
    Si、Ca、Mg、O2
    对试验设备要求较低,可以获得需要的金属和氧气,但是分解率较低。对月球环境适应性高,其中激光热解法具有技术原理简单、设备易操作、对原料要求低、月球环境适应性好等优点
    下载: 导出CSV
  • [1]

    刘建忠, 李雄耀, 朱凯, 等. 月球原位资源利用及关键科学与技术问题[J]. 中国科学基金, 2022, 36(6): 907−918.

    LIU J Z, LI X Y, ZHU K, et al. Utilization of lunar resources in situ and key scientific and technical issues[J] . China Science Foundation, 2022, 36(6) : 907−918.

    [2]

    FAN L L, TONG X, LIU Y, et al. Research progress of lunar mineral resources and in−itu beneficiation technology[J] . Conservation and Utilization of Mineral Resources, 2023(4): 1-11[2023-10-26]. DOI: 10.13779/j.cnki.issn1001-0076.2023.04.001.

    [3]

    WANG Y S, HAO L, LI Y, et al. In−situ utilization of regolith resource and future exploration of additive manufacturing for lunar/martian habitats: A review[J]. Applied Clay Science, 2022, 229: 106−123. ISSN 0169−1317,https://doi.org/10.1016/j.clay.2022.106673.

    [4]

    LI Q L, ZHOU Q, LIU Y, et al. Two−billion−year−old volcanism on the moon from Chang’e−5 basalts[J]. Nature, 2021, 600 (7887): 54−80.

    [5]

    LU X, CHEN J, LING, Z, et al. Regolith at Chang'e−5 landing site: mature lunar soils from Fe−rich and young mare basalts[J]. Nature Astronomy, 2020, 15(6): 187−190190

    [6]

    HEIKEN, G H, VANIMAN D T, et al. A User’s Guide to the Moon[M]. 1991.

    [7]

    GUO Z, LI C, LI Y, WEN Y, et al. Nanophase iron particles derived from fayalitic olivine decomposition in Chang'e−5 lunar soil: Implications for thermal effects during impacts[J]. Geophysical Research Letters, 2021, 49: 97−123.

    [8]

    GUO Z, LI C, LI Y, WEN Y, et al. Sub−microscopic magnetite and metallic iron particles formed by eutectic reaction in Chang’e−5 lunar soil[J]. Nature Communications, 2022, 13 (1): 1−7.

    [9]

    郑永春, 欧阳自远, 王世杰, 等. 月壤的物理和机械性质[J]. 矿物岩石, 2004, 24(4): 14−19.

    ZHENG Y C, OUYANG Z Y, WANG S J, et al. The physical and mechanical properties of lunar soil[J]. Mineral Rocks, 2004, 24(4) , 14−19.

    [10]

    MENG Z, LONG X, HONG J G, et al. Identification of the shear parameters for lunar regolith based on a GA−BP neural network[J]. Journal of Terramechanics, 2020, 89: 21−29. https://doi.org/10.1016/j.jterra.2020.02.003.

    [11]

    T. PRABU, KASINATHAN MUTHUKKUMARAN, I. VENUGOPAL, et al. Assessment of dynamic properties of a new lunar highland soil simulant (LSS−ISAC−1) developed for Chandrayaan missions[J]. Soil Dynamics and Earthquake Engineering, 2022, 155: 107−178. https://doi.org/10.1016/j.soildyn.2022.107178.

    [12]

    THANNASI PRABU, KASINATHAN MUTHUKKUMARAN, INDARAM VENUGOPAL, et al. Assessment of shear strength and compressibility characteristics of a newly developed lunar highland soil simulant (LSS−ISAC−1) for Chandrayaan lander and rover missions[J]. Planetary and Space Science, 2021, 209(1): 105−154. https://doi.org/10.1016/j.pss.2021.105354.

    [13]

    XUMIN SUN, RUI ZHANG, XIUJUAN LI, et al. JLU−H: A novel lunar highland regolith simulant for use in large−scale engineering experiments[J]. Planetary and Space Science, 2022, 221: 105−162. https://doi.org/10.1016/j.pss.2022.105562.

