不规则铜钼矿颗粒断裂强度分布实验研究

周强, 汪轶凡, 肖庆飞, 刘向阳, 邵云丰, 黄守向, 王庆凯, 邹海. 不规则铜钼矿颗粒断裂强度分布实验研究[J]. 矿产保护与利用, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004
引用本文: 周强, 汪轶凡, 肖庆飞, 刘向阳, 邵云丰, 黄守向, 王庆凯, 邹海. 不规则铜钼矿颗粒断裂强度分布实验研究[J]. 矿产保护与利用, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004
ZHOU Qiang, WANG Yifan, XIAO Qingfei, LIU Xiangyang, SHAO Yunfeng, HUANG Shouxiang, WANG Qingkai, ZOU Hai. Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004
Citation: ZHOU Qiang, WANG Yifan, XIAO Qingfei, LIU Xiangyang, SHAO Yunfeng, HUANG Shouxiang, WANG Qingkai, ZOU Hai. Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 33-42. doi: 10.13779/j.cnki.issn1001-0076.2023.04.004

不规则铜钼矿颗粒断裂强度分布实验研究

  • 基金项目: 国家自然科学基金地区科学基金项目(51964044); 矿冶过程自动控制技术国家重点实验室开放基金项目(BGRIMM−KZSKL−2022−1); 云南省科技厅基础研究项目(202301AT070392); 云南省教育厅科学研究基金项目(2023J0125)
详细信息
    作者简介: 周强(1991—),男,山东枣庄人,博士,讲师,硕士生导师,主要从事碎磨理论及碎磨过程数值模拟研究,E-mail:zq1246051563@163.com
    通讯作者: 肖庆飞(1980—),男,云南昆明人,博士,教授,博士生导师,主要从事碎磨理论与工艺的研究,E-mail:xiaoqf801002@163.com
  • 中图分类号: TD921+.2;TD453

Experimental Study of the Strength Distribution of Irregular Copper−molybdenum Ore Particles

More Information
  • 不规则矿石颗粒的断裂是矿物加工过程中常见的现象,其强度分布决定了矿石破碎特性。为了定量分析不规则颗粒的强度分布,通过对5种不同粒级的铜钼矿颗粒进行准静态单轴压缩实验,确定破碎过程中的最大破碎力和断裂能。选取3种常见的统计学模型分别对不同定义下的(最大破碎力、断裂应力、断裂能和断裂比能)颗粒强度进行拟合,并研究了其与颗粒尺寸和材料特性之间的定量关系。试验结果表明:Weibull模型较Lognormal和Lmogintic两种模型更适合描述铜钼矿颗粒的强度分布,其模型中强度分布的离散程度D只与材料特性有关,与颗粒尺寸呈弱函数关系;F63.20E63.20与颗粒尺寸呈正比关系,而σ63.20Em63.20随着颗粒尺寸的增大呈幂函数规律减小;不同定义下的颗粒强度之间(最大破碎力−断裂能和断裂应力−断裂比能)的关系都只与材料特性有关,而与颗粒尺寸无关,在双对数坐标系下斜率分别为1.49与0.67。

  • 加载中
  • 图 1  试验装置

    Figure 1. 

    图 2  两类铜钼矿单颗粒压缩破碎接触力−位移曲线

    Figure 2. 

    图 3  断裂能定义图

    Figure 3. 

    图 4  不同定义下颗粒的强度分布

    Figure 4. 

    图 5  试验数据与3个统计模型拟合的对比

    Figure 5. 

    图 6  Weibull模型对不同尺寸下的试验数据的拟合

    Figure 6. 

    图 7  Logistic模型对不同尺寸下的材料的试验数据的拟合

    Figure 7. 

    图 8  Lognormal模型对不同尺寸下的材料的试验数据的拟合

    Figure 8. 

    图 9  相关系数误差分析图

    Figure 9. 

    图 10  铜钼矿颗粒的F63.20E63.20与颗粒尺寸的关系

    Figure 10. 

    图 11  铜钼矿颗粒的σ63.20与颗粒尺寸的关系

    Figure 11. 

    图 12  铜钼矿颗粒的Em63.20与颗粒尺寸的关系

    Figure 12. 

    图 13  铜钼矿颗粒的断裂能与最大破碎力的关系

    Figure 13. 

    图 14  铜钼矿颗粒的断裂应力与断裂比能的关系

    Figure 14. 

    表 1  部分试验数据拟合的相关系数

    Table 1.  Correlation coefficient fitted to some experimental data

    类型模型R2
    最大破碎力Logistic0.984
    Lognormal0.981
    Weibull0.989
    断裂应力Logistic0.984
    Lognormal0.981
    Weibull0.989
    断裂能Logistic0.979
    Lognormal0.981
    Weibull0.990
    断裂比能Logistic0.979
    Lognormal0.981
    Weibull0.990
    下载: 导出CSV

    表 2  不同粒级的铜钼矿颗粒强度分布拟合离散程度汇总

    Table 2.  Summary of the degree to which the intensity distribution fits discretely for copper−molybdenum ore particles of different sizes

