恩施下二叠统梁山组高岭土工艺矿物学与加工性能研究

朱小燕, 邹本利, 李傲竹, 刘意, 周凤, 王洪权, 严春杰, 蔡礼光, 蔡传震. 恩施下二叠统梁山组高岭土工艺矿物学与加工性能研究[J]. 矿产保护与利用, 2023, 43(4): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.04.008
引用本文: 朱小燕, 邹本利, 李傲竹, 刘意, 周凤, 王洪权, 严春杰, 蔡礼光, 蔡传震. 恩施下二叠统梁山组高岭土工艺矿物学与加工性能研究[J]. 矿产保护与利用, 2023, 43(4): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.04.008
ZHU Xiaoyan, ZOU Benli, LI Aozhu, LIU Yi, ZHOU Feng, WANG Hongquan, YAN Chunjie, CAI Liguang, CAI Chuanzhen. Process Mineralogy Investigations and Processabilities of Kaolinite in Lower Permian Liangshan Formation of Enshi[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.04.008
Citation: ZHU Xiaoyan, ZOU Benli, LI Aozhu, LIU Yi, ZHOU Feng, WANG Hongquan, YAN Chunjie, CAI Liguang, CAI Chuanzhen. Process Mineralogy Investigations and Processabilities of Kaolinite in Lower Permian Liangshan Formation of Enshi[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 81-88. doi: 10.13779/j.cnki.issn1001-0076.2023.04.008

恩施下二叠统梁山组高岭土工艺矿物学与加工性能研究

  • 基金项目: 国家自然科学基金项目(51774259);湖北省自然资源科研项目(ZRZY2023KJ02)
详细信息
    作者简介: 朱小燕(1980—),女,安徽宿松人,副教授,博士,主要从事纳米矿物新材料研究,E-mail:bright_xyz@126.com
    通讯作者: 严春杰(1963—),男,湖北武汉人,博士,教授,主要从事矿物材料与综合利用、工业废水处理、矿物功能材料,E-mail:chjyan2005@126.com
  • 中图分类号: TD91;TD985

Process Mineralogy Investigations and Processabilities of Kaolinite in Lower Permian Liangshan Formation of Enshi

More Information
  • 以湖北恩施下二叠统梁山组高岭土作为研究对象,利用XRD、XRF、SEM/EDS、ICP-MS、TG/DSC、光学显微镜、白度仪、粒度仪等分析手段,解析物相、主成分和微量锂含量、杂质赋存状态、白度、粒径分布、吸油值及热解特征,进行干法初加工和煅烧实验研究其加工特性。结果表明该矿石工业类型为硬质高岭土,部分层位高岭石含量86.79%~99.45%,结晶程度不高,结构无序;微量Li有待开发;黄铁矿杂质呈现出鲕粒状,分布于高岭石颗粒粒隙间。高岭石干法初加工后,<1 μm占比32.35%,筛下物含铁量和化学需氧量(COD)会同时降低,可考虑分选加工用作玻纤原料、水泥、复合肥等添加料等;950 ℃煅烧后白度可达79.1%,750 ℃煅烧后吸油值48.23 g/100g,其应用可扩展至偏高岭石、莫来石及陶瓷釉料原料。本研究为恩施高岭土资源加工及潜在应用指出了方向,为其他同类型资源开发提供了研究基础。

  • 加载中
  • 图 1  矿样的物相分析:(a)A矿点XRD图;(b)B矿点XRD图;(c)A矿点层高岭石物相随层位变化;(d)B矿点高岭石随层位变化;1~7矿样表示由顶部自上而下每隔约50 cm取一个样

    Figure 1. 

    图 2  矿样微观形貌与能谱分析:(a)和(b)A−3,(c)和(d) B−3

    Figure 2. 

    图 3  矿样反射光光学显微图:(a)A−3,(b)B−3

    Figure 3. 

    图 4  样品B−3的TG/DSC图谱

    Figure 4. 

    图 5  破碎、研磨后样品的粒度分布(a)和形貌图(b)

    Figure 5. 

    图 6  高岭石(B−3)煅烧特性研究: (a)煅烧温度对白度的影响;(b)煅烧温度对吸油值的影响;(c)850 ℃煅烧后物相变化;(d)850℃煅烧后形貌

    Figure 6. 