    [14]

    MAXIM ISACHENKOV, SVYATOSLAV CHUGUNOV, ZOE LANDSMAN, et al. Characterization of novel lunar highland and mare simulants for ISRU research applications[J]. Icarus, 2022, 376: 114−173. https://doi.org/10.1016/j.icarus.2021.114873.

    [15]

    刘琛, 李勇, 周文, 等. 模拟月/火星壤的原位成型技术研究进展[J]. 材料导报, 2022, 36(22): 14−20.

    LIU C, LI Y, ZHOU W, et al. Advances in in−situ modeling of lunar/Martian soil[J] . Materials Bulletin, 2022, 36(22) : 14 −20.

    [16]

    宋蕾, 徐佼, 唐红, 等. 模拟月壤成型研究现状[J]. 矿物学报, 2020, 40(1): 47−57. DOI:10.16461/j.cnki.1000−4734.2019.39.090.

    SONG L, XU Y, TANG H, et al. Current status of modeling lunar soil[J] . Journal of mineralogy, 2020, 40(1) : 47 −57. DOI: 10.16461/J. CNKI. 1000−4734.2019.39.090.

    [17]

    TOUTANJI H, GLENN−LOPER B, SCHRAYSHUEN. Aerospace Sciences Meeting and Exhibit. Reno, Nevada, B. Strength and Durability Performance of Waterless Lunar Concrete[C]//43rd AIAA 2005: 11427−11438.

    [18]

    TOUTANJI H, EVANS S, GRUGEL R N. Performance of lunar sulfur concrete in lunar envirorunents[J]. Constr Build Mater, 2011, 29: 444−448.

    [19]

    HOUSSAM A. TOUTANJI, STEVE EVANS, et al. Performance of lunar sulfur concrete in lunar environments[J]. Construction and Building Materials, 2012, 29: 444−448. https://doi.org/10.1016/j.conbuildmat.2011.10.041.

    [20]

    RICHARD N. GRUGEL, HOUSSAM TOUTANJI. Sulfur “concrete” for lunar applications – Sublimation concerns[J]. Advances in Space Research, 2008,41(1): 103−112. https://doi.org/10.1016/j.asr.2007.08.018.

    [21]

    MOHAMMAD HOSSEIN SHAHSAVARI, MOHAMMAD MEHDI KARBALA, SOHA IRANFAR, et al. Martian and lunar sulfur concrete mechanical and chemical properties considering regolith ingredients and sublimation[J]. Construction and Building Materials, 2022(1): 350−351. https://doi.org/10.1016/j.conbuildmat.

    [22]

    MONTES C, BROUSSARD h, GONGRE M, et al. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications[J]. Adv Space Res, 2015, 56(6): 1212−1221.

    [23]

    ALEXIADIS A, ALBERINI F, MEYER M E. Geopolyners from lunar and Martian soil simulants[J]. Adv Space Res, 2017, 59(1): 490−495

    [24]

    CAI L X, DING L Y, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: effect of mixture and manufacture process[J]. Constr BuildMater, 2019, 207: 373

    [25]

    JULIANA MORAES NEVES, SIVAKUMAR RAMANATHAN, et al. Characterization, mechanical properties, and microstructural development of lunar regolith simulant−portland cement blended mixtures[J]. Construction and Building Materials, 2020, 258: 120−315.

    [26]

    ZHOU S Q, LU C H, ZHU X Y, et al. Preparation and characterization of high−Strength geopolymer based on BH−1 lunar soil simulant with low alkali content[J]. Engineering, 2021, 7(11): 1631−1645.

    [27]

    ZHOU S Q, YANG Z N, ZHANG R R, et al. Preparation and evaluation of geopolymer based on BH−2 lunar regolith simulant under lunar surface temperature and vacuum condition[J]. Acta Astronautica, 2021, 189 (2): 90−98.

    [28]

    ANNA M, LAUERMANNOVA, IVANA FALTYSOVA, et al. Regolith−based magnesium oxychloride composites doped by graphene: Novel high−performance building materials for lunar constructions[J]. Flat Chem, 2021, 26 (1): 100−134. https://doi.org/10.1016/j.flatc.2021.100234.

