ST−柴油微乳液捕收剂强化煤泥浮选的机理研究

庹必阳, 杜瑞康, 顾点发, 王建丽, 聂光华, 唐云. ST−柴油微乳液捕收剂强化煤泥浮选的机理研究[J]. 矿产保护与利用, 2023, 43(4): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2023.04.003
引用本文: 庹必阳, 杜瑞康, 顾点发, 王建丽, 聂光华, 唐云. ST−柴油微乳液捕收剂强化煤泥浮选的机理研究[J]. 矿产保护与利用, 2023, 43(4): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2023.04.003
TUO Biyang, DU Ruikang, GU Dianfa, WANG Jianli, NIE Guanghua, TANG Yun. Enhanced Flotation of Coal Slime with ST-diesel Microemulsion[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2023.04.003
Citation: TUO Biyang, DU Ruikang, GU Dianfa, WANG Jianli, NIE Guanghua, TANG Yun. Enhanced Flotation of Coal Slime with ST-diesel Microemulsion[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 24-32. doi: 10.13779/j.cnki.issn1001-0076.2023.04.003

ST−柴油微乳液捕收剂强化煤泥浮选的机理研究

  • 基金项目: 贵州省科技计划项目([2021]一般482)
详细信息
    作者简介: 庹必阳(1979—),男,博士,教授,E-mail:bytuo@gzu.edu.cn
  • 中图分类号: TD923

Enhanced Flotation of Coal Slime with ST-diesel Microemulsion

  • 柴油作为煤泥浮选的捕收剂,分散及捕收效果差、用量大。为提高柴油的分散及捕收性能,采用Span80和Tween80两种表面活性剂对煤泥浮选柴油捕收剂进行乳化,配制出液滴粒径小于100 nm的新型捕收剂ST-柴油微乳液。通过单元浮选试验研究了煤泥浮选指标的提升效果;通过接触角测试、Zeta电位分析、红外光谱分析、EDLVO理论计算等手段探讨了微乳液在煤泥表面的作用机理。ST−柴油微乳液作煤泥捕收剂时浮选效果较好,可燃体回收率可达68.13%,比柴油作捕收剂时高9.23百分点。与柴油相比,ST−柴油微乳液处理后纯煤表面接触角提高17.3°;表面Zeta电位绝对值减小;煤颗粒间相互作用总能VT的能垒降低,有利于颗粒间凝聚;表面活性剂与煤泥表面含氧官能团发生物理吸附,提高了煤粒表面疏水性。ST−柴油微乳液可作为一种新型高效的煤泥浮选捕收剂。

  • 加载中
  • 图 1  煤样筛分试验结果

    Figure 1. 

    图 2  煤泥XRD谱图

    Figure 2. 

    图 9  纯煤接触角测试结果(a)纯煤、(b)纯煤+柴油、(c)纯煤+ST−柴油微乳液

    Figure 9. 

    图 10  煤泥接触角测试结果(a)煤泥、(b)煤泥+柴油、(c)煤泥+ST−柴油微乳液

    Figure 10. 

    图 11  纯煤Zeta电位分析结果

    Figure 11. 

    图 12  煤泥表面红外光谱图

    Figure 12. 

    图 3  HLB=6时ST−柴油微乳液三元相图

    Figure 3. 

    图 4  HLB=7时ST−柴油微乳液三元相图

    Figure 4. 

    图 5  HLB=8时ST−柴油微乳液三元相图

    Figure 5. 

    图 6  HLB值=9时ST−柴油微乳液三元相图

    Figure 6. 

    图 7  液滴粒径分布

    Figure 7. 

    图 8  不同捕收剂浮选煤泥时可燃体回收率与灰分随捕收剂用量变化

    Figure 8. 

    图 13  煤颗粒间相互作用势能曲线

    Figure 13. 

    表 1  煤泥的工业分析和元素分析

    Table 1.  Industrial analysis and elemental analysis of coal slime

    工业分析/%元素分析/%
    MadAadVadFCadCadHadOadNadSad
    1.6656.9115.8425.5932.272.599.210.920.23
    下载: 导出CSV

    表 2  不同HLB值的ST−柴油微乳液三元相图微乳区面积

    Table 2.  Microemulsion area of ST microemulsion ternary phase diagram with different HLB values

    HLB值6789
    微乳区面积6358191013773
    下载: 导出CSV

    表 3  液滴平均粒径

    Table 3.  Average droplet size

    种类柴油ST-柴油微乳液
    平均粒径/nm1648.494.2
    下载: 导出CSV
  • [1]

    李琳, 刘炯天, 王运来, 等. 阴-非离子表面活性剂微乳捕收剂的制备及应用[J]. 煤炭学报, 2014, 39(11): 2315−2320.

    LI L, LIU J T, WANG Y L, et al. Preparation and application of anionic-nonionic surfactant microemulsified collector[J]. Journal of China Coal Society, 2014, 39(11): 2315−2320.

    [2]

    Arriagada S, Acua C, Vera M. New technology to improve the recovery of fine particles in froth flotation based on using hydrophobized glass bubbles[J]. Minerals Engineering, 2020, 156.

    [3]

    陈奎, 宋璨奡, 曹曦, 等. 废轮胎热解制备煤泥浮选捕收剂的试验研究[J]. 煤炭科学技术, 2011, 39(2): 115−118.

    CHEN K, SONG C A, CAO X, et al. Experiment study on waste tyre pyrolysis to prepare collector of slime floatation[J]. Coal Science and Technology, 2011, 39(2): 115−118.

    [4]

    杨自立. 基于细泥絮凝的高灰细粒煤脱灰过程界面作用机制[D]. 徐州: 中国矿业大学, 2022.

