-
摘要:
为了提高海南文昌某石英砂矿生产光伏玻璃用砂产品质量,采用MLA、电子显微镜等分析手段查明矿物性质和赋存状态,进行了石英砂提纯实验研究。结果表明,石英砂原矿含SiO2 96.67%、Al2O3 1.67%、Fe2O3 0.14%、TiO2 0.12%、ZrO2 0.01%,有害组分主要以泥质和含铁质矿物形式附着于石英颗粒的凹凸面、裂隙或酸性油质薄膜中。将传统的重选—磁选—酸浸工艺改造为擦洗—分级—螺旋溜槽重选—湿式磁选—碱浸的选别流程后,石英砂产品中SiO2回收率从89.60%提升至95.57%,SiO2含量从99.42%提升至99.74%,Al2O3和Fe2O3含量从0.18%和0.04%分别降至0.05%和0.008%,满足光伏玻璃用砂的需求;螺旋溜槽重选产品提纯获得ZrO2含量5.18%、TiO2含量23.78%的锆钛粗精矿;石英尾砂经烘干分级后,可用作铸造或压裂用的烘干砂,实现了该石英砂矿的综合利用。
Abstract:In order to improve the quality of photovoltaic glass sand products in a quartz sand mine in Wenchang, Hainan. It used methods such as MLA and electron microscopy to identify the properties and occurrence states of minerals, and conducted purification experiments on quartz sand. The results of experimental show that the content of SiO2, Al2O3, Fe2O3, TiO2, and ZrO2 in the raw sand of quartz is 96.67%, 1.67%, 0.14%, 0.12%, and 0.01%, respectively.Harmful components mainly adhere to surfaces, fault and acid oil on quartz particles in the form of argillaceous and Ferruginous. After transforming the traditional process which consists of gravity concentration, magnetic separation and acid leaching into the new technology consists of scrubbing, grading, spiral gravity separation, wet magnetic separation, and alkali leaching. The experiment increased the recovery rate of SiO2 from 89.60% to 95.57%. The SiO2 increased from 99.42% to 99.74%, Al2O3 and Fe2O3 decreased from 0.18% and 0.04% to 0.05% and 0.008% in the products of quartz,which can meet the demand for raw materials of photovoltaic glass. The experiment purified the spiral heavy product to obtain zirconium titanium coarse concentrate that contains 5.18% ZrO2 and 23.78% TiO2. At the same time, Quartz tailings can be reprocessed into drying sand for casting or fracturing. This experiment has improved the recovery rate and added value of siliceous products.
-
Key words:
- quartz /
- beach placer /
- sand for photovoltaic glass /
- sand for float glass /
- purification /
- zirconium titanium minerals
-
表 1 原矿化学成分分析结果
Table 1. Chemical composition analysis results of raw ore
/% SiO2 Al2O3 Fe2O3 K2O TiO2 96.67 1.67 0.14 0.05 0.12 ZrO2 MgO Na2O CaO Cr2O3 0.0098 0.0118 0.0085 0.0082 0.0026 表 2 原矿砂的微量元素光谱半定量分析结果
Table 2. Semi−quantitative spectral analysis results of raw ore
/(μg·g−1) Ti Mn V Pb Cr Ni Cu Co 2010 18 11 9 8 6 6 2 Sn Mo Ag As Sb Zn W Bi 1.5 0.1 <1 <30 <10 <10 <2 <0.3 表 3 原矿砂矿物组成分析结果
Table 3. Analysis results of mineral composition of raw ore
/% 石英 黏土 云母 钛铁矿 电气石 95.62 3.75 0.16 0.16 0.084 锆英石 白钛石 石榴石 金红石 磁铁矿 0.019 0.003 0.003 0.003 0.003 表 4 原矿砂筛析及其化学分析结果
Table 4. Sieve analysis and chemical analysis results of raw ore