    [29]

    JAHINDER MOMI, TAYLOR LEWIS, FEDERICO ALBERINI. et al. Study of the rheology of lunar regolith simulant and water slurries for geopolymer applications on the Moon[J]. Advances in Space Research, 2021, 68 (11): 4496−4504. https://doi.org/10.1016/j.asr.2021.08.037.

    [30]

    周兆曦, 马芹永, 汪寒艳. 不同养护温度下模拟月壤地聚合物力学试验与分析[J]. 佳木斯大学学报(自然科学版), 2021, 39(6): 10−14.

    ZHOU Z X, MA Q Y, WANG H Y. Mechanical test and analysis of polymer in simulated lunar soil under different curing temperatures[J] . Journal of Jiamusi University Science, 2021, 39(6) : 10−14.

    [31]

    LI X C, LIE Y D, LUO H B, et al. Preparation of autoclave concrete from basaltic lunar regolith simulant: Effect of mixture and manufacture process[J]. Construction and Building Materials, 2019, 207: 373−386. https://doi.org/10.1016/j.conbuildmat.2019.02.146.

    [32]

    HU Z J, SHI T, CEN M Q, et al. Research progress on lunar and Martian concrete[J]. Construction and Building Materials, 2022, 343: 117−128. https://doi.org/10.1016/j.conbuildmat.2022.128117.

    [33]

    HOPKINSON N, HAGUE R, DICKENS P. Manufacturing: an industrial revolution for the digital age[M]. Chichester: John Wiley&Sons, Ltd. , 2005

    [34]

    PEGNA J. Exploratory investigation of solid freeform construction[J]. Autom Constr, 1997, 5 ( 5 ) : 427−436

    [35]

    JENNIFER N, MILLS, MARIA KATAZROVA, et al. Comparison of lunar and Martian regolith simulant−based geopolymer cements formed by alkali−activation for in−situ resource utilization[J]. Advances in Space Research, 2022, 69 (1): 761−777. https://doi.org/10.1016/j.asr.2021.10.045.

    [36]

    X GUIHONG, Z WEIBIAO, L HUARONG, et al. Water pressure variation properties research in non−ballasted track crack interior under fatigue loading[J]. Intelligent Automation & Soft Computing, 2019, 25(4): 735–743.

    [37]

    ZHANG R R, ZHOU S Q, LI F, et al. Preparation of geopolymer based on lunar regolith simulant at in−situ lunar temperature and its durability under lunar high and cryogenic temperature[J]. Construction and Building Materials, 2022, 318: 126−133. https://doi.org/10.1016/j.conbuildmat.2021.126033.

    [38]

    ALTEMIR D A. Cold press sintering of simulated lunar basalt[C]//Lunar and Planetary Science Conference. 1993

    [39]

    DOU R, TANG W Z, WANG L. et al. Sintering of lunar regolith structures fabricated via digital light processing[J]. Ceramics International, 2019, 45 (14) : 17210−17215. ISSN 0272−8842. https://doi.org/10.1016/j.ceramint.2019.05.276.

    [40]

    ANDREA ZOCCA, MIRANDA FATERI, DOMINIK AL−SABBAGH. et al. Investigation of the sintering and melting of JSC−2A lunar regolith simulant[J]. Ceramics International, 2020, 46 (9): 14097−14104. https://doi.org/10.1016/j.ceramint.2020.02.212.

    [41]

    ZHANG X, SHAYAN GHOLAMI, MAHDIEH KHEDMATI, et al. Spark plasma sintering of a lunar regolith simulant: effects of parameters on microstructure evolution, phase transformation, and mechanical properties[J]. Ceramics International, 2021, 47(4) : 5209−5220.

    [42]

    SONG L, XU J, FAN S Q, et al. Vacuum sintered lunar regolith simulant: Pore−forming and thermal conductivity[J]. Ceramics International, 2019, 45 (3): 3627−3633

    [43]

    HAN W B, DING L Y, CAI L X, et al. Sintering of HUST−1 Lunar regolith simulant[J]. Construction and Building Materials, 2022, 324: 126655

    [44]

    YOUNG−JAE KIM, BYUNG HYUN RYU, HYUNWOO JIN, et al. Microstructural, mechanical, and thermal properties of microwave−sintered KLS−1 lunar regolith simulant[J]. Ceramics International, 2021, 47 (19) : 26891−26897. https://doi.org/10.1016/j.ceramint.2021.06.098.