    粒级/mmDFDσDEDEm
    0.9~21.661.661.511.51
    2~51.621.621.251.25
    5~81.951.951.181.18
    8~101.521.520.950.95
    10~121.871.871.301.30
    平均值1.721.721.241.24
    下载: 导出CSV

    表 3  DFDE与颗粒尺寸的关系

    Table 3.  The relationship of DFDE and particle size

    粒级/mm最大破碎力 /N断裂能 /J
    DFF50R2DFF50R2DEE50R2DEE50R2
    0.9~21.66109.140.9451.72108.350.9441.5127.790.8811.2330.080.873
    2~51.62349.060.9901.72347.360.9891.25145.300.9891.23145.760.989
    5~81.95557.380.9641.72559.270.9601.18430.100.9891.23429.210.988
    8~101.52902.900.9901.72893.580.9850.95911.010.9431.23928.010.926
    10~121.871317.510.9851.721306.470.9831.301366.010.9801.231373.010.980
    下载: 导出CSV
  • [1]

    FUERSTENAU D W, ABOUZEID A Z M. The energy efficiency of ball milling in comminution[J]. International Journal of Mineral Processing, 2002, 67(1): 161−185.

    [2]

    TAVARES L M. Handbook of Powder Technology[M]. Oxford: Elsevier, 2007: 3−68.

    [3]

    POWELL M S, MORRISON R D. The future of comminution modelling[J]. International Journal of Mineral Processing, 2007, 84(1/2/3/4): 228−239. doi: 10.1016/j.minpro.2006.08.003

    [4]

    VOGEL L, PEUKERT W. Breakage behaviour of different materials−construction of a mastercurve for the breakage probability[J]. Powder Technology, 2003, 129(1/2/3): 101−110. doi: 10.1016/S0032-5910(02)00217-6

    [5]

    SALMAN, ALEXANDER RUSSELL, SERGEJ AMAN, et al. Breakage probability of granules during repeated loading[J]. Powder Technology, 2015, 269: 541−547. doi: 10.1016/j.powtec.2014.09.044

    [6]

    AMAN S, JüRGEN T, KALMAN H. Breakage probability of irregularly shaped particles[J]. Chemical Engineering Science, 2010, 65(5): 1503−1512. doi: 10.1016/j.ces.2009.10.016

    [7]

    刘建远. 威布尔分布在颗粒碎裂描述和粉碎数学建模中的应用[J]. 矿冶, 2009(3): 1−8. doi: 10.3969/j.issn.1005-7854.2009.03.001

    LIU J Y. Application of Weibull distribution in particle fragmentation description and comminution mathematical modeling[J]. Mining and Metallurgy, 2009(3): 1−8. doi: 10.3969/j.issn.1005-7854.2009.03.001

    [8]

    ROZENBLAT Y, PORTNIKOV D, LEVY A, et al. Strength distribution of particles under compression[J]. Powder Technology, 2011, 208(1): 215−224. doi: 10.1016/j.powtec.2010.12.023

    [9]

    HUANG J, XU S, YI H, HU S. Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268(1): 86−94.

    [10]

    GHADIRI M, BRUNARD N, KOLENDA F. Weibull analysis of quasistatic crushing strength of catalyst particles[J]. Chemical Engineering Research & Design, 2003, 81(8): 953−962.

    [11]

    PETUKHOV Y, KALMAN H. Empirical breakage ratio of particles due to impact[J]. Powder Technology, 2004, 143(26): 160−169.

    [12]

    JüRGEN T, SCHREIER M, TORSTEN G. Impact crushing of concrete for liberation and recycling[J]. Powder Technology, 1999, 105(1): 39−51.

    [13]

    LIN Y L, WANG D M, LU W M. Compression and deformation of soft spherical particles[J]. Chemical Engineering Science, 2008, 63(1): 195−203. doi: 10.1016/j.ces.2007.09.028

    [14]

    ANTONYUK S, TOMAS J, HEINRICH S. Breakage behaviour of spherical granulates by compression[J]. Chemical Engineering Science, 2005, 60(14): 4031−4044. doi: 10.1016/j.ces.2005.02.038

    [15]

    WEICHERT R. Theoretical prediction of energy consumption and particle size distribution in grinding and drilling of brittle materials[J]. Particle & Particle Systems Characterization, 1991, 8(1): 55−62.

    [16]

    MA L, LI Z, WANG M. Effects of size and loading rate on the mechanical properties of single coral particles[J]. Powder Technology, 2019, 342: 961−971. doi: 10.1016/j.powtec.2018.10.037

    [17]

    黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究[D]. 合肥: 中国科学技术大学, 2016.

    HUANG J Y. Research on multi−scale deformation and breakage characteristics of brittle particle materials under impact load[D]. Hefei: University of Science and Technology of China, 2016.

    [18]

    周强, 潘永泰, 朱长勇, 等. 准静态下脆性材料强度分布试验研究[J]. 煤炭学报, 2019, 44(S2): 708−716.

    ZHOU Q, PAN Y T, ZHU C Y, et al. Experimental study on strength distribution of brittle materials at quasistatic state[J]. Journal of China Coal Society, 2019, 44(S2): 708−716.

  • 加载中

(14)

(3)

计量
  • 文章访问数:  277
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2023-06-01
刊出日期:  2023-08-25

目录