粒级 /mm 粒级含量 /% SiO2 /% Al2O3 /% Fe2O3 /% +1.00 0.35 92.96 1.28 0.22 0.70~1.00 0.85 96.29 0.73 0.28 0.60~0.70 1.62 98.23 0.54 0.19 0.50~0.60 1.47 98.49 0.50 0.11 0.40~0.50 10.81 98.31 0.67 0.10 0.30~0.40 18.10 0.20~0.30 28.24 97.69 0.95 0.19 0.10~0.20 34.71 −0.10 3.86 86.19 6.47 0.78 表 5 原矿砂中重矿物鉴定结果
Table 5. Identification results of heavy minerals in raw ore sand
粒级/mm 赤褐铁矿/个 电气石/个 钛铁矿/个 白钛石/个 锆英石/个 +0.40 7913 2793 0 0 0 0.30~0.40 28860 225760 3724 0 0 0.20~0.30 148950 1952707 17688 14895 14430 −0.20 大量 大量 大量 大量 大量 粒级/mm 红柱石/个 磷灰石/个 十字石/个 蓝晶石/个 黄玉/个 +0.40 0 0 0 0 0 0.30~0.40 6982 3258 1396 0 0 0.20~0.30 81460 32584 20481 10706 8379 −0.20 少量 少量 少量 少量 少量 说明:−0.20 mm的重矿物粒度小、数量多,仅定性评价。 表 6 擦洗脱泥实验结果
Table 6. Scrubbing and desliming test results
序号 擦洗时间/min 石英砂Fe2O3含量/% 石英砂产率/% 1 5 0.063 94.33 2 10 0.050 93.53 3 15 0.050 93.43 4 20 0.050 92.82 表 7 擦洗后石英砂的重选实验结果
Table 7. Results of gravity concentration test of quartz sand after scrubbing
/% 序号 重选产品 Fe2O3含量 产率 1 螺旋重选产品一 0.035 95.40 2 螺旋重选产品二 0.033 89.93 表 8 一次重选轻产品中重矿物鉴定结果
Table 8. Identification results of heavy minerals in the first heavy selection of light products
粒级/mm 赤褐铁矿/% 电气石/% 钛铁矿/% 白钛石/% 锆英石/% +0.4 15.03 76.58 0 0 0 0.3~0.4 10.30 81.09 15.95 0 0 0.2~0.3 27.93 略少 43.68 79.81 61.79 −0.2 较少 略少 较少 略少 略少 粒级/mm 红柱石/% 磷灰石/% 十字石/% 蓝晶石/% 黄玉/% +0.4 0 0 0 0 0 0.3~0.4 42.57 0 0 0 0 0.2~0.3 17.51 29.19 0 38.87 35.47 −0.20 较少 较少 较少 较少 较少 表 9 擦洗—重选联合实验流程螺旋轻产品指标
Table 9. Spiral light product indicators for the combined process of scrubbing and gravity separation
/% 产品序号 SiO2 Al2O3 Fe2O3 TiO2 产率 第1组 99.25 0.31 0.040 0.029 91.13 第2组 99.29 0.30 0.034 0.037 90.71 第3组 99.41 0.21 0.032 0.029 90.69 第4组 99.33 0.36 0.039 0.035 90.82 第5组 99.34 0.20 0.029 0.032 90.65 第6组 99.13 0.29 0.075 0.035 90.97 第7组 99.19 0.26 0.034 0.031 90.50 平均值 99.28 0.28 0.040 0.033 90.78 表 10 螺旋轻产品粒度分布特征
Table 10. Particle size distribution characteristics of spiral light products
粒级/mm 0.71~0.60 0.60~0.40 0.40~0.30 0.30~0.20 0.20~0.106 −0.106 产率/% 0.67 5.77 19.12 25.87 43.61 4.96 表 11 除铁实验产物主要成分含量
Table 11. Main component content of the iron removal test product
/% 产品 SiO2 Al2O3 Fe2O3 二次重选精砂 99.13 0.31 0.074 磁选精砂 99.24 0.29 0.035 给矿 99.13 0.29 0.075 表 12 螺旋重选产品的再重选实验结果
Table 12. Repeated gravity concentration results of spiral heavy product
/% 产品 ZrO2 TiO2 产率 ZrO2回收率 TiO2回收率 锆钛粗精矿 5.18 23.78 4.12 92.78 77.76 给矿 0.23 1.26 100 / / 表 13 浮法玻璃用砂的介质擦洗实验产品质量对比
Table 13. Comparison of product quality in medium scrubbing test of sand for float glass
/% 擦洗介质 SiO2 Al2O3 Fe2O3 酸性介质 99.63 0.045 0.0091 碱性介质 99.75 0.050 0.0083 表 14 烘干砂物理性质分析结果
Table 14. Analysis results of physical properties of drying quartz sand
粒级/mm 破碎度/% 密度/g·cm−3 圆度 球度 浊度 14 MPa 28 MPa 体积
密度视密度 绝对
密度0.85~0.43 12.20 42.50 1.44 2.62 2.65 0.7 0.7 109 0.43~0.21 4.00 17.40 1.50 2.63 2.66 0.7 0.7 235 表 15 不同闭合压力下烘干砂的导流能力和渗透率