    表 1  恩施花石板矿样物相组成和HI参数

    Table 1.  XRD analysis results of ores from Huashiban of Enshi /%

    取样点样品编号高岭石 /%黄铁矿/%石英 /%锐钛矿 /%伊利石 /%勃姆石 /%方解石 /%HI
    巷道口距845 m,由顶板至下层A−114.381.0583.441.130.40
    A−286.795.767.440.53
    A−374.4720.624.910.89
    A−424.322.0253.5720.080.59
    A−59.047.7279.53.74
    A−696.63.410.74
    A−761.631.053.529.454.37
    A点平均值52.465.9533.190.167.080.001.160.45
    巷道口距810 m,由顶板至下层B−199.450.550.62
    B−288.70.912.437.950.20
    B−393.410.723.022.860.31
    B−495.760.2540.54
    B−588.417.22.451.931.14
    B−693.842.243.920.38
    B−710.384.9346.2938.40.52
    B点平均值81.421.218.242.246.620.280.000.53
    下载: 导出CSV

    表 2  恩施花石板矿区矿样化学成分分析结果

    Table 2.  Chemical compositions of ores from Huashiban of Enshi

    样品编号SiO2 /%Al2O3 /%Fe2O3 /%MgO /%CaO/%Na2O /%K2O/%MnO/%TiO2/%P2O5/%烧失量/%Li/(μg·g−1)
    A−175.5215.70.970.200.110.480.530.011.250.025.1486.8
    A−228.2725.564.210.300.070.090.160.010.870.0240.40170
    A−344.0637.071.220.560.230.200.420.011.550.0214.60492
    A−449.0314.342.310.170.100.290.280.011.170.0132.24126
    A−568.505.8412.010.652.360.160.820.010.330.039.1220.3
    A−638.9329.634.710.840.450.210.840.021.140.0523.13654
    A−745.0035.421.840.630.211.061.400.012.800.0511.39254
    A点平均值49.9023.373.900.480.500.360.640.011.300.0319.43257.59
    B−155.2519.096.292.552.800.472.870.020.950.748.8443.9
    B−244.0538.380.850.310.160.190.190.011.700.0214.04500
    B−344.1138.131.040.590.200.560.430.011.420.0613.39534
    B−444.0239.530.530.170.100.120.090.011.340.0214.00639
    B−543.9539.140.410.180.110.120.120.011.220.0214.67605
    B−643.6439.190.800.190.100.090.120.011.430.0214.37646
    B−742.3237.812.760.170.100.090.100.011.470.0315.07568
    B点平均值45.3335.901.810.590.510.230.560.011.360.1313.48505.13
    下载: 导出CSV

    表 3  破碎、研磨、筛分两组实验样品的Al2O3、Fe2O3和COD值

    Table 3.  The content of Al2O3, Fe2O3 and COD values of the samples by crushing, grinding and sieving

    样品原矿1#筛下物1#筛上物2#筛下物2#筛上物
    Al2O3 /%38.1339.8838.9039.7637.75
    Fe2O3 /%1.040.801.560.741.95
    COD /10−614654895917310883818303
    下载: 导出CSV
  • [1]

    鞠建华, 张照志, 潘昭帅, 等. 我国战略性新兴产业矿产厘定与“十四五”需求分析[J]. 中国矿业, 2022, 31(9): 1−11. doi: 10.12075/j.issn.1004-4051.2022.09.025

    JU J H, ZHANG Z Z, PAN Z S, et al. Determinationof mineral resources in China’s strategice merging industries and analysis of the demand of the ‘14th five year plan’[J]. China Mining Magazine, 2022, 31(9): 1−11. doi: 10.12075/j.issn.1004-4051.2022.09.025

    [2]

    WANG S, GAINEY L, D. R. MACKINNON I, et al. High- and low-defect kaolinite for brick making: Comparisons of technological properties, phase evolution and microstructure[J]. Construction and Building Materials, 2023, 366: 130250. doi: 10.1016/j.conbuildmat.2022.130250

    [3]

    肖万山. 大同煤田煤系高岭土矿地质特征及成因探讨[J]. 中国非金属矿工业导刊, 2023(1): 20−23+34. doi: 10.3969/j.issn.1007-9386.2023.01.005

    XIAO W S. Geological characteristics and genesis of coal-series kaolinite deposits in Datong coalfield[J]. China Non-metallic Mining Industry, 2023(1): 20−23+34. doi: 10.3969/j.issn.1007-9386.2023.01.005

    [4]

    冯雪茹, 邓建, 严伟平, 等. 我国高岭土开发现状及综合利用进展[J]. 矿产综合利用, 2022(6): 1−10.

    FENG X R, DENG J, YAN W P, et al. Development status and comprehensive utilization of kaolin[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 1−10.

    [5]

    陈漫, 陈肖汀, 黄腾, 等. 我国煤系高岭土应用现状研究与展望[J]. 矿产综合利用, 2022(6): 11−16. doi: 10.3969/j.issn.1000-6532.2022.06.002

    CHEN M, CHEN X T, HUANG T, et al. Application status of coal series kaolin in china[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 11−16. doi: 10.3969/j.issn.1000-6532.2022.06.002

    [6]

    肖金凯. 贵州高岭土中铁钛的赋存状态研究[J]. 贵州地质, 1997(3): 235−243.

    XIAO J K. A study on occurrence of iron and titanium in kaoline of Guizhou[J]. Guizhou Geology, 1997(3): 235−243.