    [45]

    HAILONG LIAO, JUNJIE ZHU, SHIJIE CHANG, et al. Lunar regolith − AlSi10Mg composite fabricated by selective laser melting[J]. Vacuum, 2021, 187: 110−122.

    [46]

    SHAYAN GHOLAMI, ZHANG X, YOUNG−JAE KIM, et al. Hybrid microwave sintering of a lunar soil simulant: Effects of processing parameters on microstructure characteristics and mechanical properties[J]. Materials & Design, 2022, 220: 110−120. https://doi.org/10.1016/j.matdes.2022.110878.

    [47]

    ROBERT E. FERGUSON, EVGENY SHAFIROVICH. Aluminum–nickel combustion for joining lunar regolith ceramic tiles[J]. Combustion and Flame, 2018, 197: 22−29.

    [48]

    LIU M, TANG W Z, DUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceramics International, 2019, 45(5): 5829−5836.

    [49]

    JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Frank Koch, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1–12,

    [50]

    SHANNON L. TAYLOR, ADAM E. JAKUS, KATIE D, et al. Intering of micro−trusses created by extrusion−3D−printing of lunar regolith inks[J]. Acta Astronautica, 2018, 143: 1−8.

    [51]

    SHIMA PILEHVAR, MARLIES ARNHOF, ANDREAS ERICHSEN, et al. Investigation of severe lunar environmental conditions on the physical and mechanical properties of lunar regolith geopolymers[J]. Journal of Materials Research and Technology, 2021, 11 (1): 1506−1516. https://doi.org/10.1016/j.jmrt.

    [52]

    CESARETTI G, DINI E, DE KESTELIER X, et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronaut, 2014, 93: 430

    [53]

    CECCANTI F, DINI E, DE KESTELIER X, et al. 3D printing technology for a moon outpost exploiting lunar soil[J]. lnternational Astronautical Congress, 2010: 10: 3−15

    [54]

    BALLA V K, ROBERSON L B, CONNOR G W, et al. First demonstration on direct laser fabrication of lunar regolith parts[J]. Rapid Prototyp J, 2012, 18 (6): 451.

    [55]

    FATERI M, GEBHARDT A. Process parameters development of selective laser melting of lunar regolith for on−site manufacturing applications[J]. Int J Appl Ceram Technol, 2015, 12 (1): 46

    [56]

    GERDES N, FOKKEN L G, LINKE S, et al. Selective Laser Melting for processing of regolith in support of a lunar base[J]. J Laser Appl, 2018,30(3): 032018

    [57]

    TAYLOR S L, JAKUS A E, KOUBE K D, et al. Sintering of microtrusses created by extrusion−3D−printing of lunar regolith inks[J]. ActaAstronaut, 2018, 143: 1

    [58]

    周思齐, 张荣荣, 杨湛宁, 等. 3D打印模拟月壤道路材料制备与性能研究[J]. 中国公路学报, 2022, 35(8): 105−117. DOI: 10.19721/j.cnki.1001−7372.2022.08.010.

    ZHOU S Q, ZHANG R R, YANG Z N, et al. Preparation and properties of 3d−printed lunar soil road materials[J]. Chinese Journal of Highways, 2022, 35(8) : 105−117.

    [59]

    LIU M, TANG W Z, DDUAN W Y, et al. Digital light processing of lunar regolith structures with high mechanical properties[J]. Ceram Int, 2019, 45(5): 5829

    [60]

    MEURISSE A, MAKAYA A, WILLSCH C, et al. Solar 3D printing of lunar regolith[J]. Acta Astronaut, 2018, 152: 800−810. https://doi.org/10.1016/j.actaastro.2018.06.063.