Table 15. The conductivity and permeability of dried sand under different closure pressures
闭合压力/MPa 0.85~0.43 mm 粒级烘干砂 0.43~0.21 mm 粒级烘干砂 导流能力/μm2·cm 渗透率/μm2 导流能力/μm2·cm 渗透率/μm2 10 27.6 76.94 54.34 152.05 20 15.81 45.61 25.57 75.49 30 10.8 31.9 13.64 41.61 40 7.57 22.93 7.37 22.78 50 6.22 19.04 4.38 13.76 60 5.67 17.58 2.64 8.42 表 16 全流程实验结果
Table 16. Full process test results
/% 产品 SiO2 Al2O3 Fe2O3 TiO2 ZrO2 产率 光伏玻璃用砂 99.74 0.05 0.008 0.023 / 83.63 锆钛粗精矿 / / / 23.78 5.18 0.18 烘干砂 99.24 0.68 0.04 / / 9.04 擦洗尾矿 51.09 21.81 / / / 7.15 给矿 96.67 1.67 0.14 0.120 0.01 100.00 表 17 石英砂传统工艺试验结果
Table 17. Results of traditional process flow for quartz sand
/% 产品 SiO2 Al2O3 Fe2O3 产率 擦洗后的石英砂 98.94 0.31 0.09 94.81 重选后的石英砂 99.18 0.31 0.07 91.41 磁选后的石英砂 99.22 0.30 0.05 89.47 浮法玻璃用砂 99.42 0.18 0.04 87.73 给矿 97.34 1.31 0.16 100 说明:擦洗、重选和磁选后的石英砂直接进入下一步流程。 -
[1] 钟森林, 陈俊明, 张超达, 等. ZQS磁选机在光伏玻璃用石英砂厂中的应用[J]. 材料研究与应用, 2019, 13(2): 146−151. doi: 10.3969/j.issn.1673-9981.2019.02.013
ZHONG S L, CHEN J M, ZHANG C D, et al. Application of ZQS magnetic separator in silica sand plant for photovoltaic glass[J]. Materials Research And Application, 2019, 13(2): 146−151. doi: 10.3969/j.issn.1673-9981.2019.02.013
[2] 郭文达, 韩跃新, 朱一民, 等. 高纯石英砂资源及加工技术分析[J]. 金属矿山, 2019, 48(2): 22−28. doi: 10.19614/j.cnki.jsks.201902004
GUO W D, HAN Y X, ZHU Y M, et al. Analysis of high-purity quartz sand resources and its processing technologies[J]. Metal Mine, 2019, 48(2): 22−28. doi: 10.19614/j.cnki.jsks.201902004
[3] 钟森林, 谢宝华, 袁祥奕, 等. 东南亚某石英砂矿选矿试验研究[J]. 中国矿业, 2019, 28(S1): 259−262.
ZHONG S L, XIE B H, YUAN X Y, et al. Study on the beneficiation test of silica sand in southeast Asia[J]. China Mining Magazine, 2019, 28(S1): 259−262.
[4] 彭寿, 吴建新, 谷翠红, 等. PPM级低铁石英砂的浮选技术及规模化生产实践[J]. 建材世界, 2010, 31(1): 49−52. doi: 10.3963/j.issn.1674-6066.2010.01.014
PENG S, WU J X, GU C H, et al. Flotation process and formalization production practice of PPM grade low iron quartz sand[J]. The World of Building Materials, 2010, 31(1): 49−52. doi: 10.3963/j.issn.1674-6066.2010.01.014
[5] 陆玉, 邵辉, 王康, 等. 河北某石英矿工艺矿物学与提纯研究[J]. 非金属矿, 2021, 44(6): 56−58. doi: 10.3969/j.issn.1000-8098.2021.06.015
LU Y, SHAO H, WANG K, et al. Process mineralogy and purification of a quartz ore in Hebei province[J]. Non-Metallic Mines, 2021, 44(6): 56−58. doi: 10.3969/j.issn.1000-8098.2021.06.015
[6] 张婷婷, 任东风, 侯军发, 等. 海相沉积型天然石英砂生产超白砂的工艺研究[J]. 建材世界, 2012, 33(4): 48−51. doi: 10.3963/j.issn.1674-6066.2012.04.015
ZHANG T T, REN D F, HOU J F, et al. Marine sedimentary natural quartz sand production technology of ultra white sand[J]. The World of Building Materials, 2012, 33(4): 48−51. doi: 10.3963/j.issn.1674-6066.2012.04.015
[7] 王守敬, 邵伟华. 海滨石英砂矿物学研究—以海南文昌石英砂为例[J]. 矿产保护与利用, 2019, 39(6): 58−61.