    YANG Z L. Interface mechanism of high-ash coal slime deashing process based on fine mud flocculation[D]. Xuzhou: China University of Mining and Technology, 2022.

    [5]

    XIA W, ZHOU C, PENG Y. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil[J]. Journal of Cleaner Production, 2017, 161.

    [6]

    ATESOK G, BOYLU F, CELIK M S. Carrier flotation for desulfurization and deashing of difficult-to-float coals[J]. Minerals Engineering, 2001(6): 14.

    [7]

    于跃先, 马力强, 张仲玲, 等. ZS乳化药剂对褐煤半焦浮选结果的影响及机理分析[J]. 煤炭科学技术, 2016, 44(3): 184−187.

    YU Y X, MA L Q, ZHANG Z L, et al. Analysis of emulsified ZS reagent effect on flotation results of lignite semi-coke and its mechanism[J]. Coal Science and Technology, 2016, 44(3): 184−187.

    [8]

    WANG T, XIA W, LIANG L, et al. The coalescence of bubbles immersed in liquid and at the liquid–gas interface[J]. Minerals Engineering, 2019, 142: 105924. doi: 10.1016/j.mineng.2019.105924

    [9]

    白娅娜, 朱书全, 解维伟, 等. 乳化柴油捕收剂的浮选试验研究[J]. 煤炭科学技术, 2009, 37(1): 117−121.

    BAI Y N, ZHU S Q, XIE W W, et al. Research on flotation test of emulsified diesel collector[J]. Coal Science and Technology, 2009, 37(1): 117−121.

    [10]

    任聪, 樊民强, 李志红, 等. 复配药剂浮选低阶煤泥的效能研究[J]. 煤炭科学技术, 2020, 48(S1): 242−247.

    REN C, FAN M Q, LI Z H, et al. Efficiency of compound reagents flotation of low-rank coal slime[J]. Coal Science and Technology, 2020, 48(S1): 242−247.

    [11]

    王驰, 崔广文. Gemini表面活性剂在地沟油制备微乳捕收剂中的应用[J]. 煤炭工程, 2019, 51(3): 130−135.

    WANG C, CUN G W. Application of gemini surfactant in preparation of micro-emulsion collector made from swill-cooked dirty oil[J]. Coal Engineering, 2019, 51(3): 130−135.

    [12]

    李志斌. 柴油乳化及其对浮选影响的研究[D]. 北京: 煤炭科学研究总院, 2017.

    LI Z B. Study on the emulsification of diesel oil and its effects on floation efficiency[D]. Beijing: Coal Research Institute, 2017.

    [13]

    张瑞英. 新型煤用捕收剂PCF捕收性能试验研究[J]. 煤炭科学技术, 2011, 39(6): 125−128.

    ZHANG R Y. Experiment study on capture performance of new coal capturer PCF[J]. Coal Science and Technology, 2011, 39(6): 125−128.

    [14]

    CHANG Z, CHEN X, PENG Y. The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation[J]. Powder Technology, 2019, 342: 840−847. doi: 10.1016/j.powtec.2018.10.047

    [15]

    李琳, 贺萌, 李晓腾, 等. 生物基微乳捕收剂的制备及其在煤泥浮选中的应用[J]. 中国矿业大学学报, 2022, 51(4): 779−790.

    LI L, HE M, LI X T, et al. Preparation of bio-based microemulsion collector and its application in coal slime flotation[J]. Journal of China University of Mining & Technology, 2022, 51(4): 779−790.

    [16]

    黄波, 徐宏祥, 李旭林. 微乳型捕收剂的稳定性和浮选性能的试验研究[J]. 煤炭学报, 2019, 44(9): 2878−2885.

    HUANG B, XUN H X, LI X L. Experimental study on stability and flotation performance of micro-emulsion collector[J]. Journal of China Coal Society, 2019, 44(9): 2878−2885.

    [17]

    ZHAO X, TANG Y, ZHAO B, et al. Collecting behaviors of high internal phase (HIP) emulsion in flotation of ultrafine high-ash content coal slime[J]. International Journal of Coal Preparation and Utilization, 2022, 42(9).

    [18]

    赵学敏. 基于煤油与起泡剂的微乳液配制及其煤泥浮选效果研究[D]. 太原: 太原理工大学, 2017.

    ZHAO X M. Preparation of microemulsified collector based on kerosene and foaming agent and application in coal flotation[D], Taiyuan: Taiyuan University of Technology, 2017.

    [19]

    刘腾飞, 冯莉. 添加剂对乳化柴油捕收剂稳定性的影响[J]. 实验室研究与探索, 2012, 31(12): 19-23.

    LIU T F, FENG L. Effect of additives on the stability of emulsified diesel collector[J]. Research and Exploration in Laboratory, 2012, 31(12): 19-23.

    [20]

    史建平. WL浮选捕收剂的研制及应用[J]. 煤炭加工与综合利用, 2009(2): 17−21.

    SHI J P. Development and application of WL flotation collector[J]. Coal Processing & Comprehensive Utilization, 2009(2): 17−21.

    [21]

    XIE W, CAO G, REN X, et al. Effect of flotation promoter on the rate of coal slime flotation[J]. Journal of Mining Scinece, 2014, 50(3).

    [22]

    YOU X, LI L, LIU J, et al. Investigation of particle collection and flotation kinetics within the Jameson cell downcomer[J]. Powder Technology, 2017, 310.

    [23]

    解维伟. 煤乳化浮选药剂的制备与应用机理研究[D]. 北京: 中国矿业大学, 2009.

    XIE W W. Research on the preparation and application mechanism of the emulsified coal floatation agent[D]. Beijing: China University of Mining and Technology, 2009.

  • 加载中

(13)

(3)

计量
  • 文章访问数:  128
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-05-13
刊出日期:  2023-08-25

目录