    [61]

    CARR B B. Recovery of water or oxygen by reduction of lunar rock[J]. AIAAJ, 1963, 1(4): 921

    [62]

    DENK T, GONZALEZ−PARDO A, CANADAS I, et al. Design and test of a concentrated solar powered fluidized bed reactor for ilmenite reduction: 1st Ed[M] Santiago: Solar Power&Chemical Energy Systems, 2017

    [63]

    SARGEANT H M, ABERNETHY FAJ, WRIGHT I P, et al. Hydrogen reduction of ihnenite: towards an in[J]. situ resource utilization demonstration on the surface of the Moon[J]. Planet Space Sci, 2020, 180: 104−121

    [64]

    SARGEANT H, ABERNETHY F, et al. Experimental development and testing of the ilmenite reduction reaction for a lunar ISRU demonstration with ProSPA[C]// Proceedings of the Lunar and Planetary Science Conference. Houston, 2019: 1797−1801.

    [65]

    SARGEANT H, S J BARBER, M. et al. Hydrogen reduction of lunar samples in a static system for a water production demonstration on the Moon[J]. Planetary and Space Science, 2021, 205: 105−287. https://doi.org/10.1016/j.pss.2021.105287.

    [66]

    LU Y H, REDDY R G. Extraction of metals and oxygen from lunar soil[J]. High Temp Mater Process, 2008, 27(4): 223

    [67]

    LOUTZENHISER P G, TUERK O, STEINFELD A. Production of Si by vacumn carbothennal reduction of SiO2 using concentrated solar energy[J]. JOM, 2010, 62(9): 49−54.

    [68]

    MICHAIL SAMOUHOS, PETROS TSAKIRIDIS, et al. In−situ resource utilization: ferrosilicon and SiC production from BP−1 lunar regolith simulant via carbothermal reduction, Planetary and Space Science[J]. 2022, 212: 105−414. https://doi.org/10.1016/j.pss.2021.105414.

    [69]

    EVREN M. TURAN, SAMUEL A, STEIN, RIDDHI MAHARAJ, et al. A flow sheet for the conversion of lunar regolith using fluorine gas[J]. Advances in Space Research, 2020, 65 (7) : 1852−1862. https://doi.org/10.1016/j.asr.2020.01.014.

    [70]

    P REISS, F KERSCHER, L GRILL, et al. Thermogravimetric analysis of chemical reduction processes to produce oxygen from lunar regolith[J]. Planetary and Space Science, 2020, 181: 104−795.

    [71]

    FRAY, D J. Anodic and cathodic reactions in molten calcium chloride[J]. Can Metall Q, 2002, 41 (4): 433

    [72]

    ONO K. Fundamental aspects of calciothennic process to produce titanium[J]. Mater Tran, 2004, 45 (5) : 1660

    [73]

    KILBY K T, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55(23): 7126

    [74]

    KAMAL TRIPURANENI KILBY, JIAO S Q, FRAY D J. Current efficiency studies for graphite and SnO2−based anodes for the electro−deoxidation of metal oxides[J]. Electrochimica Acta, 2010, 55 (23): 7126

    [75]

    XIE K Y, SHI Z N, XU J L, et al. Almninothennic reduction−molten salt electrolysis using inert anode for oxygen and Al−base alloy extraction from lunar soil simulant[J]. JOM, 2017, 69(10): 1963.

    [76]

    BETHANY A, LOMAX, MELCHIORRE CONTI, et al. Proving the viability of an electrochemical process for the simultaneous extraction of oxygen and production of metal alloys from lunar regolith[J]. Planet space, 2020, 180: 104748

    [77]

    ALEXANDRE MEURISSE, BETHANY LOMAX, ÁRON SELMECI, et al. Lower temperature electrochemical reduction of lunar regolith simulants in molten salts[J]. Planetary and Space Science, 2022, 211: 32−39. https://doi.org/10.1016/j.pss.2021.105408.

    [78]

    PENG Y H, TANG H, MO B, et al. Influencing factors for the preparation of Fe0 in lunar soil simulant using high−temperature carbothermic reduction[J]. Advances in Space Research, 2022: 273−1177. https://doi.org/10.1016/j.asr.2022.07.074.