WANG S J, SHAO W H. Mineralogical study about seashore quartz sand ore—a case study from the seashore quartz sand ore at Wenchang, Hainan province[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 58−61.
[8] 贾德龙, 张万益, 陈丛林, 等. 高纯石英全球资源现状与我国发展建议[J]. 矿产保护与利用, 2019, 39(5): 112−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011
JIA D L, ZHANG W Y, CHEN C L, et al. Global resource status and China's development suggestions of high purity quartz[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 112−117. doi: 10.13779/j.cnki.issn1001-0076.2019.05.011
[9] 石钰, 张磊, 周东站, 等. 高纯石英砂的制备及应用研究进展[J]. 中国建材科技, 2019, 28(4): 73−75.
SHI Y, ZHANG L, ZHOU D Z, et al. Study on preparation and application of higher purity quartz sand[J]. China Building Materials Science & Technology, 2019, 28(4): 73−75.
[10] 杨文, 周迎春, 侯军发, 等. 超白石英砂尾砂除钛和降细粒级砂的试验研究[J]. 非金属矿, 2020, 43(6): 64−66. doi: 10.3969/j.issn.1000-8098.2020.06.018
YANG W, ZHOU Y C, HOU J F, et al. Study on titanium removal and fine-grained sand reduction experiment of ultra white quartz sand tailing[J]. Non-Metallic Mines, 2020, 43(6): 64−66. doi: 10.3969/j.issn.1000-8098.2020.06.018
[11] 谢恩俊, 林江平, 甘国超, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂的提纯试验研究[J]. 建材世界, 2021, 42(3): 14−17. doi: 10.3963/j.issn.1674-6066.2021.03.005
XIE E J, LIN J P, GAN G C, et al. Experimental study on purification of low iron quartz sand for photovoltaic glass from kaolin tailings[J]. The World of Building Materials, 2021, 42(3): 14−17. doi: 10.3963/j.issn.1674-6066.2021.03.005
[12] 彭程, 周迎春, 李国杰, 等. 海南文昌北部地区矿山地质特征及成因探析[J]. 中国金属通报, 2020(6): 65−66. doi: 10.3969/j.issn.1672-1667.2020.12.032
PENG C, ZHOU Y C, LI G J, et al. Geological characteristics and genesis of mines in the north of Wenchang, Hainan province[J]. China Metal Bulletin, 2020(6): 65−66. doi: 10.3969/j.issn.1672-1667.2020.12.032
[13] 彭程, 周迎春, 李国杰, 等. 马拉维湖滨型钛铁砂矿选冶分离试验研究[J]. 矿冶工程, 2021, 41(4): 52−56. doi: 10.3969/j.issn.0253-6099.2021.04.013
PENG C, ZHOU Y C, LI G J, et al. Study on process mineralogy and separation and enrichment of lakeside ilmenite placer in Malawi[J]. Mining and Metallurgical Engineering, 2021, 41(4): 52−56. doi: 10.3969/j.issn.0253-6099.2021.04.013
[14] 李宁, 姚建军. 莫桑比克某滨海锆钛砂矿工艺矿物学研究[J]. 现代矿业, 2022, 38(11): 114−116. doi: 10.3969/j.issn.1674-6082.2022.11.025
LI N, YAO J J. Study on process mineralogy of a coastal zirconium-titanium placer in mozambique[J]. Modern Mining, 2022, 38(11): 114−116. doi: 10.3969/j.issn.1674-6082.2022.11.025
[15] 彭程, 周迎春, 李国杰, 等. 还原焙烧—磁选工艺回收马拉维某钛粗精矿中的钛和铁[J]. 矿产保护与利用, 2022, 42(1): 150−157.
PENG C, ZHOU Y C, LI G J, et al. Recovery of titanium and iron from titanium rough concent ratein Malawi by reduction roasting-magnetic separation process[J]. Conservation and Utilization of Mineral Resource, 2022, 42(1): 150−157.