    [7]

    陈开旭, 姚书振, 沈上越, 等. 鄂西下二叠统梁山组煤系高岭岩铁、钛赋存状态研究[J]. 华南地质与矿产, 2005(3): 1−5.

    CHEN K X, YAO S Z, SHEN S Y, et al. Fe-Ti occurrence in kaolinitie of lower permian liangshan formation, western Hubei[J]. Province Geology and Mineral Resources of South China, 2005(3): 1−5.

    [8]

    袁新军. 云南省上二叠统宣威组硬质高岭土矿地质特征及成矿规律研究[J]. 建材发展导向, 2022, 20(8): 32−35.

    YUN X J. A study on the geological characteristics and metallogenic laws of hard kaolin deposits in the Xuanwei formation of the upper permian in Yunnan Province[J]. Development Guide to Building Materials, 2022, 20(8): 32−35.

    [9]

    LIU D, ZHANG Y, ZHOU A, et al. The kaolinite crystallinity and influence factors of coal-measure kaolinite rock from Datong coalfield, China[J]. Minerals (Basel), 2022, 12(1): 54.

    [10]

    MBEY J, SIÉWÉ J M, NGALLY SABOUANG C J, et al. DMSO intercalation in selected kaolinites: influence of the crystallinity[J]. Chem Engineering, 2020, 4(4): 66. doi: 10.3390/chemengineering4040066

    [11]

    王新富, 秦云虎, 王彦君, 等. 华丰煤矿矸石理化特征分析及分级分质利用[J]. 中国煤炭地质, 2023, 35(1): 19−24+31.

    WANG X F, QIN Y H, WANG Y J, et al. Analysis of physical and chemical characteristics and utilization by grading and quality separation of Gangue in Huafeng coal mine[J]. Coal Geology of China, 2023, 35(1): 19−24+31.

    [12]

    温汉捷, 罗重光, 杜胜江, 等. 碳酸盐黏土型锂资源的发现及意义[J]. 科学通报, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179

    WEN H J, LUO C G, DU S J, et al. Carbonate-hosted clay-type lithium deposit and its prospecting significance[J]. Chinese Science Bulletin, 2020, 65(1): 53−59. doi: 10.1360/TB-2019-0179

    [13]

    GU H, GUO T, WEN H, et al. Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone[J]. Minerals Engineering, 2020, 145: 106076. doi: 10.1016/j.mineng.2019.106076

    [14]

    周冬冬, 朱继华, 何斌. 湖南风化残积型高岭土矿分布及成矿机理分析[J]. 中国非金属矿工业导刊, 2023(1): 28−30+54. doi: 10.3969/j.issn.1007-9386.2023.01.007

    ZHOU D D, ZHU J H, HE B. Distribution and metallogenic mchanism of weathered residual kaolin deposit in Hu’nan Province[J]. China Non-metallic Mining Industry, 2023(1): 28−30+54. doi: 10.3969/j.issn.1007-9386.2023.01.007

    [15]

    VALÁšKOVÁ M, KLIKA Z, JOZEF V, et al. Alkali-activated metakaolins: mineral chemistry and quantitative mineral composition[J]. Minerals, 2022, 12(11): 1342. doi: 10.3390/min12111342

    [16]

    DOU W, FAN J, LIN Q, et al. Study on the adsorption performance of La(Ⅲ) and Y(Ⅲ) on malic acid-kaolinite nanocomposite[J]. Materials Letters, 2023(330): 133254.

    [17]

    孙涛, 周春宇, 陈洁渝, 等. 煤系煅烧高岭土吸油值的影响因素[J]. 岩石矿物学杂志, 2013, 32(2): 232−238.

    SUN T, ZHOU C Y, CHEN J Y, et al. Factors influencing oil adsorption of calcined coal-series kaolin[J]. Acta Petrologica et Mineralogica, 2013, 32(2): 232−238.

    [18]

    ALALI A F, WANG S, ZHU Z, et al. Formation of oil-particle aggregates with motor oil and kaolinite clay in cold and warm freshwater[J]. Environmental Science Processes & Impacts, 2023, 25(3): 566−576.

    [19]

    ZHENG D, LIANG X, CUI H, et al. Study of performances and microstructures of mortar with calcined low-grade clay[J]. Construction and Building Materials, 2022(327): 126963.

    [20]

    孙悦, 刘小青, 何峰, 等. 煅烧温度对低品位煅烧黏土物相和结构的影响[J]. 硅酸盐通报, 2023(3): 1−8.

    SUN Y, LIU X Q, HE F, et al. Effects of calcination temperature on phase and structure of low-grade calcined clay[J]. Bulletin of the Chinese Ceramic Society, 2023(3): 1−8.

  • 加载中

(6)

(3)

计量
  • 文章访问数:  63
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
刊出日期:  2023-08-25

目录