    [79]

    STEURER W. Vapor phase pyrolysis[J/OL]. NASA Technical Reports Server, 2021, 3: 15−25

    [80]

    COLAO F, LAZIC V, FANTONI R, et al. A comparison of single and double pulse laser−induced breakdown spectroscopy of aluminum samples[J]. Spectrochimica Acta B: AtSpectrosc, 2002, 57(7): 1167

    [81]

    NAKANO M, MATSUI M, TANAKA K, et al. Nmnerical simulation on almnina reduction using laser plasma[J]. Appl Plasma Sci, 2012, 20(1): 43

    [82]

    SAUERBORN M. PYROLYSE VON. Metalloxide and Silikaten unter Vakuum mit konzentrierter Solarstrahlung[M]. Bonn: Rheinische Friedrich−Wilhehns−Universitat Bonn, 2005

    [83]

    MATCHETT J. Producttion of lunar oxygen through vacuum pyrolysis[M]. Washington D C: The George Washington University, 2006.

    [84]

    YABE T, MOHAMED M S, UCHIDA S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J]. J Appl phys, 2007, 101(12): 123106

    [85]

    BURTON R L, SCHUBERT P J, RYSANEK F, et al. Oxygen Extraction apparatus and process[J]. United States Patent, US 2009: 26−92.

    [86]

    LIAO S H, YABE T, MOHAMED M S, et al. Laser−induced Mg production from magnesimn oxide using Si−based agents and Si−based agents recycling[J]. J Appl Phys, 2011, 109 (1): 013103

    [87]

    WANG C Y, GONG H Q, WEI W, et. al, Vat photopolymerization of low−titanium lunar regolith simulant for optimal mechanical performance[J]. Ceramics International, 2022, 48 (20): 29752−29762.

    [88]

    GARRETT L. SCHIEBER, BRANT M. JONES, THOMAS M. ORLANDO, et al. Indirect solar receiver development for the thermal extraction of H2O from lunar regolith: Heat and mass transfer modeling[J]. Acta Astronautica, 2022, 190: 365−376. https://doi.org/10.1016/j.actaastro.2021.09.020.

    [89]

    JULIAN BAASCH, LISA WINDISCH, FRANK KOCH, et al. Regolith as substitute mold material for aluminum casting on the Moon[J]. Acta Astronautica, 2021, 182: 1−12. https://doi.org/10.1016/j.actaastro.2021.01.045.

    [90]

    MATTHEW G. SHAW, GEOFFREY A. BROOKS, M. AKBAR RHAMDHANI, et al. Thermodynamic modelling of ultra−high vacuum thermal decomposition for lunar resource processing[J]. Planetary and Space Science, 2021, 204 (1): 105−272. https://doi.org/10.1016/j.pss.2021.105272.

    [91]

    邢丹, 葸雄宇, 郭泽世, 等. 模拟月壤制备连续纤维的可行性研究[J]. 中国科学(技术科学), 2020, 50(12): 1625−1633.

    XING D, XI X Y, GUO Z S, et al. Study on the feasibility of preparing a continuous fibre using lunar soil simulant (in Chinese)[J]. Sci Sin Tech, 2020, 50: 1625−1633. doi: 10.1360/SST−2020−0141

    [92]

    BING HAO, THERESA FORSTER, EDITH MADER. Modification of basalt fibre using pyrolytic carbon coating for sensing applications[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 123−128. https://doi.org/10.1016/j.compositesa.2017.06.010.

    [93]

    秦利锋, 林启美, 薛彩荣, 等. 月球土壤的生物改良试验: 固氮蓝藻对模拟月壤肥力的影响[J]. 航天医学与医学工程, 2020, 33(6): 497−503.

    QIN L F, LIN Q M, XUE C R, et al. Biological improvement of lunar soil: effect of nitrogen−fixing cyanobacteria on simulated lunar soil fertility[J]. Aerospace Medicine and medical engineering, 2020, 33(6): 497−503.

    [94]

    秦利锋, 艾为党, 唐永康, 等. 模拟月壤对蓝细菌生长特性的影响[J]. 载人航天, 2014, 20(6): 555−561. .

    QIN L F, AI W D, TANG Y K, et al. Effects of simulated lunar soil on growth characteristics of cyanobacteria[J]. Manned space flight, 2014, 20(6) : 555−561.

    [95]

    YAO Z K, FENG J J, LIU H. Bioweathering improvement of lunar soil simulant improves the cultivated wheat's seedling length[J]. Acta Astronautica, 2022, 193: 1−8.

  • 加载中

(5)

(2)

计量
  • 文章访问数:  221
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2023-06-14
刊出日期:  2023-08-25

目录