[16] 付标, 薛玉龙, 曾维特, 等. 海南岛东南部近岸表层沉积物锆、钛地球化学特征对浅海砂矿的指示[J]. 中国矿业, 2021, 30(S1): 208−216. doi: 10.12075/j.issn.1004-4051.2021.S1.097
FU B, XUE Y L, ZENG W T, et al. Geochemical characteristics of Zr and Ti in surface sediments indicate the shallow sea placers at southeast off-shore of Hainan island[J]. China Mining Magazine, 2021, 30(S1): 208−216. doi: 10.12075/j.issn.1004-4051.2021.S1.097
[17] 宋家伟, 伍德明, 陈飞, 等. 海南岛东部浅海表层沉积物锆、钛地球化学特征及资源潜力分析[J]. 中国矿业, 2021, 30(S1): 217−221. doi: 10.12075/j.issn.1004-4051.2021.S1.101
SONG J W, WU D M, CHEN F, et al. Geochemical characteristics and resource potential of Zr and Ti in shallow sea surface sediments in the east of Hainan island[J]. China Mining Magazine, 2021, 30(S1): 217−221. doi: 10.12075/j.issn.1004-4051.2021.S1.101
[18] 曹健, 陈小罗, 陈铮, 等. 海南省某砂质高岭土选矿试验研究[J]. 矿产保护与利用, 2013, 33(2): 44−49. doi: 10.3969/j.issn.1001-0076.2013.02.011
CAO J, CHEN X L, CHEN Z, et al. Beneficiation study on a sandy Kaolin from Hainan province[J]. Conservation and Utilization of Mineral Resource, 2013, 33(2): 44−49. doi: 10.3969/j.issn.1001-0076.2013.02.011
[19] 尚德兴, 周新军, 张乾伟, 等. 高岭土尾矿制备光伏玻璃用低铁石英砂[J]. 金属矿山, 2019, 48(12): 188-191.
SHANG D X, ZHOU X J, ZHANG Q W, et al. Preparation of low iron quartz sand for photovolatic glass from kaolin tailings[J]. Metal Mine. 2019, 48(12): 188-191.
[20] 吴飞达, 高惠民, 任子杰, 等. 合浦某高岭土尾砂的提纯与利用[J]. 非金属矿, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018
WU F D, GAO H M, REN Z J, et al. Purification and utilization of kaolin tailings in Hepu[J]. Non-Metallic Mines, 2019, 42(5): 62−66. doi: 10.3969/j.issn.1000-8098.2019.05.018
[21] 豆中磊, 郑水林, 吴照洋. 海南某石英砂矿的选矿提纯试验研究[J]. 金属矿山, 2009, 38(1): 051−053.
DOU Z L, ZHEN S L, WU Z Y. Study on concentration experiment of silica sand from Hainan province[J]. Metal Mine, 2009, 38(1): 051−053.
[22] 刘思, 高惠民, 胡廷海, 等. 北海某高岭土尾矿中石英砂的选矿提纯试验[J]. 金属矿山, 2013, 42(6): 161−164. doi: 10.3969/j.issn.1001-1250.2013.06.044
LIU S, GAO H M, HU T H, et al. Separation experiment of kaolin tailing quartz sand in Guangxi Beihai[J]. Non-Metallic Mines, 2013, 42(6): 161−164. doi: 10.3969/j.issn.1001-1250.2013.06.044
[23] 李宇宏. 江西某石英砂精矿再除铁试验研究[J]. 矿冶工程, 2016, 36(2): 41−43. doi: 10.3969/j.issn.0253-6099.2016.02.011
LI Y H. Further reducing of iron content in quartz sand concentrate from Jiangxi with HGMS technique[J]. Mining and Metallurgical Engineering, 2016, 36(2): 41−43. doi: 10.3969/j.issn.0253-6099.2016.02.011
[24] 刘泽伟, 邹玄, 赵阳, 等. 某石英砂矿制取高纯石英工艺研究[J]. 矿产综合利用, 2020, 41(4): 111−115. doi: 10.3969/j.issn.1000-6532.2020.04.018
LIU Z W, ZOU X, ZHAO Y, et al. Study on the process of producing high-purity quartz from a quartz sand mine[J]. Multipurpose Utilization of Mineral Resources, 2020, 41(4): 111−115. doi: 10.3969/j.issn.1000-6532.2020.04.018